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ABSTRACT

Context. Alfvén waves (AWs) excited by the cosmic-ray (CR) streaming instability (CRSI) are a fundamental ingredient for CR con-
finement. The effectiveness of such self-confinement relies on a balance between the CRSI growth rate and the damping mechanisms
acting on quasi-parallel AWs excited by CRs. One relevant mechanism is called turbulent damping, in which an AW packet injected
in pre-existing turbulence undergoes a cascade process due to its nonlinear interaction with fluctuations of the background.
Aims. The turbulent damping of an AW packet in pre-existing magnetohydrodynamic (MHD) turbulence is re-examined, revised,
and extended to include the most recent theories of MHD turbulence that account for dynamic alignment and reconnection-mediated
regimes. The case in which the role of feedback of CR-driven AWs on pre-existing turbulence is important is also discussed.
Methods. The Elsässer formalism is employed. Particular attention is given to the role of a nonlinearity parameter χw that estimates
the strength of the nonlinear interaction between CR-driven AW packets and the background fluctuations. We point out the difference
between χw and the parameter χz that instead describes the intrinsic strength of nonlinear interactions between pre-existing fluctua-
tions. Turbulent damping rates of quasi-parallel AW packets and cosmic-ray feedback (CRF) are derived within this formalism.
Results. When the strength of the nonlinear interaction is properly taken into account, we find that (i) the turbulent damping rate
of quasi-parallel AWs in sub-Alfvénic turbulence depends on the background-fluctuation amplitude to the third power, and hence
is strongly suppressed; (ii) the dependence on the AW’s wavelength (and thus on the CR gyro-radius from which it is excited) is
different from what has been previously obtained; and (iii) when dynamic alignment of cascading fluctuations and the possibility of
a reconnection-mediated range is included in the picture, the turbulent damping rate exhibits novel regimes and breaks. Finally, a
criterion for CRF is derived and a simple phenomenological model of CR-modified scaling of background fluctuations is provided.
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1. Introduction

Turbulent magnetized plasmas permeate a wide range of space
and astrophysical environments (e.g., Quataert & Gruzinov
1999; Schekochihin & Cowley 2006; Brandenburg & Lazarian
2013; Bruno & Carbone 2013; Ferrière 2020). Understanding
the properties of the turbulent cascade, and how the fluctuation
energy is transferred from injection to dissipation scales,
thus heating the plasma and also producing nonthermal par-
ticles in the process, is a relevant task in itself since it can
elucidate the role that turbulence plays in the dynamics and
thermodynamics of several astrophysical systems. Inspired
by the seminal work of Kolmogorov (1941) in hydrodynam-
ics, turbulence in magnetized plasmas has been the object
of several theoretical efforts aimed at obtaining universal
scaling for its fluctuations on large (fluid) magnetohydro-
dynamic (MHD) scales (e.g., Iroshnikov 1963; Kraichnan
1965; Goldreich & Sridhar 1995; Ng & Bhattacharjee 1997;
Galtier et al. 2000; Cho & Lazarian 2002; Boldyrev 2006;
Lazarian et al. 2012; Chandran et al. 2015; Mallet et al. 2015;
Boldyrev & Loureiro 2017; Mallet et al. 2017; Cerri et al. 2022;
Schekochihin 2022). At the same time, these astrophysical
environments are also populated with cosmic rays (CRs),
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which are charged particles with supra-thermal (relativistic)
energies that pervade the interstellar, intergalactic, and intr-
acluster media (e.g., Brunetti & Jones 2014; Amato & Blasi
2018; Faucher-Giguère & Oh 2023; Ruszkowski & Pfrommer
2023) and get scattered by magnetic-field fluctua-
tions (Ginzburg & Syrovatskii 1964; Berezinsky et al. 1990).
While cosmic-ray transport partly depends upon the properties
of pre-existing turbulence (e.g., Schlickeiser & Miller 1998;
Chandran 2000; Lerche & Schlickeiser 2001; Yan & Lazarian
2002, 2008; Teufel et al. 2003; Shalchi & Schlickeiser 2004;
Fornieri et al. 2021; Lazarian & Xu 2021; Lemoine 2023;
Kempski et al. 2023), CRs can also generate their own
scattering fluctuations through streaming instabilities (e.g.,
Kulsrud & Pearce 1969; Lee 1972; Skilling 1975; Gary 1993;
Bell 2004; Amato 2011; Weidl et al. 2019a,b; Marcowith et al.
2021). The level at which self-generated fluctuations saturate
depends on a balance between the instability growth and
the damping mechanisms that these waves are subjected to.
Depending on the Galactic environment, the damping pro-
cesses that were originally considered are the ion-neutral (IN)
damping (Kulsrud & Pearce 1969) and the nonlinear Landau
(NLL) damping (Lee & Völk 1973). These cosmic-ray driven
Alfvén-wave (AW) packets, however, also interact with pre-
existing fluctuations of the turbulent environment in which
they are generated. This interaction has been suggested to
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represent another source of damping, the process called turbu-
lent damping, for which a CR-generated AW packet is cascaded
to dissipation by its nonlinear interaction with background
fluctuations. This damping mechanism was originally proposed
by Farmer & Goldreich (2004), and subsequently extended by
Lazarian (2016) to account for different regimes of background
turbulence. However, an important parameter that has not been
taken into account in these previous works is the strength of
the nonlinear interaction (usually referred to as the nonlinearity
parameter χ) between the AW packet and pre-existing turbulent
fluctuations. This parameter is indeed different from (and typi-
cally much smaller than) the nonlinear parameter describing the
regime of background turbulence, which also needs to be taken
into account (as done by Lazarian 2016). We show here that tak-
ing this difference into account completely changes the estimate
of the turbulent damping rate, which is almost always much
lower than any rate derived previously. Moreover, the damping
rate and its scaling strongly depend upon the properties of back-
ground turbulence. In the previous literature, only what we can
call the classic theories of MHD turbulence have been taken into
account: isotropic “Kolmogorov-like” turbulence, hereafter the
K41 regime (Kolmogorov 1941); a weak cascade of Alfvénic
fluctuations, hereafter the W0 regime (Ng & Bhattacharjee
1997; Galtier et al. 2000); and a critically balanced Alfvénic
cascade, hereafter the GS95 regime (Goldreich & Sridhar
1995). However, advanced theories of MHD turbulence that
extend the above classic picture have been formulated in the past
years. This is the case, for instance, of a theory that incorporates
dynamic (i.e., scale-dependent) alignment of fluctuations in
a critically balanced Alfvénic cascade, hereafter the B06
regime (Boldyrev 2006), which can intrinsically lead at even
smaller scales to a regime usually referred to as tearing-mediated
turbulence, hereafter the TMT regime (i.e., a regime where
magnetic reconnection mediates the generation of smaller-scale
fluctuations, Boldyrev & Loureiro 2017; Mallet et al. 2017). It
is also worth mentioning that the conditions under which critical
balance and the associated cascades develop (i.e., GS95, B06,
and TMT regimes) may not cover all the possible scenarios in
MHD turbulence (e.g., see discussion in Oughton & Matthaeus
2020). However, analytical (phenomenological) scaling of
turbulent fluctuations and their anisotropy can be only derived
for these cases. Moreover, several numerical simulations and
in situ measurements in the solar wind have provided solid
evidences for these regimes (e.g., Chen 2016; Sahraoui et al.
2020; Schekochihin 2022, and references therein). Therefore,
it is of interest to derive turbulent damping rates for all these
theories. The results obtained here have indeed implications
for the cosmic-ray self-confinement, since its effectiveness for
CR scattering is the result of a competition between different
damping mechanisms and a balance between the most-relevant
damping rate and the growth rate of the CR streaming instabil-
ity (e.g., Farmer & Goldreich 2004; Blasi et al. 2012; Lazarian
2016; Kempski & Quataert 2022; Xu & Lazarian 2022). For
instance, by adopting the rates obtained in Farmer & Goldreich
(2004) and Lazarian (2016), turbulent damping can compete
with or even dominate over the IN and NLL damping processes,
depending on the properties of the Galactic environment under
consideration and on the CR energy (see, e.g., Nava et al. 2019;
Kempski & Quataert 2022; Recchia et al. 2022; Xu & Lazarian
2022, and references therein); this picture can be significantly
challenged by the new turbulent damping rates obtained here,
and will be addressed in detail in a following work (hereafter
Paper II).

This paper is organized as follows. In Section 2 the Elsässer
formalism and the definitions of the timescales and nonlin-
ear parameter are introduced. In Section 3 the formalism is
employed to derive general expressions for the turbulent damp-
ing rates, whose scaling are then explicitly derived in Section 4
for various turbulence regimes and within different theories of
MHD turbulence. Additionally, some considerations about the
feedback of CR-driven AWs on pre-existing fluctuations and
possible phenomenological models for the CR-modified back-
ground turbulence spectrum are discussed in Section 5. Finally,
a summary and discussion of the results is provided in Section 6.
It is worth noting that this work is meant to primarily provide a
rigorous, general formalism for deriving the turbulent damping
rates of CR-driven AW packets, as well as some criteria for the
possible relevance of CR feedback on pre-existing fluctuations.
A more extensive discussion about different damping rates, the
role of coherent structures and compressible turbulence, as well
as the implications for specific astrophysical systems will be the
focus of Paper II.

2. Setting the stage: The Elsässer formalism

The magnetohydrodynamic (MHD) equations for an incom-
pressible plasma with mass density ρ0, viscosity ν, and resis-
tivity η, can be conveniently expressed in terms of the Elsässer
variables z± = u ± B/

√
4πρ0 = u ± uA (Elsässer 1950), where

u is the fluid velocity, B is the magnetic field, and uA denotes
the Alfvén-speed vector associated with B. The incompressible
MHD equations in terms of z± read as

∂z±

∂t
+ (z∓ · ∇) z± = −

∇Ptot

ρ0
+ µ+ ∇

2 z± + µ− ∇
2 z∓, (1)

∇ · z± = 0, (2)

where Ptot = Pth + B2/8π is the sum of the thermal and magnetic
pressure, and µ± = (ν± η)/2. Here we assume ν = η for simplic-
ity, so that µ+ = η and µ− = 0. By splitting the variables into a
background quantity (denoted by a “0” in subscript1 ) and purely
transverse fluctuations; in other words, z± = z±0 + δz±⊥, where
z±0 = ±B0/

√
4πρ0 = ±uA,0 is the Alfvén speed associated with

the background magnetic field B0, and δz±⊥ = δu⊥±δB⊥/
√

4πρ0
the fluctuating Elsässer fields, equation (1) rewrites as(
∂

∂t
∓ vA,0 ∇‖︸ ︷︷ ︸

ω±lin ∼ k±
‖
vA,0

+ δz∓⊥ · ∇⊥︸    ︷︷    ︸
ω±nl ∼ k±⊥ δz

∓
⊥

− η∇2︸︷︷︸
ω±diss∼ η k±2

)
δz±⊥ = −

∇δPtot

ρ0
, (3)

where the parallel and perpendicular directions are defined with
respect to B0 for the global equations (but are later defined with
respect to a scale-dependent mean field 〈B〉k in a turbulent envi-
ronment); we also mention that the term ∇δPtot/ρ0 in practice
contributes just as a multiplicative factor (in Fourier space) to the
nonlinear term (and associated timescale) on the left-hand side2.
One important feature of the formulation in (3) is that it explic-
itly shows that the nonlinear term (δz∓⊥ · ∇⊥)δz±⊥ is due only to

1 The subscript “0” formally implies a large-scale average procedure
B0 = 〈B〉L. In the latter, L ∼ `0 will be the injection scale of turbulence.
2 By taking the divergence of (3) and using the incompressiblity con-
dition∇·δz±⊥ = 0, we find that pressure fluctuations satisfy the condition
∇ · [∇δPtot] = ∇2δPtot = ρ0∇⊥ · [(δz∓⊥ · ∇⊥) δz±⊥] (Schekochihin 2022).
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the interaction of counter-propagating Alfvén-wave packets, δz+
⊥

being transverse fluctuations propagating at the Alfvén speed
vA,0 in the direction of B0, while δz−⊥ are fluctuations propagating
at the same speed in the direction of −B0.

From (3) one can define a nonlinear parameter χ, which mea-
sures the strength of nonlinear effects with respect to the linear
propagation term, namely

χ± ∼
|(δz∓⊥ · ∇⊥) δz±⊥|
|(vA,0 ∇‖) δz±⊥|

∼
ω±nl

ω±lin
∼
τ±A
τ±nl
∼

k±⊥ δz
∓
k

k±
‖
vA,0

, (4)

and involves the wave-vector components (k±
‖
, k±⊥) of the evolv-

ing fluctuation δz±⊥ and the amplitude δz∓⊥ of the counter-
propagating fluctuation that induces the nonlinearities on δz±⊥.
In the following this parameter plays a central role to estimate
the nonlinear cascade rate (or turbulent damping) of an Alfvén-
wave packet interacting with background fluctuations. In partic-
ular, to obtain the correct turbulent damping rate it is necessary
to make a careful distinction between the nonlinear parameter
χz, which characterizes counter-propagating pre-existing fluc-
tuations, and the nonlinear parameter χw, which describes the
interaction between the AW packet and background turbulence.

3. Turbulent damping of an Alfvén-wave packet

We consider here an Alfvén-wave packet that is injected in an
environment filled with pre-existing Alfvénic turbulence. We let
δw be the initial Elsässer variable of the packet, and λw⊥ and
λw
‖

respectively its wavelength perpendicular to and parallel to
a mean-magnetic field 〈B〉λw at such scales3, (the corresponding
wave vectors being kw⊥ ∼ 1/λw⊥ and kw

‖
∼ 1/λw

‖
). The Alfvénic

fluctuations populating the turbulent background are charac-
terized by certain scale-dependent relations for their Elsässer
amplitude δz±

λz
⊥

, their wavelength anisotropy λz,±
‖
/λz,±
⊥ (for which

the corresponding wave vectors can be denoted as kz,±
⊥ ∼ 1/λz,±

⊥

and kz,±
‖
∼ 1/λz,±

‖
), and, if allowed, for the alignment angle

between δz+
λz
⊥

and δz−
λz
⊥

(i.e., sin θ z
λz,±
⊥

). It is now instructive to
derive the general relations first, leaving the explicit scaling
belonging to different turbulence theories for later. Hereafter we
consider the case of balanced background turbulence, and thus
drop the ± superscript everywhere for simplicity of notation.

While propagating, the AW packet interacts nonlinearly
only with counter-propagating Alfvénic fluctuations of the back-
ground. In terms of Elsässer variables, the nonlinear interaction
is described by the term (δz · ∇) δw. The strength of this nonlin-
ear interaction can then be determined by comparing the above
nonlinear term with the term describing its linear propagation
(uA,0 ·∇)δw. The interaction between the AW packet and the pre-
existing fluctuations is described by the nonlinear parameter of

3 One can think of each component i of this mean field at scale λ as

defined, for instance, by 〈Bi〉λ ∼

(∫ k′<1/λ

1/`0
B2

i,k′dk′
)1/2

, i.e., a magnetic
field that is the result of the contribution from the background field
B0 plus all the fluctuations δBλ′ at scales λ′ > λ, such that the non-
linear timescale τnl,λ′ over which the associated turbulent eddy evolves
is much longer than the nonlinear evolution timescale τnl,λ of fluctua-
tions at the scale λ, i.e., τnl,λ′ � τnl,λ, so that turbulent eddies on scales
λ′ appear to be frozen over the turnover time of turbulent eddies at
scale λ. Operationally, this mean field can be defined in different ways
(e.g., Cho & Vishniac 2000; Cho & Lazarian 2004; Horbury et al. 2008;
Wicks et al. 2010; Chen et al. 2011; Matthaeus et al. 2012; Mallet et al.
2016; Cerri et al. 2019), but what is the most appropriate operational
definition is still a matter of debate (see, e.g., Oughton & Matthaeus
2020).

the packet

χw ∼
τwA
τwnl
∼

(λw
‖
/vA,0)

(λw⊥/δzλw⊥ )
∼

(
λw
‖

λw⊥

) (
δzλw⊥
vA,0

)
, (5)

where local-in-scale interactions are assumed, so that δzλz
⊥

is sub-
stituted with δzλw⊥ in the timescale associated with the nonlinear
interaction between the AW packet and pre-existing turbulence:
τwnl ∼ λ

w
⊥/δzλz

⊥
∼ λw⊥/δzλw⊥ . A parameter χw & 1 means strong non-

linear interactions, while χw < 1 denotes the weakly nonlinear
regime. We note that the parameter in (5) is different from the
nonlinear parameter that characterizes background turbulence
(i.e., χz ∼ τz

A/τ
z
nl ∼ (λz

‖
/λz
⊥)(δzλz

⊥
/vA,0))4, and we point out that,

while background fluctuations can have χz & 1 at scale λz
⊥ ∼ λ

w
⊥

(strong pre-existing turbulence), the condition χw & 1 does not
necessarily hold at these same scales.

It should be noted that χw is not only proportional to
the amplitude of background fluctuations at the scale λw⊥ (i.e.,
δzλw⊥/vA,0), but it also depends on the AW packet’s propagation
angle with respect to the mean magnetic field 〈B〉λw at that scale:
λw
‖
/λw⊥ ∼ kw⊥/k

w
‖

= tan Θw
kB, where Θw

kB is the angle between
kw and 〈B〉λw∼1/kw . As a result, if the amplitude δz0 of back-
ground fluctuations at injection scale `0 is such that δz0/vA,0 . 1,
then strong nonlinear interactions at scales λw⊥ � `0 (where
δzλw⊥ � δz0) require λw

‖
/λw⊥ ∼ vA,0/δzλw⊥ � 1. This regime is thus

achieved only by quasi-perpendicular AW packets. In critically
balanced pre-existing turbulence, for instance, fluctuations obey
the relation δzλz

⊥
/vA,0 ∼ λz

‖
(λz
⊥)/λz

⊥. Therefore, assuming local-
in-scale interactions (λz

⊥ ∼ λ
w
⊥), the condition λw

‖
/λw⊥ ∼ vA,0/δzλw⊥

means that an AW packet undergoes strong nonlinear interac-
tions (and thus severe turbulent damping) only if its wave vec-
tor matches the anisotropy of background turbulence associated
with the perpendicular scale λw⊥ (i.e., λw

‖
≈ λz

‖
(λw⊥)). Therefore,

the nonlinear interaction between a quasi-parallel AW (charac-
terized by λw

‖
/λw⊥ � 1), and anisotropic pre-existing turbulence

(characterized by λz
⊥/λ

z
‖
� 1) is always weak: χw � 1.

This can be shown explicitly by considering the quasi-
parallel propagation limit, which is the case of interest for
CR-generated AW packets. In this case, the propagation can
only be as parallel as the external turbulence allows, meaning
that the propagation angle cannot be smaller than the amount
δbλw⊥/〈B〉λw ∼ δzλw⊥/vA,0 because of the field-line distortions
induced by pre-existing turbulent fluctuations δbλw⊥ over the
wavelength λw⊥ of the packet. Therefore, the quasi-parallel (q‖)
propagation limit is set by

λw
‖

λw⊥

∣∣∣∣∣∣
min

=
λ
w,q‖
‖

λ
w,q‖
⊥

∼
δz
λ
w,q‖
⊥

vA,0
. (6)

Hence, the associated nonlinear parameter in this limit is

χw,q‖ ∼

δzλw,q‖⊥
vA,0

2

. (7)

The strongly nonlinear regime can thus be achieved only at
scales λ where the AW packet interacts with pre-existing super-
Alfvénic fluctuations (δzλ/vA,0 > 1). In this regime, the concept
of quasi-parallel propagation in (6) does not apply because at
scales where δbλw/〈B〉λw > 1, the distinction between λw⊥ and
λw
‖

is lost and λw⊥ ∼ λw
‖
∼ λ holds; hence, χw ∼ δzλ/vA,0 & 1.

However, even for external turbulence that is injected with super-
Aflvénic amplitude (i.e., δz0/vA,0 ≈ MA,0 > 1 at scale `0)

4 Or, if scale-dependent (dynamic) alignment is taken into account, it
is χz ∼ sin θ z

λz
⊥

(λz
‖
/λz
⊥)(δzλz

⊥
/vA,0) (see Appendix A).
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the fluctuation amplitude decreases with decreasing scale. As
a result, the nonlinear interaction between the AW and exter-
nal fluctuations becomes weak at small-enough scales (i.e., at
scales λw⊥ < `A = `0/M 3

A,0 � `0) for which the initially super-
Alfvénic fluctuations become sub-Alfvénic, δzλw⊥/vA,0 < 1, and
anisotropic (see Appendix A). Another way to visualize this is
by rewriting (7) as

χw,q‖ ∼

λz
⊥

λz
‖

2

( χz)2, (8)

which is� χz for anisotropic background fluctuations, λz
⊥ � λz

‖
,

and thus χw,q‖ � 1 even if pre-existing turbulence is critically
balanced (χz ∼ 1).

The difference between the intrinsic nonlinear parameter of
background fluctuations (χ z) and the nonlinear parameters of a
quasi-parallel Alfvén wave interacting with those fluctuations
(χw) for explicit MHD turbulent scaling in different regimes is
reported the last two columns of Table 1.

Having clarified the packet’s nonlinear regimes that have to
be considered in terms of background turbulence, we can now
estimate the associated rate of turbulent damping. This means
estimating the timescale over which an AW packet undergoes a
cascade process due to its nonlinear interaction with pre-existing
turbulent fluctuations. The cascade time of the packet is given by
τwcasc ∼ (τwnl)

2/τwA ∼ τ
w
nl/χ

w for the weak regime (χw < 1), while
it is τwcasc ∼ τwnl in the strongly nonlinear case (χw & 1, which
we recall also implies that λw

‖
∼ λw⊥ ∼ λw; see discussion after

equation (7)).
As a result, the turbulent damping rate is

Γwturb ∼
1
τwcasc

∼


(
λw
‖

λw⊥

) (
λw⊥
`0

)−1
(
δzλw
⊥

vA,0

)2
vA,0

`0
if χw < 1

(
λw

`0

)−1 (
δzλw
vA,0

)
vA,0

`0
if χw & 1,

(9)

which reduces to

Γ
w,q‖
turb ∼

λw,q‖⊥`0

−1 δzλw,q‖⊥
vA,0

3
vA,0

`0
(10)

for quasi-parallel propagation and χw,q‖ < 1. We recall that
χw should not be identified with the nonlinear parameter χz

that describes the strength of background turbulence. Therefore,
when χw < 1 the turbulent damping rate of an AW packet is
nonlinear with respect to the background-fluctuation amplitude
and depends on the propagation angle of the wave, becoming a
third-order quantity of the pre-existing turbulent amplitude in the
quasi-parallel limit.

We conclude by highlighting that in (10) there is a factor
λ−1
⊥ in front of the δz3

λ⊥
term. Therefore, a turbulent perpendic-

ular scaling for δzλ⊥ ∝ λα⊥ with a spectral index α > 1/3 will
produce a turbulent damping rate of quasi-parallel AW pack-
ets that decreases with decreasing scale. That would be the case
of weak Alfvénic turbulence, as in Galtier et al. (2000), or the
tearing-mediated regime, as in Boldyrev & Loureiro (2017) and
Mallet et al. (2017). On the other hand, fluctuations that scale
with α < 1/3 result in a damping rate that increases with
decreasing λw⊥. This would be the case of critically balanced
strong Alfvénic turbulence with scale-dependent alignment, as
in Boldyrev (2006). Finally, for a Kolmogorov-like perpendicu-
lar scaling δzλ⊥ ∝ λ

1/3
⊥ , as in critically balanced strong Alfvénic

turbulence without dynamic alignment (Goldreich & Sridhar
1995), we can expect that the turbulent damping of quasi-parallel
AW packets becomes scale-independent (i.e., Γ

w,q‖
GS95 ∼ const).

4. Turbulent damping with explicit MHD scalings

The injection-scale Alfvénic Mach number is defined as the
ratio MA,0 ≈ δz0/vA,0, where δz0 is the fluctuation amplitude
at injection scale `0, and determines the cascading regimes of
background fluctuations. The Lunquist number at injection scale,
S 0 = `0 vA,0/η, is related to the system’s resitivity η and deter-
mines the dissipation scale of turbulent fluctuations; we recall
that here we have assumed ν = η. If we assume isotropic injec-
tion, the nonlinear parameter of background turbulence at scale
`0 indeed corresponds to the injection-scale Alfvénic Mach num-
ber, χz

0 ≈ MA,0. If MA,0 < 1, the turbulence is called sub-
Alfvénic: it starts as an anisotropic weak cascade that transitions
into critically balanced strong turbulence at smaller scales (still
anisotropic, but in a different fashion). Trans-Alfvénic turbu-
lence (MA,0 ≈ 1) consists of an anisotropic strong cascade of
critically balanced fluctuations at all scales. When MA,0 > 1
(large-amplitude injection), turbulence is called super-Alfvénic
and fluctuations initially undergo an isotropic (“hydrodynamic-
like”) cascade until sub-Alfvénic amplitudes are attained at
smaller scales, and turbulence becomes critically balanced and
anisotropic. Then, if scale-dependent (dynamic) alignment of
fluctuations is allowed in the critical-balance range, an additional
transition to a different regime of anisotropic, strong turbulence
can occur at even smaller scales due to magnetic reconnection
(if the injection-scale Lundquist number S 0 is large enough;
see Section 4.2). In the following we only summarize the rele-
vant scaling of background turbulent fluctuations in the different
ranges. These scaling relations, along with the intrinsic nonlin-
ear parameter χ z of background fluctuations and the nonlinear
parameter χw of a quasi-parallel AW propagating through such
background turbulence, are also shown in Table 1 for conve-
nience. A more detailed derivation of these ranges and of the
associated scaling is provided in Appendix A.

The turbulent damping rates in this section were derived as
follows. First, we employed the known perpendicular scaling of
background turbulence, δzλ⊥ , and locality of interactions (λz

⊥ ∼

λ
w,q‖
⊥ ) in (10) to obtain the turbulent damping rate as a function

of the packet’s perpendicular wavelength, Γ
w,q‖
turb (λw,q‖⊥ ). Then we

used the quasi-parallel condition in (6) to retrieve the scaling of
Γ
w,q‖
turb with respect to the parallel wavelength λw,q‖

‖
.

The scaling of the turbulent damping rate for different back-
ground cascades and the corresponding range of scales where
that is valid are given in Table 2, along with an explicit compar-
ison with the rates available in the existing literature (i.e., from
Farmer & Goldreich 2004, hereafter FG04, and from Lazarian
2016, hereafter L16). The behavior of these damping rates and
the comparison with previous estimates for two choices of sub-
Alfvénic and super-Alfvénic injection (MA,0 = 0.1, 10) and for
S 0 = 1014 are also shown in Figure 1, for convenience. We note
that previous results not only overestimate the damping rate by
a factor that could be several orders of magnitude, but in most
cases they also obtain a completely different result on how this
damping rate depends upon the packet’s parallel wavelength λw

‖
.

4.1. Magnetohydrodynamic turbulence without
scale-dependent alignment

We first consider the classic picture in which dynamic alignment
of turbulent fluctuations does not occur. In this case, we have
three possible regimes for background turbulence:

– [W0] A weak anisotropic cascade with fluctuation scaling
δz(W0)
λz
⊥

/vA,0 ∼ MA,0 (λz
⊥/`0)1/2 that only generates smaller
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Table 1. Quasi-parallel Alfvén waves in MHD turbulence.

Background Scale range of validity Scaling of background Nonlinear parameter of Nonlinear parameter
cascade turbulent fluctuations background turbulence of quasi-parallel AWs

(acronym) λ⊥,max λ⊥,min δzλ⊥ χ z
λ⊥

χ
w,q‖
λ⊥

Without scale-dependent alignment

sub-Alfvénic injection (MA,0 < 1):

(W0) `0 M2
A,0 `0 vA,0 MA,0 (λ⊥/`0)1/2 MA,0 (λ⊥/`0)−1/2 M2

A,0 (λ⊥/`0)

(GS95) M2
A,0 `0 M−1

A,0 S −3/4
0 `0 vA,0 M4/3

A,0 (λ⊥/`0)1/3 ∼ 1 M8/3
A,0 (λ⊥/`0)2/3

trans-Alfvénic injection (MA,0 ≈ 1):

(GS95) `0 S −3/4
0 `0 vA,0 (λ⊥/`0)1/3 ∼ 1 (λ⊥/`0)2/3

super-Alfvénic injection (MA,0 > 1):

(K41) `0 M−3
A,0 `0 vA,0 MA,0 (λ/`0)1/3 MA,0 (λ/`0)1/3 MA,0 (λ/`0)1/3

(GS95) M−3
A,0 `0 (MA,0 S 0)−3/4 `0 vA,0 MA,0 (λ⊥/`0)1/3 ∼ 1 M2

A,0 (λ⊥/`0)2/3

With scale-dependent alignment

sub-Alfvénic injection (MA,0 < 1):

(W0) `0 M2
A,0 `0 vA,0 MA,0 (λ⊥/`0)1/2 MA,0 (λ⊥/`0)−1/2 M2

A,0 (λ⊥/`0)

(B06) M2
A,0 `0 M−2/7

A,0 S −4/7
0 `0 vA,0 M3/2

A,0 (λz
⊥/`0)1/4 ∼ 1 M3

A,0 (λz
⊥/`0)1/2

(TMT) M−2/7
A,0 S −4/7

0 `0 M−1
A,0 S −3/4

0 `0 vA,0 S 1/5
0 M8/5

A,0 (λ⊥/`0)3/5 ∼ 1 S 2/5
0 M16/5

A,0 (λ⊥/`0)6/5

trans-Alfvénic injection (MA,0 ≈ 1):

(B06) `0 S −4/7
0 `0 vA,0 (λ⊥/`0)1/4 ∼ 1 (λ⊥/`0)1/2

(TMT) S −4/7
0 `0 S −3/4

0 `0 vA,0 S 1/5
0 (λ⊥/`0)3/5 ∼ 1 S 2/5

0 (λ⊥/`0)6/5

super-Alfvénic injection (MA,0 > 1):

(K41) `0 M−3
A,0 `0 vA,0 MA,0 (λ/`0)1/3 MA,0 (λ/`0)1/3 MA,0 (λ/`0)1/3

(B06) M−3
A,0 `0 M−9/7

A,0 S −4/7
0 `0 vA,0 M3/4

A,0 (λ⊥/`0)1/4 ∼ 1 M3/2
A,0 (λ⊥/`0)1/2

(TMT) M−9/7
A,0 S −4/7

0 `0 (MA,0 S 0)−3/4 `0 vA,0 S 1/5
0 M6/5

A,0 (λz
⊥/`0)3/5 ∼ 1 S 2/5

0 M12/5
A,0 (λz

⊥/`0)6/5

Notes. Summary of the relevant scaling relations for balanced MHD turbulence in the different regimes mentioned in Section 4 (see Appendix A
for the derivation). The last two columns explicitly show the difference between the intrinsic nonlinear parameter χ z of background fluctuations
and the nonlinear parameter χw,q‖ of a quasi-parallel Alfvén wave interacting with those fluctuations. The locality of interactions λw⊥ ∼ λ

z
⊥ ∼ λ⊥ has

been implied everywhere and that in all the regimes with dynamic alignment, a transition to a tearing-mediated range (TMT) has been assumed,
i.e., that the injection-scale Lunquist number satisfies the inequality S 0 � M−4

A,0 (S 0 � M3
A,0) for sub-Alfvénic (super-Alfvénic) injection. See

Table 2 for the consequences of not taking into account this difference between χw,q‖ and χ z on the inferred turbulent damping rate of quasi-parallel
Alfvén waves.

perpendicular scales (i.e., λz
‖
∼ `0 ≈ const.) and transitions

into a strong cascade at the critical balance (CB) scale
λz
⊥,CB ∼ M 2

A,0 `0. This cascade is realized in the range of
scales λz

⊥,CB . λ
z
⊥ . `0, and only for sub-Alfvénic injection

(MA,0 < 1).
– [K41] A strong, isotropic (hydrodynamic-like) cascade char-

acterized by the scaling δz(K41)
λz /vA,0 ∼ MA,0 (λz/`0)1/3.

These fluctuations attain sub-Alfvénic amplitudes, becoming
anisotropic and critically balanced, at a scale `A ∼ M −3

A,0 `0.
This cascade is realized at scales `A . λ

z . `0, and only for
super-Alfvénic injection (MA,0 > 1).

– [GS95] A strong anisotropic cascade of critically balanced
fluctuations with perpendicular scaling δz(GS95)

λz
⊥

∝ (λz
⊥)1/3.

This type of cascade is realized either for trans-Alfvénic
injection (MA,0 ≈ 1), or when cascading fluctuations

of the two regimes above reach the scale λz
⊥,CB and `A,

respectively. For trans-/sub-Alfvénic injection (MA,0 . 1),
the dependence on MA,0 of the scaling is δz(GS95)

λz
⊥

/vA,0 ∼

M 4/3
A,0 (λz

⊥/`0)1/3, and the cascade achieves dissipation at a
scale λz (subA)

⊥,min /`0 ∼ M −1
A,0 S −3/4

0 . For super-Alfvénic injection
(MA,0 > 1), the fluctuation scaling with MA,0 is linear (i.e.,
δz(GS95)
λz
⊥

/vA,0 ∼ MA,0 (λz
⊥/`0)1/3), and the dissipation scale is

given by λz (supA)
⊥,min /`0 ∼ (MA,0 S 0)−3/4. Here S 0 = `0 vA,0/η is

the Lundquist number at injection scale.
By using (7) we can verify that the nonlinear interaction between
a quasi-parallel AW packets with wavelength λw,q‖⊥ and the pre-
existing turbulence is weak, χw,q‖ � 1, in the range of scales
where the cascade of background fluctuations is either weak
(W0) or critically balanced (GS95). This means χw,q‖ � 1 at

A182, page 5 of 19



Sergio Cerri, S.: A&A, 688, A182 (2024)

Table 2. Turbulent damping of quasi-parallel Alfvén waves with parallel wavelength λw
‖
.

Background Scale range of interaction Scaling of the turbulent damping rate (Γw
turb):

cascade

(acronym) λw
‖,max λw

‖,min “FG04” “L16” This work

Without scale-dependent alignment

sub-Alfvénic injection (MA,0 < 1):

(W0) MA,0 `0 M4
A,0 `0 – ωA,0 M8/3

A,0 (λw
‖
/`0)−2/3 ωA,0 M8/3

A,0 (λw
‖
/`0)1/3

(GS95) M4
A,0 `0 S −1

0 `0 – ωA,0 M2
A,0 (λw

‖
/`0)−1/2 ωA,0 M4

A,0

trans-Alfvénic injection (MA,0 ≈ 1):

(GS95) `0 S −1
0 `0 ωA,0 (λw

‖
/`0)−1/2 – ωA,0

super-Alfvénic injection (MA,0 > 1):

(K41) `0 M−3
A,0 `0 – ωA,0 MA,0 (λw

‖
/`0)−2/3 ωA,0 MA,0 (λw

‖
/`0)−2/3

(GS95) M−3
A,0 `0 S −1

0 `0 – ωA,0 M3/2
A,0 (λw

‖
/`0)−1/2 ωA,0 M3

A,0

With scale-dependent alignment

sub-Alfvénic injection (MA,0 < 1):

(W0) MA,0 `0 M4
A,0 `0 – ωA,0 M8/3

A,0 (λw
‖
/`0)−2/3 ωA,0 M8/3

A,0 (λw
‖
/`0)1/3

(B06) M4
A,0 `0 M8/7

A,0 S −5/7
0 `0 – – ωA,0 M24/5

A,0 (λw
‖
/`0)−1/5

(TMT) M8/7
A,0 S −5/7

0 `0 S −1
0 `0 – – ωA,0 M4

A,0 S 1/2
0 (λw

‖
/`0)1/2

trans-Alfvénic injection (MA,0 ≈ 1):

(B06) `0 S −5/7
0 `0 – – ωA,0 (λw

‖
/`0)−1/5

(TMT) S −5/7
0 `0 S −1

0 `0 – – ωA,0 S 1/2
0 (λw

‖
/`0)1/2

super-Alfvénic injection (MA,0 > 1):

(K41) `0 M−3
A,0 `0 – ωA,0 MA,0 (λw

‖
/`0)−2/3 ωA,0 MA,0 (λw

‖
/`0)−2/3

(B06) M−3
A,0 `0 M−6/7

A,0 S −5/7
0 `0 – – ωA,0 M12/5

A,0 (λw
‖
/`0)−1/5

(TMT) M−6/7
A,0 S −5/7

0 `0 S −1
0 `0 – – ωA,0 M3

A,0 S 1/2
0 (λw

‖
/`0)1/2

Notes. Summary of the scaling relations for the turbulent damping rate Γw
turb of a quasi-parallel Alfvén wave in background MHD turbulence for

the different regimes mentioned in Section 4. The damping rates obtained in this work are compared with tose available in the existing literature,
namely in Farmer & Goldreich (2004) (FG04) and in Lazarian (2016) (L16). The notation ωA,0 = vA,0/`0 has been used. In all the regimes with
dynamic alignment, a transition to a tearing-mediated range (TMT) has been assumed, i.e., that S 0 � M−4

A,0 (S 0 � M3
A,0) holds for sub-Alfvénic

(super-Alfvénic) injection.

scales λw,q‖⊥ < `0 and λ
w,q‖
⊥ < `A respectively for sub-Alfvénic

and super-Alfvénic injection (see Table 1 for the explicit scal-
ing of χw,q‖ in these different regimes). Hence, the cascade time
τ
w,q‖
casc ∼ τwnl/χ

w,q‖ of the AW packets for these cases is not just
the nonlinear time τwnl, and the turbulent damping rate is given
by (10). In Farmer & Goldreich (2004), for instance, the non-
linear time τz

nl instead of τw,q‖casc was used to compute the turbulent
damping rate. In a subsequent work by Lazarian (2016), the non-
linear parameter of background turbulence χz was used instead
of χw,q‖ � χz to compute a cascade time τwnl/χ

z. This resulted in
an estimated timescale for turbulent damping that was notably
shorter than the actual cascade time that should be used. Tak-
ing properly into account the difference between χz and χw,q‖

thus changes significantly the effectiveness of turbulent damp-
ing in pre-existing turbulence with respect to all these previous
estimates (see Table 2 for the generic case, or Figure 1 for two
specific examples of sub- and super-Alfvénic injection regimes).

4.1.1. Sub- and trans-Alfvénic turbulence (MA,0 ≤ 1) without
dynamic alignment

In sub-Alfvénic background turbulence without dynamic align-
ment, a quasi-parallel AW packet with normalized parallel wave-
length λ̂w

‖
= λ

w,q‖
‖

/`0 is subjected to the following turbulent
damping rate:

[MA,0 < 1, no dynamic alignment]

Γ
w,q‖
subA ∼


M 8/3

A,0

(
λ̂w
‖

)1/3 vA,0

`0
M 4

A,0 . λ̂
w
‖
. MA,0

M 4
A,0

vA,0

`0
λ̂w (subA)
‖,min . λ̂w

‖
. M 4

A,0.

(11)

Here λ̂w (subA)
‖,min ∼ (MA,0 λ̂

z (subA)
⊥,min )4/3 ∼ S −1

0 is the minimum
packet wavelength that is effectively subjected to turbulent
damping, with λ̂z (subA)

⊥,min ∼ M −1
A,0 S −3/4

0 being the normalized
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Fig. 1. Normalized turbulent damping rate `0
vA,0

Γ
w,q‖
turb for quasi-parallel AW packets with normalized parallel wavelength λw,q‖

‖
/`0, in a background

plasma with Lunquist number S 0 = 1014 and different turbulent regimes (see Appendix A). Solid lines represent damping rates derived in this
work (equations (11), (13), (14), and (16)), while dashed lines report the damping rates in Lazarian (2016) for reference. General expressions for
transition scales and damping-rate values are reported on the right and upper axes. Left: damping rates in sub-Alfvénic turbulence (MA,0 = 0.1).
Right: damping rates in super-Alfvénic turbulence (MA,0 = 10).

dissipation scale of the turbulence. The ranges of λ̂w
‖

in (11)
were determined according to the quasi-parallel condition in
(6) and, assuming local interactions λ

w,q‖
⊥ ∼ λz

⊥, employ-
ing the λz

⊥ range of validity for each turbulent regime (see
Appendix A).

The trans-Alfvénic regime is trivially obtained from (11)
when the initial weak cascade does not occur:

[MA,0 ' 1, no dynamic alignment]

Γ
w,q‖
transA ∼

vA,0

`0
(λ̂z
⊥,min)4/3 . λ̂w

‖
. 1. (12)

Here λ̂z
⊥,min ∼ S −3/4

0 is the (normalized) dissipation scale of
GS95 turbulence in the trans-Alfvénic regime.

The damping rates in (11) differ from the values previously
derived in the literature (see Table 2) because here the nonlin-
ear parameter of the AW packet is properly taken into account
(see Table 1). We can verify that the turbulent damping rate
in the W0 range of sub-Alfvénic turbulence (i.e., equation (46)
in Lazarian 2016) can be recovered if the nonlinear parameter
χz of background turbulence is employed instead of the non-
linear parameter χw of the AW packet. Analogously, the result
in the GS95 range of sub-Alfvénic turbulence in Eq. (34) of
the same paper is recovered by assuming strong interactions
between the quasi-parallel AW packet and background fluctu-
ations (i.e., identifying χw with χz ∼ 1 at those scales). How-
ever, given the expression for χw in (5), the assumption χw ∼ 1
would require λw

‖
/λw⊥ ∼ vA,0/δzλw⊥ � 1, which is inconsistent

with the quasi-parallel limit λw
‖
/λw⊥ � 1. The same argument

applies when comparing the damping rate for the trans-Alfvénic
case in (12) with Eq. (9) in Farmer & Goldreich (2004).

It is important to note that the results obtained here strongly
change the effectiveness of the turbulent damping of CR-
generated Alfvén-wave packets. Depending on the Alfvénic
Mach number MA,0 and on the Lunquist number S 0, the damping
rates in (11) and (12) can be several orders of magnitude lower
than the previously derived rates, those usually employed in CR
studies (see Table 2 and the left panel in Figure 1). In particular,
we can see that the damping rate of an AW packet interacting
with pre-existing weak turbulence is at least a factor MA,0 lower

than previously estimated (i.e., at scale λw,q‖
‖,max ∼ MA,0 `0, when

this difference is at its minimum, then it increases even further
due to the different dependence on λw,q‖

‖
). When the packet starts

to interact with strong turbulence (i.e., for λw,q‖
‖,CB ∼ M4

A,0 `0), the
damping rate becomes at least a factor M4

A,0 � 1 lower than has
been derived in the literature (a difference that, again, increases
even further with decreasing packet’s parallel wavelength due to
the radically different wavelength dependence of Γ

w,q‖
GS95 in (11)

and (12) with respect to the results in Farmer & Goldreich 2004
and in Lazarian 2016). This is also true for trans-Alfvénic injec-
tion (MA,0 ' 1), in which case the damping rate in (12) would
be the same as that in the literature, only at scales λw,q‖

‖
∼ `0,

and then the two results would rapidly diverge with decreasing
wavelength of the quasi-parallel AW packet at λw,q‖

‖
< `0. Finally,

the maximum difference between the damping rate obtained
here and those found in the literature is achieved at the mini-
mum wavelength for which this damping mechanism is effec-
tive; at λw,q‖

‖
∼ λw

‖,min the actual damping rate is a factor ∼
S −1/2

0 M2
A,0 � 1 lower than the results in Farmer & Goldreich

(2004) and in Lazarian (2016); in astrophysical systems this fac-
tor can represent many orders of magnitude since S 0 can be
extremely large, for example larger than 1020 (Priest & Forbes
2007). We also point out that in sub-Alfvénic turbulence the
ordering S 0 � M−4

A,0 is implied in order to have a significant
GS95 range (see Appendix A).

4.1.2. Super-Alfvénic turbulence (MA,0 > 1) without dynamic
alignment

When the injection regime of background fluctuations is super-
Alfvénic, an AW packet is instead subjected to a turbulent damp-
ing given by

[MA,0 > 1, no dynamic alignment]

Γ
w,q‖
supA ∼


MA,0

(
λ̂w

)−2/3 vA,0

`0
M −3

A,0 . λ̂
w . 1

M 3
A,0

vA,0

`0
λ̂
w (supA)
‖,min . λ̂w

‖
. M −3

A,0,

(13)
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where the damping rate in the range M −3
A,0 . λ̂

w . 1 is obtained
from the χw & 1 part of (9), and the shortest wavelength affected
by turbulent damping is λ̂w (supA)

‖,min ∼ MA,0 (λ̂z (supA)
⊥,min )4/3 ∼ S −1

0 .
We also point out that the isotropic normalized wavelength
λ̂w = λw/`0 enters the damping rate in the range `A . λ

w . `0
(i.e., where the AW packet interacts with hydrodynamic-like pre-
existing turbulence).

In the range M −3
A,0 . λ̂w . 1, the packet’s nonlinear param-

eter is larger than unity (i.e., χw ≈ δzλ/vA,0, and δzλ/vA,0 > 1
at those scales; see Table 1). Thus, the result obtained above for
this range of scales agrees with the corresponding result pro-
vided in equation (55) of Lazarian (2016). This is a consequence
of the fact that the quasi-parallel condition (6) does not apply in
the range `0 & λ & `A ≈ M−3

A,0`0 and the distinction between
λw
‖

and λw⊥ is lost. As a result, for local and isotropic interac-
tions (meaning λw ∼ λz ∼ λ), there is no difference between
the expressions for χw and for χz (see Table 1). On the other
hand, at smaller scales (λw . `A), we recover a distinction
between λw

‖
and λw⊥ because background fluctuations become

sub-Alfvénic and anisotropic (i.e., δzλ⊥/vA,0 < 1 and λz
⊥ � λz

‖
),

and the quasi-parallel condition (6) does apply again, affecting
χw. Therefore, a quasi-parallel AW packet with λw,q‖

‖
< `A expe-

riences a weak nonlinear interaction with background turbulence
(i.e., χw,q‖λ⊥

≈ (δzλ⊥/vA,0)2 � 1), while background turbulence is
critically balanced, χ z

λ⊥
∼ 1 (cf. equation (8) in Section 3 and

Table 1). Hence, the two nonlinear parameters need not be con-
fused at scales below `A, and this is why the turbulent damping
rate of quasi-parallel AWs that we obtain for this range of scales
is again different from equation (52) of Lazarian (2016).

As for the sub-Alfvénic case discussed earlier, we note that
also for this MA,0 > 1 regime the result in (13) implies a dras-
tic change in the effectiveness of turbulent damping for CR-
generated Alfvén-wave packets. While our result agrees with the
turbulent damping rate found in the literature for the range of
scales `A . λw . `0, the corresponding rate at smaller scales,
λ
w,q‖
‖

< `A, can be several orders of magnitude smaller than that
usually employed in CR studies (see Table 2 and the right panel
in Figure 1). The damping rate in (13) indeed rapidly diverges
from the one given in Lazarian (2016) with decreasing wave-
length of the quasi-parallel AW packet when λw,q‖

‖
< `A, reach-

ing its maximum difference at λw,q‖
‖
∼ λw

‖,min, where the actual
damping rate in (13) is a factor ∼ S −1/2

0 M3/2
A,0 � 1 lower than

the value provided in the literature (see the explicit comparison
in Table 2). We also point out that for super-Alfvénic injection,
the ordering S 0 � M3

A,0 is implied in order to have a significant
GS95 range (see Appendix A).

4.2. Magnetohydrodynamic turbulence with dynamic
alignment

The classic picture presented above is now extended to the case
in which counter-propagating Elsässer fields δz+

λ⊥
and δz−λ⊥ (or,

in a similar way, velocity and magnetic-field fluctuations, δuλ⊥
and δbλ⊥ ) tend to align with each other in a scale-dependent fash-
ion (Boldyrev 2006). This dynamic alignment not only modifies
the fluctuation scaling and anisotropy by inducing a weakening
of the nonlinear interaction, but can also open the possibility
of a reconnection-mediated regime at small scales (still within
the MHD range of scales, not in the kinetic regime; see, e.g.,
Boldyrev & Loureiro 2017; Mallet et al. 2017). In this section
we consider the case when such a scale-dependent alignment

occur only in critically balanced turbulent fluctuations5, χz ∼ 1.
In this case, in addition to the (W0) and (K41) regimes of the
previous Section 4.1, one can have two additional regimes for
background turbulence (see also Table 1):

– [B06] An anisotropic, strong cascade of critically bal-
anced and dynamically aligned fluctuations that replaces
the GS95 regime. In this case, the fluctuation alignment
angle decreases with decreasing scale so that sin θ z

λ⊥
∝

(λz
⊥/`0)1/4. For sub- and trans-Alfvénic injection (MA,0 ≤ 1),

the perpendicular scaling of turbulent fluctuations at scales
λz
⊥ . λz

⊥,CB, turns out to be δz(B06)
λz
⊥

/vA,0 ∼ M 3/2
A,0 (λz

⊥/`0)1/4.
When S 0 � M−4

A,0, this cascade can further turn into
a reconnection-mediated regime below a transition scale
λz (subA)
⊥,∗ /`0 ∼ M −2/7

A,0 S −4/7
0 . For super-Alfvénic injection

(MA,0 > 1), turbulent fluctuations at scales λz
⊥ . `A fol-

low instead a perpendicular scaling given by δz(B06)
λz
⊥

/vA,0 ∼

M 3/4
A,0 (λz

⊥/`0)1/4. In this super-Alfvénic regime, a transition
to reconnection-mediated turbulence may occur at a scale
λ

z (supA)
⊥,∗ /`0 ∼ M −9/7

A,0 S −4/7
0 if S 0 � M3

A,0. If S 0 . M−4
A,0

and S 0 . M3
A,0 respectively in the sub-Alfvénic and super-

Alfvénic regime, the dissipation scale for a given regime
is larger than the corresponding transition scale and the
(B06) cascade does not transition into the tearing-mediated
regime. When this is case, the dissipation scale is achieved
at λz (subA)

⊥,min /`0 ∼ (MA,0 S 0)−2/3 in the trans-/sub-Alfvénic

regime, or at λz (supA)
⊥,min /`0 ∼ M −1

A,0 S −2/3
0 for super-Alfvénic

injection.
– [TMT] A strong anisotropic cascade of critically balanced

and dinamically (mis-)aligned fluctuations that are gener-
ated by magnetic-reconnection processes. In this case, fluc-
tuations scale as δz(TMT)

λz
⊥

∝ S 1/5
0 (λz

⊥)3/5 and are subjected
to a scale-dependent mis-alignment given by sin θz

λ z
⊥

∝

(λz
⊥/`0)−4/5. For sub- and trans-Alfvénic injection (MA,0 ≤

1), the perpendicular scaling of tearing-mediated turbulent
fluctuations is given by δz(TMT)

λz
⊥

/vA,0 ∼ S 1/5
0 M 8/5

A,0 (λz
⊥/`0)3/5,

while in the super-Alfvénic regime (MA,0 > 1) they scale
as δz(TMT)

λz
⊥

/vA,0 ∼ S 1/5
0 M 6/5

A,0 (λz
⊥/`0)3/5. In this regime the

dissipation scale is the same as for the GS95 cascade (i.e.,
λz (subA)
⊥,min /`0 ∼ M −1

A,0 S −3/4
0 for trans-/sub-Alfvénic turbulence,

or λz (supA)
⊥,min /`0 ∼ (MA,0 S 0)−3/4 for super-Alfvénic injection).

We can verify that the nonlinear interaction between a quasi-
parallel AW packet and the anisotropic turbulent fluctuations
populating the background is also weak for these cascades
(i.e., χw,q‖λ⊥

< 1), except for the case of super-Alfvénic injec-
tion at scales λw & `A, where instead χwλ ∼ χz

λ > 1 holds
(see Table 1).

We note that a tearing-mediated range emerges either when
S 0 � M−4

A,0 and S 0 � M3
A,0 for sub-Alfvénic and super-Alfvénic

turbulence injection, respectively (see Appendix A). Even admit-
ting a wide range of values for the injection-scale Alfvénic Mach
number MA,0, it seems reasonable to assume that these condi-
tions would be met quite easily in many astrophysical systems.
This is because the turbulent plasmas hosted by these environ-

5 Addressing the case in which alignment could occur also at weak
nonlinearities (Cerri et al. 2022) may be still premature at this point,
and it requires us to account for the alignment induced by background
fluctuations on the AW packet itself. For the sake of simplicity, this case
is not treated here, but will be addressed separately in a following work.

A182, page 8 of 19



Sergio Cerri, S.: A&A, 688, A182 (2024)

ments are typically very weakly collisional, and thus charac-
terized by large Lundquist numbers (see, e.g., Priest & Forbes
2007; Ji & Daughton 2011, and references therein). Neverthe-
less, for a TMT range to exist, 3D anisotropy of turbulent fluctu-
ations is required. Hence, scale-dependent (dynamic) alignment
is absolutely necessary. How and under what circumstances
dynamic alignment occurs is still largely unexplored and mat-
ter of ongoing debate (see, e.g., Schekochihin 2022; Cerri et al.
2022, and references therein).

4.2.1. Sub- and trans-Alfvénic turbulence (MA,0 ≤ 1) with
dynamic alignment

A quasi-parallel AW packet with normalized parallel wavelength
λ̂w
‖

= λ
w,q‖
‖

/`0 injected in pre-existing sub-Alfvénic turbulence
for which dynamic alignment of critically balanced fluctuations
occurs is subjected to the following turbulent damping rate:

[MA,0 < 1, with dynamic alignment]

Γ
w,q‖
subA ∼



M 8/3
A,0

(
λ̂w
‖

)1/3 vA,0

`0
M 4

A,0 . λ̂
w
‖
. MA,0

M 24/5
A,0

(
λ̂w
‖

)−1/5 vA,0

`0
λ̂w (subA)
‖,∗

. λ̂w
‖
. M 4

A,0

M 4
A,0

(
S 0 λ̂

w
‖

)1/2 vA,0

`0
λ̂w (subA)
‖,min . λ̂w

‖
. λ̂w (subA)

‖,∗
.

(14)

Here λ̂w (subA)
‖,∗

∼ S 1/5
0 (MA,0λ̂

z (subA)
⊥,∗ )8/5 ∼ S −5/7

0 M 8/7
A,0 is the

wavelength below which the AW packet interacts with back-
ground fluctuations in the TMT regime, while λ̂w (subA)

‖,min ∼

S 1/5
0 (MA,0 λ̂

z (subA)
⊥,min )8/5 ∼ S −1

0 is the shortest wavelength at which
the turbulent damping is effective.

The trans-Alfvénic regime is obtained from the above case
(i.e., when there is no W0 range):

[MA,0 ' 1, with dynamic alignment]

Γ
w,q‖
transA ∼


(
λ̂w
‖

)−1/5 vA,0

`0
S −5/7

0 . λ̂w
‖
. 1(

S 0 λ̂
w
‖

)1/2 vA,0

`0
S −1

0 . λ̂
w
‖
. S −5/7

0 .

(15)

Here we have explicitly written the transition and dissipation
scales: λ̂w (transA)

‖,∗
∼ S 1/5

0 (λ̂z (transA)
⊥,∗ )8/5 ∼ S −5/7

0 and λ̂w (transA)
‖,min ∼

S 1/5
0 (λ̂z (transA)

⊥,min )8/5 ∼ S −1
0 , respectively.

One can see that when it comes to the interaction of the
AW packet with anisotropic background fluctuations, including
dynamic alignment in the picture changes the behavior of the
turbulent damping rate significantly with respect to the classic
scenario (cf. Table 2). In the range of scales for which the packet
interacts with critically balanced turbulence (i.e., λw,q‖

‖
. λw,q‖

‖,CB),
the damping rate due to this nonlinear interaction is always
higher than the corresponding rate obtained without dynamic
alignment (cf. Eqs. (11) and (12) and Table 2; see also the left
panel of Figure 1 for an immediate visual example). This can be
understood by considering that dynamic alignment means a shal-
lower perpendicular spectrum of background fluctuations (−3/2
instead of −5/3), and thus at any scale λz

⊥ < λ
z
⊥,CB there is more

turbulent power to nonlinearly damp the AW packet.
In general, if a CR-driven Alfvén-wave is injected in a back-

ground of sub-Alfvénic turbulence with dynamic alignment, now

the damping rate interestingly exhibits two breaks that sepa-
rate the three distinct regimes available in this scenario (con-
trary to the single break that would be present without dynamic
alignment). This is a consequence of the new tearing-mediated
regime that is only possible when a scale-dependent alignment
takes place, and is well summarized in Tables 1 and 2 (see also
Appendix A). The first break is the same as in turbulence with-
out dynamic alignment, and it occurs for wavelengths interact-
ing with background fluctuations at the transition scale between
weak and strong turbulence (λw,q‖

‖
∼ λ

w,q‖
‖,CB ∼ M4

A,0 `0). The sec-
ond break instead emerges when the wavelength corresponds to
a scale for which the AW packet starts to interact with tearing-
mediated turbulence (λw,q‖

‖
∼ λw (subA)

‖,∗
∼ S −5/7

0 M 8/7
A,0 `0). In astro-

physical situations for which this damping mechanism is the
main process that determines the efficiency of CR confinement,
these breaks could leave a signature at the corresponding ener-
gies in the propagated spectrum of these cosmic particles (see
Section 6 for a brief discussion about the values of MA,0 and S 0
for which these breaks in the damping rate could be responsible
for the features that are observed in the propagated CR spec-
trum).

4.2.2. Super-Alfvénic turbulence (MA,0 > 1) with dynamic
alignment

When background fluctuations are injected with MA,0 > 1 and
dynamic alignment of critically balanced turbulent fluctuations
takes place, an AW packet undergoes turbulent damping with
the following rate:

[MA,0 > 1, with dynamic alignment]

Γ
w,q‖
supA ∼



MA,0

(
λ̂w

)−2/3 vA,0

`0
M −3

A,0 . λ̂
w . 1

M 12/5
A,0

(
λ̂w
‖

)−1/5 vA,0

`0
λ̂
w (supA)
‖,∗

. λ̂w
‖
. M −3

A,0

M 3
A,0

(
S 0 λ̂

w
‖

)1/2 vA,0

`0
λ̂
w (supA)
‖,min . λ̂w

‖
. λ̂w (supA)

‖,∗
.

(16)

Here λ̂w (supA)
‖,∗

∼ S 1/5
0 M6/5

A,0(λ̂z (supA)
⊥,∗ )8/5 ∼ S −5/7

0 M −6/7
A,0 , and the

shortest wavelength for turbulent damping to be effective is
λ̂
w (supA)
‖,min ∼ S 1/5

0 M 6/5
A,0 (λ̂z (supA)

⊥,min )8/5 ∼ S −1
0 .

Again, we note that the isotropic normalized wavelength
λ̂w = λw/`0 enters the damping rate in the range `A . λ

w . `0
(i.e., where the AW packet interacts with hydrodynamic-like
pre-existing turbulence). In this range of scales, the result is
unchanged with respect to the turbulent damping rate obtained
without dynamic alignment (Section 4.1.2). At smaller scales
λ
w,q‖
‖
. `A, the quasi-parallel condition in (6) applies again

and the damping rate depends explicitly on the normalized
parallel wavelength λ̂w

‖
= λ

w,q‖
‖

/`0. In this regime, the turbu-
lent damping rate differs significantly from the one obtained
without dynamic alignment. When a scale-dependent align-
ment of fluctuations is taken into account, the turbulent damp-
ing is always much more effective than in the case obtained
without dynamic alignment. This leads to a damping rate that
can be higher by orders of magnitude with respect to that in
(13), depending on the Alfvénic Mach number MA,0 and on
the Lunquist number S 0 at injection scales (see Table 2 for a
comparison of the scaling and the right panel of Figure 1 for
and explicit graphic example). Finally, analogously to the case
with MA,0 < 1, the damping rate also exhibits two breaks in
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a background of super-Alfvénic turbulence, if dynamic align-
ment can occur. The first break emerges for wavelengths com-
parable to the transition scale between hydrodynamic-like and
critically balanced turbulence (λw ∼ `A ∼ M−3

A,0 `0). A sec-
ond break occurs at wavelengths corresponding to the scale
marking the transition between a dynamically aligned cas-
cade and the tearing-mediated range (λw,q‖

‖
∼ λ

w (supA)
‖,∗

∼

S −5/7
0 M −6/7

A,0 `0). For which values of MA,0 and S 0 these breaks
in the damping rate could be responsible for the features that are
observed in the propagated CR spectrum is briefly discussed in
Section 6.

5. Feedback on background fluctuations

When deriving the scaling of Γ
w,q‖
turb in the previous section,

we neglected the feedback that the injected Alfvén-wave pack-
ets could have on pre-existing turbulent fluctuations. In gen-
eral, background fluctuations could also be affected by their
nonlinear interaction with these AW packets, which we call
feedback. It is therefore instructive to understand when this
effect has to be taken into account. The relevance of this
feedback can be estimated by comparing two timescales. The
first is the intrinsic cascade time of background fluctuations,
which is the timescale of the cascade process induced by
pre-existing (counter-propagating) fluctuations on themselves,
τ(z|z)

casc ∼ τ
(z|z)
nl /χ(z|z) (or just τ(z|z)

casc ∼ τ
(z|z)
nl , if χ(z|z) & 1). The second is

CR-induced cascade time, which is the timescale of the cascade
that would be induced by the injected AW packets on the back-
ground fluctuations, τ(z|w)

casc ∼ τ(z|w)
nl /χ(z|w) (or just τ(z|w)

casc ∼ τ(z|w)
nl , if

χ(z|w) & 1).
Hereafter, the simpler superscript “z” is used instead of

“(z|z)” for the sake of homogeneity of notation with the pre-
vious sections. Moreover, for the sake of clarity in the quali-
tative discussion that follows, the effect of dynamic alignment
is not taken into account in this section. The nonlinear param-
eter χ(z|w) describing the interaction of background fluctuations
with CR-driven AW packets is χ(z|w)

λ⊥
∼ (λz

‖,λ⊥
/λz
⊥)(δwλ⊥/vA,0) ∼

(δwλ⊥/δzλ⊥ ) χ z
λ⊥

, while the timescale associated with this nonlin-
ear interaction is τ(z|w)

nl,λ⊥
∼ λ⊥/δwλ⊥ ∼ (δzλ⊥/δwλ⊥ ) τ z

nl,λ⊥
. The ratio

of the two cascade timescales is thus given by

τ(z|w)
casc

τz
casc
∼



(
δzλ⊥/δwλ⊥

)2 if


χz
λ⊥
< 1 and χ(z|w)

λ⊥
. 1

or
χz
λ⊥
∼ 1 and χ(z|w)

λ⊥
< 1(

δzλ⊥/δwλ⊥
)
χz
λ⊥

if χz
λ⊥
< 1 and χ(z|w)

λ⊥
> 1(

δzλ⊥/δwλ⊥
)

if χz
λ⊥
∼ 1 and χ(z|w)

λ⊥
& 1

(δzλ/δwλ) (δwλ/vA,0)−1 if χz
λ > 1 and χ(z|w)

λ < 1

(δzλ/δwλ) if χz
λ > 1 and χ(z|w)

λ & 1.
(17)

Feedback effects are taken into account if the nonlinear cas-
cade process that would be induced by the injected Alfvén-wave
packets becomes faster than the intrinsic cascading process of
background fluctuations (i.e., at scales where τ(z|w)

casc /τ
z
casc . 1).

From (17) we can see that cosmic-ray feedback (CRF) is relevant
at scales for which self-generated waves achieve non-negligible

amplitudes with respect to the background fluctuations. Clearly,
the weaker the damping, the larger the amplitude that self-
generated fluctuations can attain. Hence, feedback on back-
ground turbulence becomes more important as the most-relevant
damping mechanism becomes weaker; and this is a general state-
ment that does not depend on which damping process determines
the saturation level of CR-generated waves. The scales at which
CRF has to be taken into account thus requires that we compare
the scale-dependent amplitudes of both the CR-driven AW pack-
ets (δwλ) and the pre-existing background fluctuations (δzλ). A
precise estimate of these scales requires a detailed knowledge of
how the CRSI saturation level in pre-existing turbulence depends
upon plasma parameters and background conditions, which is
not yet achieved. At this stage, we provide only a general, quali-
tative discussion.

We consider cases in which the CRSI saturates at a level
(δw/vA,0)2 ∼ (δB(CRSI)/B0)2 � 1. Then, from (17) we can
see that when the CR-driven AW packets interact with super-
Alfvénic turbulence (MA,0 > 1), and at scales where the cascade
is hydrodynamic-like (λw & `A), the ratio τ(z|w)

casc /τ
z
casc is typi-

cally much higher than unity. Therefore, when the CR-driven
instability produces fluctuations at a level δB(CRSI)/B0 � 1
(which also depends on the presence of a mean field B0), CRF
is likely negligible at all scales belonging to the K41 regime.
The situation is different for trans- and sub-Alfvénic injection
(MA,0 . 1), or for super-Alfvénic injection at scales below which
the hydrodynamic-like cascade transitions to the critically bal-
anced regime (λw

‖
< `A). In these cases, the CR feedback on

pre-existing turbulence is negligible only at scales for which
the packet amplitudes are smaller than the background fluctu-
ation level. As a consequence, cosmic-ray feedback should be
taken into account at scales λ⊥ . λCRF

⊥ , where the perpendic-
ular CR-feedback scale λCRF

⊥ is defined as the scale at which
δwλCRF

⊥
∼ δzλCRF

⊥
holds. If δB(CRSI)/B0 is sufficiently low, such a

scale may be smaller than the turbulent dissipation scale, and
thus the feedback could be neglected for all purposes of CR
transport. However, the growth and saturation level of the CRSI
depends upon the CR-to-thermal density ratio nCR/nth. In the
Galactic halo this ratio is negligibly low, and the above reasoning
likely applies. This may not be the case near CR sources, where
such a density ratio is not as low and CRs can further evacuate
the thermal gas (Schroer et al. 2021, 2022). We thus expect this
feedback to be relevant in these environments. This issue will be
addressed in more detail and quantitatively in the accompanying
Paper II.

Finally, we note that the discussion above regarding the scale
at which CRF could become relevant was done in terms of
perpendicular scales λ⊥ (see equation (17)). This means that
we denoted with λCRF

⊥ the perpendicular scale at which CR-
generated waves affect pre-existing turbulence. However, regard-
less of the damping mechanism that saturates the amplitude of
the fluctuations, the CRSI growth rate is such that quasi-parallel
Alfvén waves λw

‖
� λw⊥ are mainly produced. It is thus conve-

nient to relate the scale λCRF
⊥ at which the CR-driven fluctuation

amplitude becomes comparable to the amplitude of background
fluctuations to the injected parallel wavelength λw,q‖

‖
. This can be

done by using the quasi-parallel condition (6):

λCRF
‖
∼

δzλw,q‖⊥
vA,0

 λCRF
⊥ � λCRF

⊥ . (18)

Hence, quasi-parallel Alfvén waves δwλ‖ driven by CRs at scales
λ
w,q‖
‖
. λCRF

‖
can actually affect pre-existing turbulent fluctua-
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tions δzλ⊥ on much larger scales λCRF
⊥ & λ⊥ � λ

w,q‖
‖

. We recall
that we assume that nonlinear interactions are local in perpen-
dicular scale, so in what follows we do not need to distinguish
between the two scales λw⊥ and λz

⊥ (i.e., λw⊥ ∼ λ
z
⊥ ∼ λ⊥).

In the following, we attempt to provide two phenomenolog-
ical models for the CR-modified cascade of background fluctu-
ations. However, these are just plausible models at this stage.
Focused numerical investigations will be necessary in order to
verify if (and under what circumstances) they can be realized.

5.1. A phenomenological model for CR-modified scaling of
pre-existing turbulent fluctuations

A simple phenomenological model for the cascade modified by
the CR-generated AW packets can be constructed as follows.

Here we assume that, at scales where χz
λ⊥
. 1, pre-existing

fluctuations and their anisotropies follow the scaling δz(0)
λ⊥
∝ λ

αz
⊥

⊥

and λ‖,λ⊥ ∝ λ δ
z

⊥ , respectively, with αz
⊥ > 0. For critically bal-

anced fluctuations (χz ∼ 1) the anisotropy is such that δz =
1 − αz

⊥, while in weak turbulence (χz < 1) it is δz = 0. Such
scaling for the fluctuations corresponds to a perpendicular power
spectrum E(0)

δz (k⊥) ∝ k −ξ
z
⊥

⊥ , with ξz
⊥ = 1 + 2αz

⊥. At scales where
χz
λ⊥
> 1, the scaling is isotropic (i.e., δz = 1), and so δz(0)

λ ∝ λ
αz

and E(0)
δz (k) ∝ k −ξ

z
, with ξz = 1 + 2αz. These are the unper-

turbed properties of background fluctuations (i.e., without CR
feedback), and are thus denoted by the superscript “(0)”. Then
we assume a scaling δwλ‖ ∝ (λw

‖
)−α

w
‖ for the CR-driven (quasi-

parallel) fluctuations, corresponding to a parallel power spec-
trum ECRSI(kw‖ ) ∝ (kw

‖
) ξ

w
‖ , where ξw

‖
= 2αw

‖
− 1. At scales λ⊥

where background fluctuations are sub-Alfvénic and anisotropic
(i.e., such that χz

λ⊥
. 1), the quasi-parallel condition (6) holds

for CR-driven waves. Hence, the corresponding perpendicular
scaling for self-generated fluctuations is typically steeper than
its parallel counterpart, and is related to the perpendicular scal-
ing of pre-existing fluctuations, namely6 δwλ⊥ ∝ λ

−αw⊥
⊥ with

αw⊥ = αw
‖

(1 + αz
⊥). This corresponds to a perpendicular spec-

trum ECRSI(k⊥) ∝ (k⊥) ξ
w
⊥ , with ξw⊥ = 2αw

‖
(1 + αz

⊥) − 1 =

ξw
‖

+ (ξw
‖

+ 1)(ξz
⊥ − 1)/2. On the other hand, at scales where

χz
λ > 1, the distinction between αw⊥ and αw

‖
is lost. In this case,

we just assume a scaling δwλ ∝ λ−α
w

and a (isotropic) power
spectrum ECRSI(k) ∝ (k) ξ

w

with ξw = 2αw − 1.
Before proceeding further, it is worth mentioning that here

we are considering a generic case where self-generated turbu-
lence can be described by a power-law spectrum, without mak-
ing any assumption on its spectral index nor on the damping
mechanism that sets the saturation of the instability. The only
condition that we require is that the hierarchy of possible inter-
actions between CR-generated waves and pre-existing turbulent
fluctuations is self consistent (i.e., that background turbulence is
affected by the self-generated waves before turbulence can affect
the waves). In this regard, we can verify that when τ(z|w)

casc � τz
casc

holds, then the condition τ(z|w)
casc � τwcasc ∼ (Γw,q‖turb )−1 is automati-

cally satisfied:7 this condition allows us to neglect mutual feed-
back between background fluctuations and CR-driven Alfvén

6 The quasi-parallel condition, kw
‖
∼ (δzk⊥/vA,0)−1k⊥, and condition

on the total energy, (kw
‖
)−1(δwkw

‖
)2dkw

‖
∼ k −1

⊥ (δwk⊥ )2dk⊥, have been
employed to derive the perpendicular scaling of the fluctuations, δwk⊥ .
7 To show this, we multiply by Γ

w,q‖
turb both sides of the condition τ(z|w)

casc �

τz
casc and obtain the equivalent condition Γ

w,q‖
turb τ

(z|w)
casc � Γ

w,q‖
turb τ

z
casc. Then,

waves (i.e., to consider only the modification to the scaling of
pre-existing turbulence induced by a stationary spectrum of sat-
urated self-generated fluctuations).

We now want to know how the scaling of δz(0) is modified
by the presence of δw, knowing that we are in a regime in which
such feedback is faster that the intrinsic cascade time of δz(0)

(i.e., τ(z|w)
casc � τz

casc). Within these assumptions, we can derive
the scaling of CR-modified turbulence by replacing the cascade
timescale,

τz
casc → τ(z|w)

casc , (19)

by rescaling the unperturbed background fluctuations into a first-
order modified fluctuation denoted by the superscript “(1)”,

δz(0)
λ⊥
→ δz(1)

λ⊥
= ζλ⊥δz

(0)
λ⊥
, (20)

and by requiring that the cascade rate is still scale-inependent
(i.e., (δz(1)

λ⊥
)2/τ(z|w)

casc ∼ ε ∼ const). This procedure readily provides
the scaling factor

ζλ⊥ ∼

τ(z|w)
casc

τz
casc

1/2

, (21)

which can be estimated using (17) for the various χz and χw

regimes and, as a first approximation, by employing the unper-
turbed scaling δz(0)

λ⊥
; the rescaling factor computed in this way

is denoted as ζ(0)
λ⊥

8. The resulting CR-modified perpendicular
power spectrum of background fluctuations is then given by
E(1)
δz (k⊥) ∼ (ζ(0)

λ⊥
)2E(0)

δz (k⊥) (i.e., E(1)
δz (k⊥) ∝ k − ( ξz

⊥ + ∆ξCRF
⊥ )

⊥ ), where
the CR-induced modification of the spectral index is

∆ξCRF
⊥ ∼



1
2 (ξz
⊥ + 1)(ξw

‖
+ 3) − 2 if


χz
λ⊥
< 1 and χ(z|w)

λ⊥
. 1

or
χz
λ⊥
∼ 1 and χ(z|w)

λ⊥
< 1

1
4 (ξz
⊥ + 1)(ξw

‖
+ 5) − 3 if χz

λ⊥
< 1 and χ(z|w)

λ⊥
> 1

1
4 (ξz
⊥ + 1)(ξw

‖
+ 3) − 1 if χz

λ⊥
∼ 1 and χ(z|w)

λ⊥
& 1

1
2 (ξz + 2ξw + 1) if χz

λ > 1 and χ(z|w)
λ < 1

1
2 (ξz + ξw) if χz

λ > 1 and χ(z|w)
λ & 1.

(22)

We recall that this result is only valid at scales where ζλ⊥ < 1,
and only if Γ

w,q‖
turb τ

(z|w)
casc � 1 (i.e., if the CR-driven Alfvén-wave

using (9)-(10), we can show that Γ
w,q‖
turb τ

z
casc . 1 holds for any value of χw

and χz, which further implies the condition Γ
w,q‖
turb τ

(z|w)
casc � 1.

8 We can perform an expansion of the rescaling factor based on
iteratively modified timescales τz(n)

casc,λ⊥
, and rewrite it as a series

ζλ⊥ = (τ(z|w)
casc,λ⊥

)1/2
(∑

n 1/τz(n)

casc,λ⊥

)1/2
= ζ(0)

λ⊥

(
1 +

∑
n>0 τ

z(0)

casc,λ⊥
/τz(n)

casc,λ⊥

)1/2
;

we recall that we assume that the CR-driven fluctuations δwλ⊥ are
unaffected by background fluctuations. The ratio of the 0th to the nth
timescale is τz(0)

casc,λ⊥
/τz(n)

casc,λ⊥
∝ δz(n)

λ⊥
/δz(0)

λ⊥
(or even ∝ (δz(n)

λ⊥
/δz(0)

λ⊥
)2). Then,

if the CR-induced modification of the pre-existing spectrum is a steep-
ening, the cascade timescale would significantly increase with increas-
ing n, i.e., τz(n)

casc,λ⊥
� τz(n−1)

casc,λ⊥
� · · · � τz(1)

casc,λ⊥
� τz(0)

casc,λ⊥
. So, if the series

converges and its contribution is negligible (which shall be verified):
ζλ⊥ ≈ ζ

(0)
λ⊥

.
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packets are unaffected by pre-existing fluctuations). It is interest-
ing to note that the anisotropy of the pre-existing cascade would
be unaffected if χ(z|w) < 1 (leaving `‖,λ⊥ ≈ const. if χz < 1,
or `‖,λ⊥ ∝ λδ

z

⊥ if χz ∼ 1), or if χz > 1 (leaving `‖,λ⊥ ∝ λ⊥).
On the other hand, if χ(z|w) ∼ 1, a critical balance between the
Alfvén time τz

A and the nonlinear time τ(z|w)
nl would be estab-

lished, leading to a modified anisotropy `‖,λ⊥ ∝ λ
1+αw⊥
⊥ = λδ

z+δCRF

⊥

with δCRF = αw
‖

+ αz
⊥(αw

‖
− 1). This means that the anisotropy of

pre-existing fluctuations would be reduced if |αw
‖
| < αz

⊥/(1 +αz
⊥)

(e.g., for GS95 turbulence, this means |αw
‖
| < 1/4, correspond-

ing to a CR-driven spectrum ∝ k−1/2
‖

or steeper), and it would be
instead increased otherwise.

As mentioned before, the exact scaling and amplitude of the
self-generated turbulent spectrum depends on the properties of
the CR distribution that drives the instability and on the differ-
ent damping mechanisms that contribute to the instability satu-
ration (see, e.g., Marcowith et al. 2021, and references therein).
However, as an example, we consider the results obtained with
1D-3V kinetic simulations in Holcomb & Spitkovsky (2019),
where the CR-driven fluctuations at saturation developed a scal-
ing roughly consistent with δB ∝ k−1/2

‖
(i.e., αw

‖
≈ −1/2 and

thus ξw
‖
≈ −2). Assuming a GS95 cascade of the background

fluctuations (i.e., χz ∼ 1 and ξz
⊥ = 5/3) and strong nonlineari-

ties induced by the CR-driven waves on these fluctuations (i.e.,
χ(z|w)
λ & 1), we obtain ∆ξCRF

⊥ ≈ 1/3. This means that the spec-
trum of background fluctuations below λCRF

⊥ would be steep-
ened from k−5/3

⊥ to k−2
⊥ due to the CR feedback (and also further

suppressing the turbulent damping by lowering the amplitude of
background fluctuations at those scales; cf. equation (10)). The
anisotropy of background turbulence would be also significantly
increased, from k‖ ∝ k2/3

⊥ to k‖ ∝ k−1/3
⊥ (thus further reduc-

ing the effectiveness of CR scattering on pre-existing fluctua-
tions). Another example can be set by assuming an Iroshnikov-
Kraichnan spectrum for self-generated turbulence (∝ k−3/2). This
type of spectrum has often been invoked to explain the observed
γ-ray emission and local CR data (e.g., Gaggero et al. 2015,
and references therein). In this case, still assuming a GS95-type
of background turbulence and χ(z|w)

λ & 1, we now obtain that
the background spectrum is unchanged (∆ξCRF

⊥ ≈ 0), but the
anisotropy is enhanced by the CR feedback (k‖ ≈ const).

5.2. Overcritical interaction (χ(z|w) > 1) and alternative
CR-modified scaling of pre-existing fluctuations

When nonlinear interactions between the CR-driven Alfvén-
wave packets and background turbulence are overcritical (i.e.,
χ(z|w) > 1), it is reasonable to consider that pre-existing scal-
ing is not just perturbatively modified. Therefore, we present
an alternative model in which the intrinsic cascade time of pre-
existing fluctuations τz

casc is completely replaced by the nonlinear
timescale τ(z|w)

nl , without further re-scaling of δz(0) as in (21). This
allows us to directly derive the CR-modified scaling of back-
ground fluctuations δzCRF by requiring (δzCRF)2/τ(z|w)

nl ∼ ε =
const.

If χz . 1, pre-existing scaling is anisotropic, and the condi-
tion above yields the perpendicular scaling

δwλ⊥ (δzCRF
λ⊥

)2

λ⊥
∼ ε = const. ⇒ δzCRF

λ⊥
∝ λ

(1+αw⊥)/2
⊥ . (23)

This corresponds to a modified perpendicular spectrum
ECRF
δz (k⊥) ∝ k−(ξz

⊥+∆ξCRF
⊥ )

⊥ with

∆ξCRF
⊥ =

ξw
‖

+ ξz
⊥(ξw
‖
− 3) + 9

4
, (24)

where the link to the original scaling of pre-existing fluctuations
is a consequence of the quasi-parallel condition (6).

If χz > 1, CR-modified fluctuations would follow the
isotropic scaling δzCRF

λ ∝ λ(1+αw)/2, corresponding to a spectrum

ECRF
δz (k) ∝ k−(ξw+5)/2, (25)

which does not depend on the original scaling of pre-existing
fluctuations due to the loss of quasi-parallel concept.

6. Discussion and conclusions

The turbulent damping of an Alfvén-wave (AW) packet excited
by cosmic rays (CRs) in pre-existing incompressible magneto-
hydrodynamic (MHD) turbulence was re-examined by carefully
taking into account the role of the nonlinearity parameter χw
that quantifies the strength of the nonlinear interaction between
the packet and background fluctuations. In particular, the dif-
ference between χw and the nonlinear parameter χz that instead
describes the regime of background turbulence (i.e., the intrinsic
strength of nonlinear interactions between pre-existing fluctua-
tions) was elucidated. The derivation of turbulent damping rates
in a classic MHD turbulence scenario (i.e., without the so-called
dynamic alignment) was thus revised, taking into account the
difference between χw and χz, and new scaling relations for the
damping rates were obtained. Furthermore, by considering the
most recent theories of MHD turbulence that account for a scale-
dependent (dynamic) alignment of fluctuations and the possibil-
ity of a reconnection-mediated regime, completely new damping
rates were also obtained for the first time. Finally, the role of
cosmic-ray feedback (CRF) on pre-existing turbulence is also
examined and a simple criterion for CRF effects is derived. Two
very simple phenomenological models of CR-modified scaling
of background fluctuations were also obtained. In particular,
this feedback can steepen the spectrum of background turbu-
lence and further enhance its spectral anisotropy (k‖ � k⊥). By
reducing the amplitude of pre-existing fluctuations at the CRF
scales, the former effect would have the consequence of further
reducing the turbulent damping rate at those scales. At the same
time, the increased anisotropy of background turbulence would
also reduce the effectiveness of CR resonant scattering on pre-
existing fluctuations at the CRF scales. These two CR-feedback
effects may thus clear the stage for self-generated turbulence to
dominate the CR transport and reinforce the self-confinement
picture. Taking into account the feedback of CR-generated fluc-
tuations on pre-existing turbulence may be relevant in astro-
physical environments where the density of cosmic-ray nCR is
non-negligible with respect to the density of the background
thermal plasma nth (e.g., near CR sources). The issue of CRF
effects, as well as the role of other damping mechanisms, will be
addressed in more detail in the following Paper II.

The main features of the new turbulent damping rates
obtained in this work can be summarized as follows:

– The nonlinear interaction between a quasi-parallel (q‖) AW
packet and pre-existing anisotropic turbulence is always
weak (equations (7)-(8)). As a result, the turbulent damping
rate of the packets depends on the background-fluctuation
amplitude to the third power (equation (10)), and thus is
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strongly suppressed with respect to what previously esti-
mated. This is true at any wavelength when the AW packet
interacts with sub- and trans-Alfvénic turbulence, and also
for those packets whose wavelengths interact with fluctua-
tions at scales where they become critically balanced in the
case of super-Alfvénic injection.

– How the turbulent damping rate Γ
w,q‖
turb depends on (i) the

AW-packet’s parallel wavelength λ‖ (and thus on the CR
gyro-radius from which it is excited) and on (ii) the injection-
scale Alfvénic Mach number MA,0, in the classic MHD
turbulence scenario is significantly different from what is
presented in the existing literature (equations (11)–(13)).
The damping rate agrees with the literature only when the
AW packet interacts with isotropic K41 turbulence, namely
ΓwK41 ∝ MA,0 λ

−2/3. On the contrary, when the packet inter-
acts with weak turbulence W0, the damping rate scales as
Γ
w,q‖
W0 ∝ M8/3

A,0 λ
1/3
‖

(instead of ∝ M8/3
A,0 λ

−2/3
‖

as previously
obtained), while when it interacts with critically balanced
turbulence GS95, turbulent damping does not depend on
the wavelength (i.e., Γ

w,q‖
GS95 ∼ const.) and it is ∝ M4

A,0 for
MA,0 < 1 or ∝ M3

A,0 if MA,0 > 1, instead of ∝ M2
A,0 λ

−1/2
‖

or
∝ MA,0 λ

−1/2
‖

, respectively, as reported in the existing litera-
ture.

– Including dynamic alignment of pre-existing fluctuations in
the picture, and thus also allowing for the possibility of a
reconnection-mediated range, introduces novel regimes and
breaks in the turbulent damping rate (equations (14)–(16)).
When a quasi-parallel AW packet interacts with critically
balanced and dynamically aligning anisotropic turbulence
B06, it is subjected to a damping rate Γ

w,q‖
B06 ∝ M24/5

A,0 λ−1/5
‖

if MA,0 < 1 or Γ
w,q‖
B06 ∝ M12/5

A,0 λ−1/5
‖

if MA,0 > 1. Alfvén-
wave packets that interact with tearing-mediated turbulence
(TMT) are instead subjected to a damping rate that is now
also sensitive to the injection-scale Lundquist number S 0,
and it scales as Γ

w,q‖
TMT ∝ M4

A,0(S 0 λ‖)1/2 if MA,0 < 1 or

Γ
w,q‖
TMT ∝ M3

A,0(S 0 λ‖)1/2 if MA,0 > 1.
– Accounting for dynamic alignment (and TMT) introduces

two breaks in the turbulent damping rate, instead of the
single break that is present in the classic picture. For sub-
Alfvénic turbulence, the first break corresponds to the tran-
sition scale between weak and strong turbulence (i.e., λ‖ ∼
M4

A,0 `0 in terms of parallel wavelength of the AW packet),
while it corresponds to the transition scale between isotropic
and anisotropic turbulence for super-Alfvénic injection (i.e.,
λ ∼ M−3

A,0 `0). This is the same type of break found in clas-
sic MHD turbulence. A second break, on the other hand,
emerges due to the transition to tearing-mediated turbu-
lence, which is only possible if dynamic alignment occurs
(i.e., at a packet’s parallel wavelength λ‖ ∼ S −5/7

0 M 8/7
A,0 `0

in sub-Alfvénic turbulence, or at λ‖ ∼ S −5/7
0 M −6/7

A,0 `0 for
super-Alfvénic injection). We recall that MA,0 and S 0 are
respectively the Alfvénic Mach number of turbulent fluc-
tuations and Lunquist number of the background plasma at
injection scale `0. Since CR self-confinement relies on a bal-
ance between the growth of these CR-driven Alfvén waves
and their damping, it is reasonable to imagine that in astro-
physical situations where turbulent damping is the most rel-
evant damping mechanism, these breaks would also emerge
in the propagated CR spectrum. We note that this is a simple
damping-rate effect, and does not consider CR feedback on

background fluctuations. It is thus interesting that, assuming
a Galactic magnetic field B ∼ 1–3 µG and an injection scale
of background turbulence `0 ∼ 30–100 pc, the above breaks
in the damping rate could be translated to CR energies ECR
(assuming λ‖ ∼ rL, where rL is the Larmor radius of the
cosmic ray). A first break at ECR,1 ∼ 10 TeV would indeed
emerge if the injection-scale Alfvénic Mach number MA,0 of
pre-existing turbulence is in the range 0.07 . MA,0 . 0.14
(i.e., sub-Alfvénic injection with MA,0 of order ∼ 0.1) or
in the range 15 . MA,0 . 30 (i.e., super-Alfvénic injec-
tion with MA,0 of order ∼ 10). Additionally, for both MA,0
regimes determined above, a second break at CR energies
ECR,2 ∼ 300 GeV would be consistently recovered if the
Lundquist number of the background plasma is of order S 0 ∼

105–107. Clearly, this represents only an interesting feature
in a very simplified scenario, and in general many other
mechanisms that can affect CR transport may need to be
taken into account (e.g., Fornieri et al. 2021; Lazarian & Xu
2021; Chernyshov et al. 2022; Kempski & Quataert 2022;
Kempski et al. 2023; Lemoine 2023; Pezzi & Blasi 2024,
and references therein).

In conclusion, it is worth noting once more that the tur-
bulent damping rates obtained in this work differ dramat-
ically from those found in the literature, even for classic
MHD turbulence due to the confusion between χw and χz.
All the existing CR studies that assume the turbulent damp-
ing rate as a fundamental ingredient in their calculations have
thus employed an incorrect version of this damping rate.
Hence, a number of previous works on CR self-confinement
may need to be revised in view of the results presented
here.
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Appendix A: Scaling of turbulent fluctuations at
magnetohydrodynamic scales

In this appendix we briefly review the turbulent scaling
of Alfvénic fluctuations at fluid (MHD) scales (see, e.g.,
Schekochihin 2022, for a more detailed review on the topic).
First, we present the standard scenario without scale-dependent
alignment of turbulent fluctuations. In the second part, an alter-
native scenario in which such dynamic alignment is taking place
in the critically balanced regime is presented.

In the following, isotropic injection is assumed and `0
denotes the injection scale (i.e., the injection properties is not
affected by the presence of a mean magnetic-field direction
B0 at that scale). Balanced injection is also assumed (i.e., that
the same amount of energy is injected in the Elsässer fields at
`0, |δz+

0 |
2 ≈ |δz−0 |

2 = δz2
0). We thus define an injection-scale

Alfvénic Mach number MA,0 = δz0/vA,0 ≈ δb0/B0, where
vA,0 = B0/

√
4πρ0 is the Alfvén speed associated with the

background plasma (having mass density ρ0 and being embed-
ded in a mean field B0). For isotropic injection, the nonlinear
parameter at injection scales χ0 = (k⊥,inj δz0)/(k‖,inj vA,0) (see
(4)) identifies with the injection-scale Alfvénic Mach number
(i.e., χ0 = MA,0). Analogously, we define the injection-scale
Lundquist number S 0 = `0 vA,0/η, where η is the resistivity of
the background plasma. The Lunquist and the Alfvénic Mach
numbers can be combined to provide the injection-scale mag-
netic Reynolds number Rm0 = `0 δz0/η = MA,0 S 0.

An example of the resulting turbulent spectra and fluctua-
tions’ anisotropy for different injection regimes and type of cas-
cades are summarized in Figures A.1 and A.2.

A.1. Magnetohydrodynamic turbulence without dynamic
alignment

In this section we present what can be called the classic cas-
cade of Alfvénic fluctuations (i.e., the standard scenario in
which a scale-dependent alignment of turbulent fluctuations is
not taken into account). In this case, depending on the large-
scale regime of injection, turbulence can start as either fluid-like
(Kolmogorov 1941) or wave-like (Ng & Bhattacharjee 1997;
Galtier et al. 2000), until the point at which the cascade transi-
tions into a critically balanced state (Goldreich & Sridhar 1995)
and eventually reaches dissipation.

Sub- and trans-Alfvénic injection (MA,0 ≤ 1). When the
injection conditions are isotropic and sub-Alfvénic (i.e., such
that χ0 = MA,0 < 1), then fluctuations initially cascade in
a weakly nonlinear regime. During that weak cascade only
smaller perpendicular scales λ⊥ < `0 are generated, while
λ‖ ∼ `0 ∼ const.9 The cascade timescale in such weak regime

9 This result is formally obtained through wave-turbulence the-
ory (Ng & Bhattacharjee 1997; Galtier et al. 2000). In weak MHD tur-
bulence, the main contribution to the cascade is the three-wave inter-
action, where an Alfvén wave with frequency ω±1 and wave-vector k±1
nonlinearly interacts with a counter-propagating Alfvén wave having
frequency ω∓2 and wave-vector k∓2 in order to generate a third wave with
ω3 and k3. The resonance conditions for this process essentially corre-
spond to momentum and energy conservation laws: k±1 + k∓2 = k3 and
ω±1 + ω∓2 = ω3. Since for Alfvén waves these conditions on parallel
wave-vectors become k±1,‖ − k∓2,‖ = ±k3,‖ and k±1,‖ + k∓2,‖ = k3,‖, the only
nontrivial solution requires that either k∓2,‖ = 0 and k3,‖ = k±1,‖, or k±1,‖ = 0
and k3,‖ = k∓2,‖. This means that the parallel wave-vector does not change
during the three-wave interaction and only smaller perpendicular scales
with k3,⊥ = k1,⊥ + k2,⊥ are generated by the weak cascade.

is

τ(subA)
casc,λ⊥

∼
τ(subA)

nl,λ⊥

χ(subA)
λ⊥

∼
vA,0

`0

 λ⊥

δz(subA)
λ⊥

2

, (A.1)

from which the fluctuation scaling in the inertial range are
obtained by requiring a constant energy cascading rate ε through
scales

(δz(subA)
λ⊥

)2

τ(subA)
casc,λ⊥

∼ ε = const. ⇒
δz(subA)
λ⊥

vA,0
∼ MA,0

(
λ⊥
`0

)1/2

, (A.2)

where we have used the fact that the cascading rate is the same as
the injection rate (i.e., ε ∼ ε0 ∼ δz2

0/τ
(subA)
casc,0 ∼ M 4

A,0 v
3
A,0/`0). The

fluctuation power spectrum is obtained as Eδz ∼ (δzk⊥ )2/k⊥, and
thus the one associated with the weak cascade is E(subA)

δz (k⊥) ∝
k−2
⊥ ; here and in the following we explicitly employ the more

familiar wave-vector notation k⊥ ∼ λ−1
⊥ for the spectrum.

The weak cascade would reach a dissipation scale λ(subA)
⊥,diss if the

nonlinear timescale τnl,λ⊥ ∼ λ⊥/δzλ⊥ becomes comparable to the
characteristic dissipation time τdiss,λ⊥ ∼ λ

2
⊥/η:

λ(subA)
⊥,diss

δz(subA)
λ⊥,diss

∼
(λ(subA)
⊥,diss )2

η
⇒

λ(subA)
⊥,diss

`0
∼ (MA,0 S 0)−2/3 . (A.3)

However, the scaling in (A.2) implies that the nonlinear param-
eter χλ⊥ increases with decreasing scales,

χ(subA)
λ⊥

∼
`0/vA,0

λ(subA)
⊥ /δz(subA)

λ⊥

∼ MA,0

(
λ⊥
`0

)−1/2

, (A.4)

and will thus achieve critical balance (CB) at a perpendicular
scale

χ(subA)
λ⊥,CB

∼ 1 ⇒
λ⊥,CB

`0
∼ M 2

A,0 . (A.5)

A transition to strong turbulence occurs only if λ⊥,CB � λ(subA)
⊥,diss ,

and comparing (A.3) and (A.5), this means only if S 0 � M −4
A,0.

At scales below λ⊥,CB turbulence stays critically balanced and
the cascade timescale identifies with the nonlinear time:

τ(subA)
casc,λ⊥<λ⊥,CB

∼ τ(subA)
nl,λ⊥

∼
λ⊥

δz(subA)
λ⊥

. (A.6)

As a result, the scaling of turbulent fluctuations at λ⊥ < λ⊥,CB is
such that

(δz(subA)
λ⊥<λ⊥,CB

)2

τ(subA)
nl,λ⊥<λ⊥,CB

∼ ε = const. ⇒
δz(subA)
λ⊥<λ⊥,CB

vA,0
∼ M 4/3

A,0

(
λ⊥
`0

)1/3

,

(A.7)

while the critical-balance condition τA,λ⊥ ∼ τnl,λ⊥ sets the scale-
dependent anisotropy of turbulent fluctuations,

λ‖,λ⊥<λ⊥,CB

vA,0
∼

λ⊥

δz(subA)
λ⊥<λ⊥,CB

⇒
λ‖,λ⊥<λ⊥,CB

`0
∼ M −4/3

A,0

(
λ⊥
`0

)2/3

.

(A.8)

Equation (A.8) implies that below λ⊥,CB the critically balanced
cascade starts to generate smaller parallel scales. From (A.7) we
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can obtain a reduced (one-dimensional) perpendicular spectrum
E

(subA)
δz (k⊥λ⊥,CB > 1) ∝ k −5/3

⊥ and a reduced parallel spectrum
E

(subA)
δz (k‖) ∝ k −2

‖
.10

The above cascade eventually reaches dissipation at a scale
λ(subA)
⊥,diss for which the nonlinear and dissipation timescales

become comparable, τ(subA)
nl,λ⊥

∼ τdiss,λ⊥ :11

λ(subA)
⊥,diss

δz(subA)
λ⊥,diss

∼
(λ(subA)
⊥,diss )2

η
⇒

λ(subA)
⊥,diss

`0
∼ M−1

A,0 S −3/4
0 . (A.9)

Super-Alfvénic injection (MA,0 > 1). When fluctuations are
injected (isotropically) with χ0 = MA,0 > 1, the resulting tur-
bulence starts as a strong hydrodynamic-like cascade; in other
words, turbulence is isotropic and nearly insensitive to the pres-
ence of a background magnetic field for as long as δb/B0 > 1
holds (i.e., until the presence of a mean field starts to play a
role in the cascade, at smaller scales). In the hydrodynamic-
like range, fluctuations cascade with the nonlinear characteristic
timescale,

τ
(supA)
casc,λ ∼ τ

(supA)
nl,λ ∼

λ

δz(supA)
λ

, (A.10)

where λ is the isotropic wavelength of the fluctuations. The scal-
ing for the fluctuating Elsässer variable immediately follow from
the constancy of the energy cascade rate ε,

(δz(supA)
λ )2

τ
(supA)
nl,λ

∼ ε = const. ⇒
δz(supA)
λ

vA,0
∼ MA,0

(
λ

`0

)1/3

, (A.11)

which corresponds to a Kolmogorov-like, isotropic fluctuation
power spectrum E(supA)

δz (k) ∝ k−5/3. This cascading regime goes
on until it reaches dissipation: λ(supA)

diss ∼ (MA,0 S 0)−3/4`0. How-
ever, there is another important scale usually referred to as the
Alfvén scale `A for which δz(supA)

λ ∼ vA,0, given by

`A

`0
∼ M −3

A,0 , (A.12)

which is attained well before dissipation (i.e., `A � λ
(supA)
diss ) only

if S 0 � M 3
A,0, and below which the cascade becomes critically

balanced (χ(supA)
`A

∼ 1) and thus anisotropic. Turbulent fluctua-
tions at scales λ⊥ < `A thus follow the (GS95) scaling

δz(supA)
λ⊥<`A

vA,0
∼

(
λ⊥
`A

)1/3

∼ MA,0

(
λ⊥
`0

)1/3

, (A.13)

with a fluctuation wavelength anisotropy that now follows the
relation λ‖,λ⊥<`A/`0 ∼ M −1

A,0 (λ⊥/`0)2/3. This corresponds to

10 There are different ways to obtain the reduced parallel spectrum,
given the anisotropy in (A.8). One option is to invert the anisotropy
relation to obtain the scaling of δzk‖ ∝ k −1/2

‖
, and then use the critical-

balance condition to employ τA,k‖ ∼ (k‖ vA,0)−1 instead of τnl in the con-
dition (δzk‖ )

2/τA,k‖ ∼ ε. Another way is to use the condition that the
total energy must be obtained by integrating both one-dimensional spec-
tra independently, i.e.,

∫
dk‖ E(k‖) = Etot =

∫
dk⊥ E(k⊥), and using the

anisotropy relation to rewrite E(k⊥) and dk⊥.
11 Here we implicitly assume that the condition λ(subA)

⊥,diss � λ⊥,CB holds,
also when the dissipation scale is computed using (A.9), which is auto-
matically fulfilled as long as S 0 � M −4

A,0.

reduced perpendicular and parallel power spectra at k⊥`A & 1,
which are ∝ k −5/3

⊥ and ∝ k −2
‖

, respectively.

The dissipation scale λ
(supA)
⊥,diss in the super-Alfvénic regime

is given again by matching the scale-dependent nonlinear
timescale τ

(supA)
nl,λ⊥

and the dissipation timescale τdiss,λ⊥ for this
type of cascade:

λ
(supA)
⊥,diss

δz(supA)
λ⊥,diss

∼
(λ(supA)
⊥,diss )2

η
⇒

λ
(supA)
⊥,diss

`0
∼ (MA,0 S 0)−3/4 . (A.14)

The condition S 0 � M 3
A,0 ensures that the above scale is well

below the Alfvén scale: λ(supA)
⊥,diss � `A (cf. (A.12) and (A.14)).

A.2. Magnetohydrodynamic turbulence with scale-dependent
alignment

In this section we present an alternative model to the classic
picture of the Alfvénic cascade presented in Section A.1. In
this case, after a hydrodynamic-like or wave-like range, the cas-
cade transitions into a critically balanced state in which fluctu-
ations undergo a dynamic (i.e., scale-dependent) alignment pro-
cess (Boldyrev 2006). Such a dynamically aligned, critically
balanced cascade can further transition into a tearing-mediated
regime at MHD scales (Boldyrev & Loureiro 2017; Mallet et al.
2017) before reaching the actual dissipation scales.

Sub- and trans-Alfvénic injection (MA,0 ≤ 1) with dynamic
alignment. For isotropic and sub-Alfvénic injeciton (i.e., such
that χ0 = MA,0 < 1), fluctuations initially develop a weak cas-
cade following the same scaling as in (A.2). Dynamic alignment
enters the picture only as soon as critical balance is reached (i.e.,
at scales λ⊥ ≤ λ⊥,CB ∼ M 2

A,0 `0). The idea behind this effect is
that Elsässer fields tend to align in order to reduce the strength of
nonlinearities.12 This process produces a scale-dependent angle
between δz+

λ⊥
and δz−λ⊥ that scales as

sin θ(subA)
λ⊥<λ⊥,CB

∼ M −1/2
A,0

(
λ⊥
`0

)1/4

, (A.15)

which in turn appears explicitly in the nonlinear time scaling

τ(subA)
nl,λ⊥<λ⊥,CB

∼
λ⊥

δz(subA)
λ⊥<λ⊥,CB

sin θ(subA)
λ⊥<λ⊥,CB

∼ M 1/2
A,0

λ3/4
⊥ `1/4

0

δz(subA)
λ⊥<λ⊥,CB

, (A.16)

which decreases more slowly than the corresponding timescale
when dynamic alignment is not present (cf. (A.6)). As a result,
in the presence of a scale-dependent alignment, turbulent fluctu-
ations at λ⊥ < λ⊥,CB scale as

δz(subA)
λ⊥<λ⊥,CB

vA,0
∼ M 3/2

A,0

(
λ⊥
`0

)1/4

(A.17)

12 Another effect of dynamic alignment is that fluctuations exhibit
three-dimensional anisotropy. If we call λ the length-scale of these 3D
anisotropic turbulent eddies in the direction perpendicular to both mean-
field 〈B〉λ and magnetic-field δB⊥,λ fluctuations at this scale (δB⊥,λ
being perpendicular to 〈B〉λ), then `λ and ξλ denote the length-scales
along 〈B〉λ and δB⊥,λ, respectively (Boldyrev 2006). In the following,
k⊥ ∼ λ−1

⊥ refers to the shortest length-scale λ, and we neglect the dis-
tinction between the two transverse directions kλ ∼ λ−1 and kξ ∼ ξ −1; an
angular average of fluctuation properties in a wave-vector plane trans-
verse to 〈B〉λ would be dominated by the scaling with kλ.
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while the critical-balance condition τA,λ⊥ ∼ τnl,λ⊥<λ⊥,CB sets
the scale-dependent anisotropy of dinamically aligned turbulent
fluctuations:

λ‖,λ⊥<λ⊥,CB

`0
∼ M −1

A,0

(
λ⊥
`0

)1/2

. (A.18)

Equation (A.18) implies that below λ⊥,CB a dynamically aligned,
critically balanced cascade exhibits a stronger anisotropy than
the corresponding cascade without a scale-dependent align-
ment.13 Using (A.17) we obtain the reduced perpendicular spec-
trum E(subA)

δz (k⊥ > k⊥,CB) ∝ k −3/2
⊥ , which is slightly shallower

that the −5/3 obtained without dynamic alignment; on the other
hand, the parallel spectrum is still E(subA)

δz (k‖) ∝ k −2
‖

.
At this point, if the Lundquist number is not large enough (i.e.,
such that S 0 . M −4

A,0; see below), this dynamically aligned, criti-
cally balanced cascade reaches the dissipation scale λ(subA)

⊥,diss when
τnl,λ⊥ ∼ τdiss,λ⊥ . Using (A.16), this means

λ(subA)
⊥,diss

`0
∼ (MA,0 S 0)−2/3 . (A.19)

However, in most cases of interest, the Lundquist number S 0 is
large enough that this critically balanced cascade of dynamically
aligning fluctuations transitions to a tearing-mediated cascade.
Such a transition occurs at a perpendicular scale λ⊥,∗ for which
the timescale associated with the (linear) growth rate of the tear-
ing instability, γt

λ⊥
∼ S −1/2

0 (λ⊥/`0)−3/2(δzλ⊥/vA,0)1/2(vA,0/`0),
becomes comparable to the eddy turnover time at that scale
τ(subA)

nl,λ⊥
∼ λ⊥/δz

(subA)
λ⊥

: γt
λ⊥,∗
τ(subA)

nl,λ⊥,∗
∼ 1, yielding

λ(subA)
⊥,∗

`0
∼ M −2/7

A,0 S −4/7
0 . (A.20)

Comparing (A.20) and (A.19), we find that a tearing-mediated
range emerges only if S 0 � M −4

A,0, so that λ(subA)
⊥,∗ � λ(subA)

⊥,diss .
In this regime, the generation of turbulent fluctuations at scales
λ⊥ . λ⊥,∗ is due to the disruption of the (dynamically aligning14)
turbulent eddies by magnetic reconnection; hence, the scale λ⊥,∗
is usually referred to as the disruption scale. Thus, the tearing
instability timescale τt

λ⊥
∼ 1/γt

λ⊥
is the cascade time in this range

of scales,15 and assuming a constant energy flux through scales,
(δz(subA)

λ⊥<λ⊥,∗
)2/τt

λ⊥
∼ ε = const., provides us with the fluctuation

scaling in the tearing-mediated regime

δz(subA)
λ⊥<λ⊥,∗

vA,0
∼ S 1/5

0 M 8/5
A,0

(
λ⊥
`0

)3/5

, (A.21)

corresponding to a reduced spectrum E(subA)
δz (k⊥ > k⊥,∗) ∝ k −11/5

⊥ .
Due to the nonlinear stage of the tearing instability, turbulent

13 This scaling involves the parallel length-scale `λ and the shortest
perpendicular length-scale λ. However, fluctuations are 3D anisotropic.
Since ξλ ∝ λ 3/4 (Boldyrev 2006), the anisotropy scales as `ξ ∝ ξ 2/3,
when considering the longest perpendicular length-scale ξ.
14 A tearing-mediated regime fundamentally relies on the fact that tur-
bulent fluctuations develop anisotropy in the plane perpendicular to a
mean field (i.e., λ � ξλ). Hence, tearing-mediated turbulence only
exists if fluctuations align in a scale-dependent fashion.
15 One can verify a posteriori that in this regime fluctuation scaling
indeed preserves the condition τnl,λ⊥ ∼ 1/γt

λ⊥
at all scales below λ⊥,∗.

fluctuations in the reconnection-mediated range tend to misalign
in a scale-dependent fashion, following the scaling16

sin θ(subA)
λ⊥<λ⊥,∗

∼ S −3/5
0 M −4/5

A,0

(
λ⊥
`0

)−4/5

, (A.22)

while the fluctuation anisotropy in this range is obtained from
the CB-like condition γt

λ⊥
τA,λ⊥ ∼ 1:

λ‖,λ⊥<λ⊥,∗
`0

∼ S 2/5
0 M −4/5

A,0

(
λ⊥
`0

)6/5

. (A.23)

The tearing-mediated cascade eventually dissipates at a scale
where the characteristic dissipation time becomes comparable
with the tearing timescale,

γt
λ⊥
τdiss,λ⊥ ∼ 1 ⇒

λ(subA)
⊥,diss

`0
∼ M−1

A,0 S −3/4
0 , (A.24)

which, interestingly enough, is exactly the same dissipation scale
(A.9) that was found for the GS95 cascade.

Super-Alfvénic injection (MA,0 > 1) with dynamic alignment.
In this regime the cascade develops in a hydrodynamic-like fash-
ion until the Alfvén scale `A ∼ M −3

A,0 `0 (i.e., without being
affected by dynamic alignment). Thus, fluctuations follow the
scaling in (A.11) down to `A, and only below this scale does
the cascade become critically balanced and dynamic alignment
plays a role. At λ⊥ < `A, the fluctuation alignment angle scales
as

sin θ(supA)
λ⊥< `A

∼ M 3/4
A,0

(
λ⊥
`0

)1/4

, (A.25)

and the nonlinear time at such scales is thus given by

τ
(supA)
nl,λ⊥< `A

∼
λ⊥

δz(supA)
λ⊥< `A

sin θ(supA)
λ⊥< `A

∼ M −3/4
A,0

λ3/4
⊥ `1/4

0

δz(supA)
λ⊥< `A

. (A.26)

As a result, in the presence of a scale-dependent alignment, tur-
bulent fluctuations at λ⊥ < `A scale as

(δz(supA)
λ⊥< `A

)2

τ
(supA)
nl,λ⊥< `A

∼ ε = const. ⇒
δz(supA)
λ⊥< `A

vA,0
∼ M 3/4

A,0

(
λ⊥
`0

)1/4

, (A.27)

corresponding to a ∝ k −3/2
⊥ spectrum for k⊥`A > 1. Fluctuation

scale-dependent anisotropy is obtained via the critical-balance
condition τA,λ⊥< `A ∼ τnl,λ⊥< `A :

λ‖,λ⊥< `A

`0
∼ M −3/2

A,0

(
λ⊥
`0

)1/2

. (A.28)

The above cascade of critically balanced, dynamically aligned
fluctuations can either reach actual dissipation at a scale
λ

(supA)
⊥,diss /`0 ∼ M −1

A,0 S −2/3
0 or, if S 0 � M 3

A,0 holds, will instead
transition to the tearing-mediated regime at a (disruption) scale17

λ
(supA)
⊥,∗

`0
∼ M −9/7

A,0 S −4/7
0 . (A.29)

16 This is obtained as the ratio of the resistive inner scale δ to the longi-
tudinal scale ζ of the current layer (Boldyrev & Loureiro 2017).
17 We recall that the transition scale in (A.29) is obtained using the
condition γt

λ⊥,∗
τ

(supA)
nl,λ⊥,∗

∼ 1, where the growth rate of the tearing instability

is given by γt
λ⊥
∼ S −1/2

0 (λ⊥/`0)−3/2(δzλ⊥/vA,0)1/2(vA,0/`0).
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At scales λ⊥ < λ
(supA)
⊥,∗ , fluctuations then follow the scaling

δz(supA)
λ⊥<λ⊥,∗

vA,0
∼ S 1/5

0 M 6/5
A,0

(
λ⊥
`0

)3/5

, (A.30)

corresponding to a ∝ k −11/5
⊥ spectrum at k⊥λ

(supA)
⊥,∗ > 1. In this

range, fluctuations develop a scale-dependent (mis-)alignment
angle

sin θ(supA)
λ⊥<λ⊥,∗

∼ S −3/5
0 M −3/5

A,0

(
λ⊥
`0

)−4/5

, (A.31)

and an aniosotropy given by

`‖,λ⊥<λ⊥,∗
`0

∼ S 2/5
0 M −3/5

A,0

(
λ⊥
`0

)6/5

. (A.32)

Finally, this tearing-mediated regime reaches dissipation at

λ
(supA)
⊥,diss

`0
∼

η3/4

ε1/4`0
∼ (MA,0 S 0)−3/4 . (A.33)

A.3. Summary of the scaling relations for incompressible
magnetohydrodynamic turbulence

In this section, we gather the scaling of turbulent fluctua-
tions and of their anisotropy that are derived in Sections A.1
and A.2.

A.3.1. Scaling without dynamic alignment

If we put all the relations of Section A.1 back together, then the
scaling for the normalized fluctuation amplitudes δẑ = δz/vA,0 at
MHD scales are as shown below. We recall that λ̂⊥ = λ⊥/`0 is
the normalized perpendicular wavelength.

MA,0 ≤ 1 regime (no dynamic alignment, S0 �M−4
A,0):

δẑ(subA)
λ̂⊥

∼


MA,0 λ̂

1/2
⊥ λ̂⊥,CB < λ̂⊥ ≤ 1 [W0]

M 4/3
A,0 λ̂

1/3
⊥ λ̂(subA)

⊥,diss < λ̂⊥ ≤ λ̂⊥,CB [GS95]
,

(A.34)

where λ̂⊥,CB ∼ M 2
A,0 and λ̂(subA)

⊥,diss ∼ M −1
A,0 S −3/4

0 , while the fluctua-
tion anisotropy is given by

λ̂(subA)
‖,λ̂⊥

∼


const. λ̂⊥,CB < λ̂⊥ ≤ 1 [W0]

M −4/3
A,0 λ̂ 2/3

⊥ λ̂(subA)
⊥,diss < λ̂⊥ ≤ λ̂⊥,CB [GS95]

,

(A.35)

where λ̂‖,λ̂⊥ = λ‖,λ̂⊥/`0 is the normalized parallel wavelength of
turbulent fluctuations.

MA,0 > 1 regime (no dynamic alignment, S0 �M 3
A,0) :

δẑ(supA)
λ̂⊥

∼


MA,0 λ̂

1/3 ˆ̀A < λ̂ ≤ 1 [K41]

MA,0 λ̂
1/3
⊥ λ̂

(supA)
⊥,diss < λ̂⊥ ≤

ˆ̀A [GS95]
,

(A.36)

where ˆ̀A ∼ M −3
A,0 and λ̂(supA)

⊥,diss ∼ (MA,0 S 0)−3/4, while the fluctua-
tions exhibit an anisotropy

λ̂
(supA)
‖,λ̂⊥

∼


λ̂⊥ ∼ λ̂ ˆ̀A < λ̂ ≤ 1 [K41]

M −1
A,0 λ̂

2/3
⊥ λ̂

(supA)
⊥,diss < λ̂⊥ ≤

ˆ̀A [GS95]
(A.37)

with λ̂‖,λ̂⊥ = λ‖,λ̂⊥/`0.
See Figures A.1 and A.2 for the resulting spectra and fluctuation
anisotropy versus the perpendicular wavenumber k⊥.

A.3.2. Scaling with dynamic alignment

We summarize here all the scaling of Section A.2 for the
(normalized) fluctuation amplitudes δẑ = δz/vA,0 with respect to
the (normalized) perpendicular wavelength λ̂⊥ = λ⊥/`0.

MA,0 ≤ 1 regime (with dynamic alignment, S0 �M−4
A,0) :

δẑ(subA)
λ̂⊥

∼


MA,0 λ̂

1/2
⊥ λ̂⊥,CB < λ̂⊥ ≤ 1 [W0]

M 3/2
A,0 λ̂

1/4
⊥ λ̂(subA)

⊥,∗ < λ̂⊥ ≤ λ̂⊥,CB [B06] ,

S 1/5
0 M 8/5

A,0 λ̂
3/5
⊥ λ̂(subA)

⊥,diss < λ̂⊥ ≤ λ̂
(subA)
⊥,∗ [TMT]

(A.38)

with λ̂⊥,CB ∼ M 2
A,0, λ̂(subA)

⊥,∗ ∼ M −2/7
A,0 S −4/7

0 and λ̂(subA)
⊥,diss ∼

M −1
A,0 S −3/4

0 , while the fluctuation anisotropy is given by

λ̂(subA)
‖,λ̂⊥

∼



const. λ̂⊥,CB < λ̂⊥ ≤ 1 [W0]

M −1
A,0 λ̂

1/2
⊥ λ̂(subA)

⊥,∗ < λ̂⊥ ≤ λ̂⊥,CB [B06] ,

S 2/5
0 M −4/5

A,0 λ̂ 6/5
⊥ λ̂(subA)

⊥,diss < λ̂⊥ ≤ λ̂
(subA)
⊥,∗ [TMT]

(A.39)

where λ̂‖,λ̂⊥ = λ‖,λ̂⊥/`0 is the normalized parallel wavelength of
turbulent fluctuations.

MA,0 > 1 regime (with dynamic alignment, S0 �M 3
A,0) :

δẑ(supA)
λ̂⊥

∼



MA,0 λ̂
1/3 ˆ̀A < λ̂ ≤ 1 [K41]

M 3/4
A,0 λ̂

1/4
⊥ λ̂

(supA)
⊥,∗ < λ̂⊥ ≤ ˆ̀A [B06] ,

S 1/5
0 M 6/5

A,0 λ̂
3/5
⊥ λ̂

(supA)
⊥,diss < λ̂⊥ ≤ λ̂

(supA)
⊥,∗ [TMT]

(A.40)

where ˆ̀A ∼ M −3
A,0, λ̂(supA)

⊥,∗ ∼ M −9/7
A,0 S −4/7

0 and λ̂
(supA)
⊥,diss ∼

(MA,0 S 0)−3/4, while the fluctuation anisotropy is given by

λ̂
(supA)
‖,λ̂⊥

∼



λ̂⊥ ∼ λ̂ ˆ̀A < λ̂ ≤ 1 [K41]

M −3/2
A,0 λ̂ 1/2

⊥ λ̂
(supA)
⊥,∗ < λ̂⊥ ≤ ˆ̀A [B06] ,

S 2/5
0 M −3/5

A,0 λ̂ 6/5
⊥ λ̂

(supA)
⊥,diss < λ̂⊥ ≤ λ̂

(supA)
⊥,∗ [TMT]

(A.41)

with λ̂‖,λ̂⊥ = λ‖,λ̂⊥/`0.
See Figures A.1 and A.2 for the resulting spectra and fluctuation
anisotropy versus perpendicular wavenumber k⊥.
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Fig. A.1. Normalized reduced spectrum, Eδz(k⊥)/`0v
2
A,0, vs. fluctuation perpendicular wave-vector, k⊥`0, in a plasma with Lunquist number S 0 =

1014 and sub-Alfvénic (MA,0 = 0.1, left) or super-Aflvénic (MA,0 = 10, right) injection regimes. The different colors represent different cascading
regimes (see legend), and general expressions for transition scales and fluctuation power level are reported on the right and upper axis. The solid
lines show ideal scaling from (A.34), (A.36), (A.38), and (A.40) for the nominal range `−1

0 . k⊥ . λ−1
⊥,diss, while the dashed lines represent their

extension in the dissipation range with a damping factor ∼ exp(−k2
⊥λ

2
⊥,diss).
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Fig. A.2. Wave-vector anisotropy of fluctuations, k‖/k⊥, vs. normalized fluctuation perpendicular wave-vector, k⊥`0, for the cascades shown in
Figure A.1 in the nominal range `−1

0 . k⊥ . λ−1
⊥,diss (cf. equations (A.35), (A.37), (A.39), and (A.41)).
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