
HAL Id: hal-04653556
https://hal.science/hal-04653556v1

Submitted on 12 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A parallel boundary element method code to simulate
multicracked structures

Anicet Dansou, Saïda Mouhoubi, Cyrille Chazallon, Marc Bonnet

To cite this version:
Anicet Dansou, Saïda Mouhoubi, Cyrille Chazallon, Marc Bonnet. A parallel boundary element
method code to simulate multicracked structures. CSMA 2019 - 14e colloque national en calcul des
structures, May 2019, Giens, Var, France. �hal-04653556�

https://hal.science/hal-04653556v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

CSMA 2019
14ème Colloque National en Calcul des Structures

13-17 Mai 2019, Presqu’île de Giens (Var)

A parallel boundary element method
code to simulate multicracked structures

A. Dansou1, S. Mouhoubi1, C. Chazallon1, M. Bonnet2

1 ICUBE, UMR 7357, INSA de Strasbourg, 24 boulevard de la Victoire, 67084 Strasbourg Cedex,
{anicet.dansou, saida.mouhoubi, cyrille.chazallon}@insa-strasbourg.fr

2 Equipe POEMS – ENSTA ParisTech, 1024 boulevard des Maréchaux, 91762 Palaiseau Cedex
m.bonnet@ensta.fr

Abstract — This paper presents the parallel version of a boundary element method code to simulate
crack problems. The code is based on the symmetric Galerkin boundary element method and takes also
advantage of the fast multipole method. The time-consuming phases of the code are accelerated by a
shared memory parallelization using OpenMP. The performance of the new code is shown through many
simulations including crack problems involving thousands of cracks.
Keywords — OpenMP, Galerkin BEM, FMM, Crack problems.

1 Introduction

Crack problems are of great interest in civil engineering. This research area is very vast and has remained
active since many centuries ago. This work presents a fast numerical method for the simulation of 3D
crack problems. This code is based on two sophisticated methods of integral equations (see [3]): the
Boundary Element Method (BEM) and the Fast Multipole Method (FMM).

Although the Finite Element Method (FEM) is the best-known method in fracture mechanics, BEM
has significant advantages, for example, the reduction of one dimension of the problem. So, for a 3D
problem, only the boundary surface is discretized rather than the volume. Moreover, meshes can easily
be generated and design changes do not require a complete remeshing; this is very suitable for crack
problems. Apart from non-linear problems, one of the main drawbacks of BEM is that the solution matrix
resulting from the formulation is unsymmetric and fully populated, whereas, the finite elements solution
matrices are usually much larger but sparse. An interesting approach of BEM is the Symmetric Galerkin
BEM (SGBEM). SGBEM is based on a variational (weak) version of the integral equations. It thus
entails double integrations, and leads to matrix operators which exhibit symmetry and sign-definiteness.
SGBEM is used in many works, see for example works of Gray and Paulino [8], Frangi et al. [7], or
Pham [11]. The performance of boundary analysis is further improved with the Fast Multipole Method
(FMM). The usual bottlenecks of the boundary approaches caused by the fully-populated matrix can be
easily tackled as the FMM decomposes all the integrals into near-field and far-field interactions. The
range of boundary analysis can then be extended to large-scale practical issues with a good performance,
see for example the works of Yoshida [20], Chaillat [5], Pham et al. [12] or Trinh [17].

Over recent decades, computers have evolved a lot. Parallel architecture machines have become
standard. Parallel computing techniques can significantly increase the performance of existing serial
codes. Many researchers used parallelization to accelerate the BEM, see for example [9, 1, 10, 13]. A
multiprocessing parallelization is achieved in this work by using OpenMP [6]. OpenMP is an Application
Program Interface (API) for parallel computing on shared memory architecture. It simplifies writing
multi-threaded applications by using compiler directives and library routines.

This paper is organised in the following way. Section 2 introduces the initial Fast Multipole Sym-
metric Galerkin BEM (FM-SGBEM) code presented by Trinh [19]. Section 3 presents the parallel im-
plementation. Numerical examples and performances of the optimized code are presented in Section
4.

1

2 Initial code

The initial FM-SGBEM code and it performance are well detailed in [19]. This Fortran code inherits a
number of innovative algorithms from the BE community such as: (i) the singular integration schemes by
Andrä and Schnack [2, 7], (ii) the index of severity [14], (iii) the nested Flexible GMRES which makes
use of the near-interaction matrix [5] and (iv) the extension of the BIEs to multizone configurations [8].
Subroutines of matrix-vector operations are taken from BLAS library. Flexible GMRES and GMRES
scripts are downloaded from www.cerfacs.fr.

Figure 1: Initial FM-SGBEM code for crack propagation

Figure 1 resumes the main phases of the code. In a nutshell, the aim is to solve a linear system
(K.X = b) with an iterative solver: the Flexible GMRES. The matrix K can be separated in two parts:
the matrix of near boundary elements Knear and the matrix of far boundary elements K f ar, the linear
system to solve is then presented in equation 1. Due to the FMM, K f ar is not stored, the matrix-vector
product K f ar ∗X is computed directly. When the convergence is achieved, the crack propagates, and the
elastostatic code is repeated.

(Knear +K f ar) .X = b (1)

2

3 Parallel implementation

Before the optimizations, let us first present the models used in this paper for performance comparison.
The models are about a crack array embedded in a clamped cube of edge 3000 mm, subjected to uniform
tensile load p = 1MPa at the top face. The crack array contains n3

c randomly-oriented penny-shaped
cracks (rc = 25mm) on a cubic grid of step dc. The center of the crack array is located at the center of the
cube. The distance dc is sufficiently large to avoid influences between cracks. Each crack of the crack
array (see Fig. 4, the distance dc is reduced for this figure) is meshed with 48 QUA8 elements with 161
nodes, see Fig. 2. For some simulations, the cracks are meshed with 768 QUA8 elements with 2 369
nodes, see Fig. 3. The cube and the position of the cracks are presented in Fig.5 and 6. The number after
C is the number of cracks.

Figure 2: Circular crack mesh 48 elements

Figure 3: Circular crack mesh 768 elements
Figure 4: Crack array 2x2x2

Figure 5: Model C8 Figure 6: Model C2744

The goal here is to speed up the existing code by avoiding big changes. A simple observation of
Trinh’s [18] results (see table 1) shows that the solving phase is time-consumming. To reduce this
duration, it is necessary to reduce the number of iterations or the duration of one iteration. This work
focuses on the duration of one iteration. Almost all the time of one iteration (more than 90%) is spent
in the routine Sub_KX. So the time-consumming parts of the routine Sub_KX are parallelized by using
OpenMP directives. The speedup and the efficiency of the parallelization are shown in table 2 for the
model C216 and for one iteration. Simulations are done on a 20-core Intel Xeon E5-2630v4 processor
running at 2.2 GHz.

After the acceleration of the solving phase, the preparation phase is also accelerated by the paral-
lelization of the time-consuming part of subroutine Sub_b_knear. The speedup and the efficiency of
the parallelization are similar to those of the solving phase (table 2). Table 3 shows the global speedup
and efficiency due to the parallel implementation for the model C216. Although the code is not entirely
parallelized, the parallelization results are very good.

In large scale simulations, the memory usage requires special attention, especially in a context of
parallel computing. In the initial code, the Compressed Sparse Row (CSR) format [4, 15] is used to
store the matrices after computation, but dense format (DNS) is used before and during the computation
(see subroutine Sub_b_knear). Using DNS for construction causes large allocated but not used memory.

3

Table 1: Bi-material cube with crack array: Trinh’s results [18]

Ndo f s Tpre (s) Niter Tsol (s) Ttot (s) Tsol/Ttot (%)
1 401 412 5 457 79 44 319 50 986 87
2 683 148 12 197 66 79 464 95 584 83
3 1 061 928 11 903 102 190 944 206 114 93

Table 2: Parallelization: Efficiency (Sub_KX)

Nth TSub_KX (s) Speedup Efficiency(%)
1 221 – –
2 113 2.0 98
4 64 3.5 86
8 34 6.6 82
12 24 9.4 78
16 18 12.0 75
20 17 13.3 67

Table 3: Parallelization: Global Efficiency

Nth Ttot (s) Speedup Efficiency(%)
1 3 771 – –
2 2 217 1.7 85
4 1 241 3.0 76
8 760 5.0 62
12 603 6.3 52
16 534 7.0 44
20 528 7.1 36

Since the construction is in parallel, dense format causes pic of allocated memory. To avoid this, an upper
bounded incremental coordinate format (UBI-COO) is designed for the construction of the matrices.
Based on Sparsekit subroutines written by Youcef Saad [16], necessary subroutines for the manipulation
of the matrices in COO or CSR format are written.

This upper bounded incremental coordinate format erases memory peaks. Fig.7 presents the virtual
memory needed using DNS and UBI-COO during the matrices computation for the model C8. There is
no memory variation during the solution phase, so only one iteration is performed in order to focus on
the preparation phase (matrices computation). It can be noticed that the maximum memory needed is
greatly reduced. It can also be noticed that the duration of the construction phase is reduced (for cycle 2
and 3) because less data are manipulated.

Figure 7: UBI-COO results: 3 cycles with model C8

4

4 Numerical examples

This section presents the results of all the optimizations presented in this paper. The calculation times
are measured on an Intel Xeon (20 cores, 2.2 GHz) computer with 128 Go of RAM. Ttot is the total time
including pre-processing (input reading, octree construction, etc.) and post-processing (results writing
in files). This duration is compared to Trinh’s code [18] duration noted T old

tot . The old code is not run for
some simulations because it would take too much time. The estimated values are in italics. Table 4 shows
computational data for static analyses. Table 5 shows computational data for propagation analyses. For
the cube with 8 cracks (model C8), the evolution of the total time according to the cycle number is
presented in Fig.8. The final form of the extended cracks is shown in Fig. 9 and 10.

Table 4: Static tests

Model Ndo f s (s) Ttot (s) T old
tot (s) Speedup

1 C8 19 302 169 1 469 8.7
2 C64 40 974 611 6 417 10.5
3 C1000 403 206 4 478 72 107 16.1
4 C1728 684 942 8 721 119 249 13.7
5 C1000 1 075 206 15 446 256 000 16.6
6 C8000 3 112 206 52 500 783 000 14.9

Table 5: Propagation tests: Cube with crack array

Model Ninit
do f s Nend

do f s Ttot (s) T old
tot (s) Speedup

1 C8 19 302 29 670 889 31 396 35.3
2 C64 40 974 123 918 8 217 432 000 52.6
3 C512 214 350 656 718 48 556 2 500 000 51.5
4 C2744 1 078 134 1 868 406 399 600 8 000 000 20.1

5 Conclusion

This paper has shown that the boundary element method can deal efficiently with crack problems. Parallel
implementation for shared memory systems with OpenMP is achieved. The speedup is in the range of
15 for static tests and can exceed 50 for propagation tests. Crack problems involving thousands of cracks
are simulated.

Acknowledgements

This work is supported in part by the French National Research Agency (SolDuGri project ANR-14-
CE22-0019) and in part by the region "Grand-Est, France".

5

Figure 8: Evolutions of total time

Figure 9: Crack propagation in cube

Figure 10: Crack propagation: Zoom on a crack

References

[1] R. Adelman, N. Gumerov, R. Duraiswami, FMM/GPU-Accelerated Boundary Element Method for Computa-
tional Magnetics and Electrostatics, IEEE Transactions on Magnetics, 53, 1-11, 2017.

[2] H. Andrä, E. Schnack, Integration of singular Galerkin-type boundary element integrals for 3D elasticity
problems, Numerische Mathematik, 76(2), 143-165, 1997.

[3] M. Bonnet, Boundary Integral Equation Methods for Solids and Fluids, Wiley, 1999.

[4] A. Brameller, R. N. Allan, Y. M. Hamam. Sparsity: Its practical application to systems analysis, London:
Pitman, 1976.

6

[5] S. Chaillat, Méthode multipôle rapide pour les équations intégrales de frontière en élastodynamique 3-D.
Application à la propagation d’ondes sismiques, PhD Thesis, Ecole des ponts ParisTech, Champs-sur-Marne,
France, 2008.

[6] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon, Parallel programming in OpenMP,
Academic Press, New York, 2001.

[7] A. Frangi, G. Novati, R. Springhetti, M. Rovizzi, 3D fracture analysis by the symmetric Galerkin BEM, Com-
putational Mechanics, 28, 220-232, 2002.

[8] L. J. Gray, H. Paulino , Symmetric Galerkin boundary integral formulation for interface and multi-zone prob-
lems, International Journal for Numerical Methods in Engineering, 40, 3085-3101, 1997.

[9] L. Greengard, W. D. Gropp, A parallel version of the fast multipole method, Computers & Mathematics with
Applications, 20(7), 63-71, 1990.

[10] J. Gu, A. M. Zsaki, Accelerated parallel computation of field quantities for the boundary element method
applied to stress analysis using multi-core CPUs, GPUs and FPGAs, Cogent Engineering, 5(1), 1-21, 2018.

[11] D. Pham, Méthode mulitpôle rapide pour les équations intégrals variationnelles symétriques en élasticité
3D. 19ème Congrès français de Mécanique, Marseille, 2009.

[12] D. Pham, S. Mouhoubi, M. Bonnet, C. Chazallon, Fast multipole method applied to Symmetric Galerkin
boundary element method for 3D elasticity and fracture problems, Engineering Analysis with Boundary Ele-
ments, 36, 1838–1847, 2012.

[13] J. Ptaszny, Parallel fast multipole boundary element method applied to computational homogenization, AIP
Conference Proceedings, 1922(1), 140003, 2018.

[14] M. Rezayat, D. J. Shippy, F. J. Rizzo, On time-harmonic elastic-wave analysis by the boundary element
method for moderate to high frequencies, Computer Methods in Applied Mechanics and Engineering, 55,
349-367, 1986.

[15] D. J. Rose, R .A. Willoughby, Sparse Matrices and Their Applications, Plenum Press, New York, 1972.

[16] Y. Saad, SPARSKIT, a basic tool kit for sparse matrix computations (Technical Report No. 1029), Center for
Supercomputing Research and Development, University of Illinois at Urbana-Chanpaign, 1990.

[17] Q. T. Trinh, Les éléments de frontière accélérés par la Méthode Multipôle Rapide (FMM) pour modéliser
des domaines 3D multizone fissurés, 21ème Congrès Français de Mécanique, Bordeaux, 2013.

[18] Q. T. Trinh, Modelling multizone and multicrack in three-dimensional elastostatic media: a Fast multipole
Galerkin Boundary Element Method, PhD Thesis, Université de Strasbourg, 2014.

[19] Q. T. Trinh, S. Mouhoubi, C. Chazallon, M. Bonnet, Solving multizone and multicrack elastostatic problems:
A fast multipole symmetric Galerkin boundary element method approach, Engineering Analysis with Boundary
Elements, 50, 486-495, 2015.

[20] K. Yoshida, Applications of Fast Multipole Method to Boundary Integral Equation Method, PhD Thesis,
Kyoto Univ., Japan, 2001.

7

