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A B S T R A C T

We introduce a multi-allele Wright–Fisher model with mutation and selection such that allele frequencies
at a single locus are traced by the path of a hybrid jump–diffusion process. The state space of the process
is given by the vertices and edges of a topological graph, i.e. edges are unit intervals. Vertices represent
monomorphic population states and positions on the edges mark the biallelic proportions of ancestral and
derived alleles during polymorphic segments. In this setting, mutations can only occur at monomorphic loci.
We derive the stationary distribution in mutation–selection–drift equilibrium and obtain the expected allele
frequency spectrum under large population size scaling. For the extended model with multiple independent
loci we derive rigorous upper bounds for a wide class of associated measures of genetic variation. Within this
framework we present mathematically precise arguments to conclude that the presence of directional selection
reduces the magnitude of genetic variation, as constrained by the bounds for neutral evolution.
1. Introduction

The degree of genetic variation within and among populations is
determined by the interaction of a number of evolutionary processes,
such as mutation, genetic drift, and natural selection. As a consequence,
patterns of genetic variation contain information about the processes
that have shaped them and are widely used in population genomic
studies to infer the evolutionary history of the studied population(s)
or species. At present, single nucleotide variants (SNVs) are most
frequently applied to study patterns of genetic variation (Haasl and
Payseur, 2015; Bourgeois and Warren, 2021). On the one hand, SNVs
are easier accessible with conventional sequencing technologies than,
for example, larger structural variants (Hu et al., 2021). On the other
hand, the predominantly biallelic state of SNVs allows for mathematical
models that can be efficiently implemented in population genetic in-
ference. Several summary statistics of SNVs, as for example nucleotide
diversity, have been derived to describe the degree of genetic variation
in a population. Alternatively, haplotype structure, which considers
associations among SNVs (Zhao et al., 2003; Garg et al., 2022), can be
examined. Practically, this requires phasing of variants and a different
mathematical description than the per-site focus of SNVs.

The essentially biallelic state of SNVs is a consequence of an over-
all small mutational input, which is consistent with observations in

∗ Correspondence to: Department of Mathematics, Box 480, SE 751 06 Uppsala, Sweden.
E-mail address: ikaj@math.uu.se (I. Kaj).

empirical data where multi-allelic single nucleotide variation is typ-
ically rare (Cao et al., 2015; Phillips et al., 2015). This means, the
mutational input at single nucleotide sites is generally small enough
to prevent additional allelic types at a locus which is already poly-
morphic. Hence, in the context of single nucleotide variation, muta-
tion, the fundamental source of genetic variation, is modeled as a
so-called ‘‘boundary mutation model’’, where mutations can only occur
at monomorphic loci (Kimura, 1969; Sawyer and Hartl, 1992; McVean
and Charlesworth, 1999). Traditionally, this mutation mechanism is
also called ‘‘non-recurrent’’ (Wright, 1931) in contrast to recurrent
mutation, which is ongoing during polymorphic periods and which
is not restricted to biallelic states. Boundary mutation initializes the
segregation of an allele in the population but otherwise does not
influence the population frequency of the allele. Genetic drift and
natural selection, on the other hand, control the time span over which
mutations segregate in a population until eventually reaching fixation
or extinction. While genetic drift ultimately acts to eliminate genetic
variation, different selection mechanisms can either prolong or shorten
the time to fixation or extinction. Directional selection, where one of
the alleles in a given pair of allelic types has a selective advantage
over the other, is commonly viewed as a force to reduce the level of
genetic variation. However, as pointed out in Novak and Barton (2017),
‘‘rigorous arguments for this idea are scarce’’.
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Population genetics modeling for the purpose of analyzing genetic
variation under the combined influence of different evolutionary pro-
cesses typically builds on some version of Wright–Fisher models (Fisher,
1930; Wright, 1931, 1938) or Moran type models (Moran, 1958).
As pioneered by Kimura (1964), diffusion approximation techniques
under scaling of evolutionary time and large population size are in-
strumental and helped advance the understanding of the distribution
of inherited allele frequencies, both dynamically and under steady-
state (see e.g. Durrett, 2008; Etheridge, 2011). In this work we apply
diffusion approximation methods to study a multi-allele and multi-
locus model with non-recurrent, reversible mutation and directional
selection in an isolated population assuming independence among loci.
Mutation is reversible since we work with a fixed, finite number of
allelic types and all mutation events involving a given pair of alleles
may take place in both directions. Within this framework our objective
is essentially to show that the presence of directional selection reduces
the magnitude of genetic variation, as constrained by the bounds
for neutral evolution. To this end, we derive stationary distributions
over monomorphic and polymorphic states in mutation–selection–drift
equilibrium. Closed form expressions for the expected allele frequency
spectrum are obtained asymptotically under large population size scal-
ing to interpret the behavior of the process and to extract biologically
relevant conclusions. Theorem 2 provides rigorous upper bounds for
a wide class of associated measures of genetic variation under the
influence of directional selection, implying that directional selection
constrains the number of polymorphisms in a population. Moreover,
under the assumption that mutation rates are equal among types,
Corollary 2 shows that genetic variation is constrained by the upper
bounds for neutral evolution. In addition we discuss how the interaction
of mutation bias and fixation bias impacts the results.

To put our approach in context, the extension from studying the
evolutionary dynamics of genetic loci with two types to general multi-
allele Wright–Fisher models with a fixed number 𝐾 ≥ 2 possible allelic
states for each genetic locus, can be traced back to Wright (1949). For
the case of recurrent mutation mechanisms such 𝐾-allele models have
been developed in much detail. The state space for single locus frequen-
cies is now (a subset of) the 𝐾-simplex, which presents considerable
challenges in extracting useful probabilistic information. For a brief
history of 𝐾-allele Wright–Fisher models with recurrent mutation, we
refer to Ferguson and Buzbas (2018), and for some of the mathematical
results to Etheridge (2011, Ch. 4 and 5). A recent approximation
approach to multi-allele models with recurrent mutation (Burden and
Tang, 2016; Ferguson and Buzbas, 2018) starts from the presumption
that mutation events are rare on the time scale of evolution relevant
for the diffusion approximation. Then, with sufficiently small mutation
rates, the allele frequencies will be mostly concentrated either on the
vertices of the 𝐾-simplex or on the edges connecting a pair of mutating
alleles. Only a small fraction of probability mass remains on simplex do-
mains that allow three or more alleles existing simultaneously. Hence,
in studies for which the latter case is negligible, it suffices to consider
a model with a simpler state space constituting merely the relevant
graph-shaped subset of the 𝐾-simplex. Only then known properties and
tools of one-dimensional diffusion theory, as for example the Green’s
function, can be used.

Our approach towards modeling the multi-allelic case is a jump–
diffusion process, biallelic by construction, with exactly the graph-
shaped subset of the 𝐾-simplex as state space. Some key features of the
jump–diffusion process are already implemented in Mugal et al. (2014)
and Kaj and Mugal (2016) for the simpler setting of arbitrary ancestral-
and-derived alleles. In the graph model, the vertices correspond to
the presence of a specific fixed type (or allele) in a genetic locus and
positions on the edges between two types represent continuous poly-
morphic states. Similar boundary mutation multi-allele models have
been discussed in the context of synonymous codon usage (Zeng, 2010)
or so-called polymorphism-aware phylogenetic models (De Maio et al.,
2013; Borges et al., 2019), with a focus on methodological development
14

for statistical inference from genomic data.
2. A Wright–Fisher graph model

A continuous time Markov process, with state space constructed
from a connected, directed graph  = ( , ) with vertices  and
(continuous unit length) edges  , captures the random change of allelic
types at a single locus. Such a locus can be of abstract nature (mutant
versus wild type) or specific, for instance consisting of 𝑙 nucleotides in
the genome, where 𝑙 = 1 corresponds to a single site on the genome
or 𝑙 = 3 to nucleotide triplets, such as protein-coding codons. For
larger 𝑙 the assumption of non-recurrent mutation is likely violated. Our
results therefore primarily apply to single nucleotide sites or nucleotide
triplets. The term ‘‘graph’’ is used in a topological sense, where edges
are identified with unit intervals (Hatcher, 2018). The finite vertex set
represents the available allelic types at the locus, while the family of
continuous edges allows for keeping track of the possible mutations
among types and any polymorphic state. Each edge is a directed
interval of length one, starting in a vertex 𝑢 ∈  and leading to another
vertex 𝑣 ∈  , such that the position on the edge records the relative
frequency of type 𝑣 as a mutant derived from ancestral type 𝑢. The rele-
vant graph model is a hybrid jump and diffusion process with compact
state space, in which the open edges form a continuous interior and
the vertices are discrete boundary points. Mutation events occur only
on the boundary. Each mutation is succeeded by a polymorphic phase
of two alleles co-existing in the population, upon which the Wright–
Fisher diffusion determines the frequency and subsequent extinction
and fixation probabilities of the mutant. The graph in Fig. 1 illustrates
an example state space on which the process moves.

Formally, we consider a Markov process 𝑋 = (𝑋𝑡)𝑡≥0 encoded by
a triplet 𝑋𝑡 = (𝑈𝑡, 𝑉𝑡, 𝑌𝑡) ∈  ×  × [0, 1) with values in the compact
state space 𝐷 formed by a directed topological graph. Such a graph is
obtained from a classical (discrete) graph  = ( , ) by identifying the
vertex set with a discrete set of points and replacing edges with unit
intervals [0, 1) that are directed from 0 to 1 and glued together with
the points in the vertex set. The boundary of the state space consists of
the point set 𝜕𝐷 = {(𝑢, 𝑢, 0)∶ 𝑢 ∈ }, where the boundary state (𝑢, 𝑢, 0)
represents a monomorphic locus at which the entire population has the
same allelic type 𝑢 ∈  . A state (𝑢, 𝑣, 𝑦) within the interior of the state
space

𝐷◦ = {(𝑢, 𝑣, 𝑦)∶ 𝑢 ∈  , 𝑣 ∈  , 𝑢 ≠ 𝑣, 0 < 𝑦 < 1}

lies on the directed edge leading from vertex state (𝑢, 𝑢, 0) to vertex state
(𝑣, 𝑣, 0). It arises when a mutation from 𝑢 to 𝑣 occurred and brought
mutants of type 𝑣 to be present in the population at relative frequency
in the infinitesimal interval (𝑦, 𝑦 + 𝑑𝑦). Consequently, the interior state
(𝑣, 𝑢, 𝑦), located on the complementary edge directed in the opposite
direction from 𝑣 to 𝑢, assigns relative frequency 𝑦 to mutant type 𝑢
derived from an ancestral 𝑣. Finally, the closure 𝐷 = 𝐷◦∪𝜕𝐷 is reached
along the limits

(𝑢, 𝑣, 𝑦) →
{

(𝑢, 𝑢, 0) ∈ 𝜕𝐷, 𝑦 → 0,
(𝑣, 𝑣, 0) ∈ 𝜕𝐷, 𝑦 → 1,

(𝑢, 𝑣, 𝑦) ∈ 𝐷◦.

2.1. Reversible boundary mutation

The mutation mechanism of the process 𝑋 is specified by a fixed
entry point 𝑥 ∈ (0, 1) and a family of nonnegative mutation rate
parameters {𝜆𝑢𝑣 ∶ 𝑢, 𝑣 ∈  , 𝑣 ≠ 𝑢}. Here, 𝑥 represents the fraction of a
population that is affected by a single mutation. We thus define 𝜆𝑢𝑣∕𝑥
as the population mutation intensity from 𝑢 to 𝑣 per evolutionary time
unit, where the evolutionary time unit corresponds to ‘‘𝑥−1 genera-
tions’’. This means 𝜆𝑢𝑣 can be thought of as the population mutation
rate ‘‘per generation’’, which commonly represents the macroscopic
mutation rate.

The graph edge set consists of those edges 𝑒𝑢𝑣 between types for
which the mutation intensity is positive,  = {𝑒𝑢𝑣 ∶ 𝑢, 𝑣 ∈  , 𝜆𝑢𝑣 >
0}. We postulate that every type is essential, that all mutations are
reversible, and that the graph  is irreducible, by assuming that the

mutation rates satisfy the conditions
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Fig. 1. Panel A: The shape of a connected graph (visualized in three-dimensional space) on which the process 𝑋 moves. Between each pair of connected vertices there are two
directed edges equipped with unit frequency scales. Panel B: Zoom-in of the rectangular box in panel A with directed, unit length edges between type 𝑢 and 𝑣. A mutation on
the boundary from type 𝑢 to type 𝑣 occurs with intensity 𝜆𝑢𝑣. The initial frequency of the mutant 𝑣 is a fixed value 𝑥 ∈ (0, 1) which is also the initial value for a Wright–Fisher
diffusion with selection coefficient 𝛾𝑢𝑣 that is started by the mutation. The diffusion process either goes to fixation in type 𝑣 or to extinction in 𝑢.
(i) 𝜆𝑢 ∶=
∑

𝑣∶𝑣≠𝑢 𝜆𝑢𝑣 > 0 for each 𝑢 ∈  ,
(ii) 𝜆𝑢𝑣 > 0 ⟺ 𝜆𝑣𝑢 > 0,

(iii) for each pair of allelic types, 𝑢, 𝑣 ∈  , there is a sequence of
mutations 𝑢 → 𝑤1 → ⋯ → 𝑤𝑛 → 𝑣, such that 𝜆𝑢,𝑤1

⋅… ⋅ 𝜆𝑤𝑛 ,𝑣 > 0.

The hybrid jump and diffusion mechanism of 𝑋 is such that, starting
in a boundary point 𝑧 = (𝑢, 𝑢, 0) ∈ 𝜕𝐷, the process holds during an
exponential time with intensity 𝜆𝑢∕𝑥. It then jumps to an interior point
𝑧′ = (𝑢, 𝑣, 𝑥) ∈ 𝐷◦ governed by jump rates 𝜆𝑢𝑣, which represents mutant
type 𝑣 entering the population at (continuous) fraction 𝑥. Assuming that
a jump from (𝑢, 𝑢, 0) to (𝑢, 𝑣, 𝑥) occurs at time 𝑟, the interior trajectory
of 𝑋 is a continuous path

𝑋𝑡 = (𝑢, 𝑣, 𝑌 𝑟
𝑡 ), 𝑟 ≤ 𝑡 < 𝜏,

where 𝑌 𝑟
𝑡 , 𝑡 ≥ 𝑟, is a diffusion in 𝐷 starting from 𝑌 𝑟

𝑟 = 𝑥 such that the
path 𝜉𝑟𝑠 = 𝑌 𝑟

𝑟+𝑠, 𝑠 ≥ 0, is a Wright–Fisher process with selection, which
solves

𝑑𝜉𝑠 = 𝛾𝑢𝑣 𝜉𝑠(1 − 𝜉𝑠) 𝑑𝑠 +
√

𝜉𝑠(1 − 𝜉𝑠) 𝑑𝐵𝑠, 𝜉0 = 𝑥. (1)

We denote by 𝜏 the first exit time of the interior state space 𝐷◦, i.e.
𝑋𝜏 = (𝑢, 𝑢, 0) if 𝜉𝑠 is absorbed in 0 and 𝑋𝜏 = (𝑣, 𝑣, 0) if absorbed in
1. The former case is extinction and the latter case is fixation of the
allelic type 𝑣. For edges 𝑒𝑢𝑣 ∈  the parameter 𝛾𝑢𝑣 denotes the selection
coefficient for mutations from 𝑢 to 𝑣. Moreover, (𝐵𝑠)𝑠≥0 is a standard
Brownian motion. After absorption of the diffusion, (𝑌𝑡)𝑡≥𝜏 = 0 and
the process holds at 0 until a new mutation and a new independent
diffusion segment on [0, 1) is initialized. The process described here is a
version of the elementary return process (Feller, 1954), extended from
a single edge between two types to the multi-allele graph model. Fig. 1B
depicts the hybrid jump and diffusion setup.

2.2. Directional selection

To express genic selection in the model we let the family of selection
coefficients 𝛾𝑢𝑣 assigned to the edges 𝑒𝑢𝑣 in the graph satisfy the
anti-symmetric condition

𝛾𝑢𝑣 = −𝛾𝑣𝑢, 𝑒𝑢𝑣 ∈  . (2)

The central instance is directional selection based on a static fitness
landscape, where each allelic type is assigned a (time-independent)
15
fitness level 𝐹𝑢, 𝑢 ∈  , and each polymorphic pair of alleles (𝑢, 𝑣) has
relative selection coefficient

𝛾𝑢𝑣 = 𝐹𝑣 − 𝐹𝑢, 𝑒𝑢𝑣 ∈  . (3)

This implies that 𝛾𝑢𝑣 = −𝛾𝑣𝑢. Consequently, in each pair the selective
advantage of the type with the higher fitness equals the selective disad-
vantage of the other type. Another relevant example of anti-symmetric
selection coefficients is the preferential fixation of strong (C and G)
over weak (A and T) nucleotides due to the process of GC-biased gene
conversion (gBGC) (Duret and Galtier, 2009; Mugal et al., 2015), which
analytically is equivalent to directional selection (Nagylaki, 1983).

We note that under assumption (2) the distribution of the process
𝑋 simplifies on each pair of edges 𝑒𝑢𝑣 and 𝑒𝑣𝑢 through the equality in
distribution

(𝑢, 𝑣, 𝑌 𝑟
𝑡 )

𝑑
= (𝑣, 𝑢, 1 − 𝑌 𝑟

𝑡 ), 𝑟 ≤ 𝑡 < 𝜏.

2.3. Properties of the Wright–Fisher graph process

Green’s function. The graph process 𝑋 restricted to a particular edge
𝑒𝑢𝑣 ∈  , is a classical Wright–Fisher diffusion, described in Eq. (1),
with selection coefficient 𝛾𝑢𝑣. Abbreviating 𝛾 = 𝛾𝑢𝑣, we write P𝛾

𝑥 for the
probability measure and E𝛾

𝑥 for the expectation of the process starting at
𝑥, and select the associated scale function as 𝑆𝛾 (𝑥) = (1−𝑒−2𝛾𝑥)∕(2𝛾), 𝛾 ≠
0, 𝑆0(𝑥) = 𝑥, and speed function as 𝑚𝛾 (𝑥) = 𝑒2𝛾𝑥∕(𝑥(1 − 𝑥)). The state
space of the diffusion on the segment 𝑒𝑢𝑣 is an interval [0, 1) where 0
is the boundary of an elementary return process and 1 is an absorbing
boundary (Feller, 1954). In terms of the graph structure, 0 is the vertex
(𝑢, 𝑢, 0) and 1 is identified with the vertex (𝑣, 𝑣, 0) via the construction
where edges are glued together. Since 𝑚𝛾 is not integrable near 0
or 1, both points {0, 1} are exit boundary points and attainable from
the interior of the state space (Karlin and Taylor, 1981). The time 𝜏0
required to reach 0 is the extinction time, the time 𝜏1 to reach 1 the
fixation time, and 𝜏 = min(𝜏0, 𝜏1) is the exit time of the interior interval
(0, 1). The corresponding fixation probability 𝑞𝛾 (𝑥) = P𝛾

𝑥(𝜏1 < 𝜏0) equals
𝑞𝛾 (𝑥) = 𝑆𝛾 (𝑥)∕𝑆𝛾 (1) = (1 − 𝑒−2𝛾𝑥)∕(1 − 𝑒−2𝛾 ), 𝛾 ≠ 0, 𝑞0(𝑥) = 𝑥 (Kimura,
1962). The Green’s function 𝐺𝛾 (𝑥, 𝑦) is defined by

𝐺𝛾 (𝑥, 𝑦) =
{

2𝑞𝛾 (𝑥)(𝑆𝛾 (1) − 𝑆𝛾 (𝑦))𝑚𝛾 (𝑦), 0 ≤ 𝑥 ≤ 𝑦 ≤ 1, (4)

2(1 − 𝑞𝛾 (𝑥))(𝑆𝛾 (𝑦) − 𝑆𝛾 (0))𝑚𝛾 (𝑦), 0 ≤ 𝑦 ≤ 𝑥 ≤ 1.
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𝑧

𝑓

∫

w

𝐴

Assuming we start from 𝑧 = (𝑢, 𝑣, 𝑥) ∈ 𝐷◦, the possible transitions from
to 𝑧′ before exiting 𝐷◦ are those such that 𝑧′ = (𝑢, 𝑣, 𝑦) for some 𝑦, 0 <

𝑦 < 1. For such a pair, the Green’s function is 𝐺(𝑧, 𝑧′) = 𝐺𝛾𝑢𝑣 (𝑥, 𝑦) and
governs the transition of the process from 𝑧 towards 𝑧′. For background
on mathematical population genetics and more detailed properties of
the Wright–Fisher diffusion process with selection, we refer the reader
to e.g. Maruyama (1977), Karlin and Taylor (1981), Ewens (2004),
Etheridge (2011).

Stationary distribution on the boundary. By replacing the polymorphic
excursions of 𝑋 with instantaneous jumps, we obtain an embedded
continuous time Markov chain. Indeed, starting in 𝑢 ∈  the embedded
chain holds during an exponential time with rate 𝜆𝑢∕𝑥, then with
probability 𝜆𝑢𝑣∕𝜆𝑢 picks type 𝑣 and with probability 𝑞𝛾𝑢𝑣 (𝑥) jumps to the
new type 𝑣. Taken together, the transition rate of the embedded chain
from 𝑢 to 𝑣 is ℎ𝑢𝑣∕𝑥, where ℎ𝑢𝑣 = 𝜆𝑢𝑣𝑞𝛾𝑢𝑣 (𝑥). The stationary distribution
on the boundary is a probability distribution 𝜂𝑥 = {𝜂𝑥(𝑧) = 𝜂𝑥𝑢 ∶ 𝑧 =
(𝑢, 𝑢, 0) ∈ 𝜕𝐷}, which satisfies the relationship

𝜂𝑥𝑢ℎ𝑢𝑣 = 𝜂𝑥𝑢𝜆𝑢𝑣𝑞𝛾𝑢𝑣 (𝑥) = 𝜂𝑥𝑣𝜆𝑣𝑢𝑞𝛾𝑣𝑢 (𝑥) = 𝜂𝑥𝑣ℎ𝑣𝑢, 𝑒𝑢𝑣, 𝑒𝑣𝑢 ∈  , (5)

a detailed balance equation across each pair of edges of the graph.
Since the state space is finite, there exists a unique stationary and
reversible distribution 𝜂𝑥 on the boundary, typically associated with
time-reversibility.

We are now in position to connect the probability weights on the
boundary given by 𝜂𝑥 with the occupation measure in the interior of
the state space as provided by the Green’s function. If the process starts
from the boundary according to the reversible distribution 𝜂𝑥, i.e. the
initial distribution of 𝑋0 is 𝜂𝑥, then the initial position of the process
after the first mutation is governed by the measure

𝜈𝑥 =
∑

𝑢,𝑣∈
𝜂𝑥𝑢𝜆𝑢𝑣𝛿(𝑢,𝑣,𝑥). (6)

In words, the intensity of the first jump is determined by the accu-
mulation of jump intensities over all vertices and its outgoing edges,
weighted by the probability to be in a specific vertex. The subsequent
relative position on a particular edge is then given by the fixed entry
point 𝑥. Under 𝜈𝑥, the relevant Green’s function contribution on the
particular edge 𝑒𝑢𝑣 regarding the transition from 𝑧 = (𝑢, 𝑣, 𝑥) to 𝑧′ =
(𝑢, 𝑣, 𝑦) is

𝐺(𝜈𝑥, 𝑧′) = 𝜂𝑥𝑢𝜆𝑢𝑣𝐺𝛾𝑢𝑣 (𝑥, 𝑦), (7)

which also justifies writing

𝐺(𝜈𝑥, 𝑑𝑧′) = 𝜂𝑥𝑢𝜆𝑢𝑣𝐺𝛾𝑢𝑣 (𝑥, 𝑦) 𝑑𝑦. (8)

The generator. We consider real-valued functions 𝑓 defined on 𝐷,
writing 𝑓 (𝑧) = 𝑓𝑢𝑢(0) for 𝑧 = (𝑢, 𝑢, 0) ∈ 𝜕𝐷 and 𝑓 (𝑧) = 𝑓𝑢𝑣(𝑦) for
𝑧 = (𝑢, 𝑣, 𝑦) ∈ 𝐷◦, and let 𝑓 ′

𝑢𝑣(𝑦) and 𝑓 ′′
𝑢𝑣(𝑦) denote first and second

order derivatives with respect to 𝑦 defined in the interior 𝐷◦ of 𝐷. The
infinitesimal generator of the Markov process 𝑋 is the operator  which
acts on a suitable domain  of functions 𝑓 ∶𝐷 → R by

𝑓 (𝑧) =
∑

𝑣∈
𝜆𝑢𝑣(𝑓𝑢𝑣(𝑥) − 𝑓𝑢𝑢(0)), 𝑧 = (𝑢, 𝑢, 0) ∈ 𝜕𝐷,

and

𝑓 (𝑧) = 𝛾𝑢𝑣𝑦(1 − 𝑦) 𝑓 ′
𝑢𝑣(𝑦) +

1
2
𝑦(1 − 𝑦) 𝑓 ′′

𝑢𝑣(𝑦), 𝑧 = (𝑢, 𝑣, 𝑦) ∈ 𝐷◦.

In the following we consider functions 𝑓 ∈  , where  is a subset of 
consisting of real-valued bounded functions on 𝐷, twice continuously
differentiable in the interior 𝐷◦, and such that 𝑓𝑢𝑣(𝑦) → 𝑓𝑢𝑢(0) as 𝑦 → 0
and 𝑓𝑢𝑣(𝑦) → 𝑓𝑣𝑣(0) as 𝑦 → 1, 𝑢, 𝑣 ∈  . The Wright–Fisher graph
process 𝑋 is therefore composed of successive segments of well-defined,
classical Wright–Fisher diffusion processes alternating with exponential
waiting times in the boundary points. The order of visiting vertices and
edges in the graph is determined by the initial distribution and by the
mutation jump rates. The resulting jump–diffusion process 𝑋 inherits
16
the strong Markov property from its components. The dynamics of 𝑋
in time can be visualized as a single particle moving around on the
graph elements. During those times the particle spends in a vertex, the
population is monomorphic of the corresponding type. During segments
of particle diffusion on a directed edge, the population is polymorphic
accordingly.

2.4. Stationary distribution

In order to determine the equilibrium behavior of the Wright–
Fisher graph process we will construct a stationary distribution, i.e. a
distribution which is preserved under the time-dynamics of the model
and hence represents the typical probability weight assigned to the
various parts of the graph in steady-state. It can be shown in addition
that the graph process satisfies exponential ergodicity and that the
stationary distribution is the unique limit distribution. However, the
proof of exponential ergodicity is extensive and outside the scope of
the work at hand.

For each edge 𝑒𝑢𝑣 ∈  let 𝐷𝑒𝑢𝑣 = {(𝑢, 𝑣, 𝑦)∶ 𝑢, 𝑣 ∈  , 0 ≤ 𝑦 < 1}
be the subset of 𝐷 which consists of the monomorphic state (𝑢, 𝑢, 0)
and all polymorphic states (𝑢, 𝑣, 𝑦), 0 ≤ 𝑦 < 1, between 𝑢 and 𝑣. Then
∪𝑒𝑢𝑣∈𝐷𝑒𝑢𝑣 = 𝐷 and the intersection of two edge sets contains any
shared vertex. A measure 𝜇 on 𝐷 is stationary for 𝑋, by definition, if
the balance equations

∫𝐷
𝑓 (𝑧)𝜇(𝑑𝑧) =

∑

𝑒𝑢𝑣∈
∫𝐷𝑒𝑢𝑣

𝑓 (𝑧)𝜇(𝑑𝑧) = 0, 𝑓 ∈  , (9)

hold. We say that the measure 𝜇 is edge-reversible for the Wright–
Fisher graph process 𝑋, if the detailed balance edge equations

∫𝐷𝑒𝑢𝑣

𝑓 (𝑧)𝜇(𝑑𝑧) + ∫𝐷𝑒𝑣𝑢

𝑓 (𝑧)𝜇(𝑑𝑧) = 0, 𝑓 ∈  ,

hold for every pair of edges 𝑒𝑢𝑣, 𝑒𝑣𝑢 ∈  . By summing this relation over
all pairs 𝑢 and 𝑣, linked by the two edges 𝑒𝑢𝑣 and 𝑒𝑣𝑢, we recover Eq. (9).
Thus, an edge-reversible measure 𝜇 yields a stationary distribution of
the Wright–Fisher graph process.

Theorem 1. There exists an edge-reversible measure 𝜇 for 𝑋 on 𝐷, which
is given by

𝜇(𝑧) =
𝜂𝑥(𝑧)

1 + ∫𝐷◦ 𝐺(𝜈𝑥, 𝑑𝑧′)
, 𝑧 ∈ 𝜕𝐷,

𝜇(𝑑𝑧) =
𝐺(𝜈𝑥, 𝑑𝑧)

1 + ∫𝐷◦ 𝐺(𝜈𝑥, 𝑑𝑧′)
, 𝑧 ∈ 𝐷◦,

where 𝜂𝑥(𝑧), 𝑧 ∈ 𝜕𝐷, is the unique boundary distribution defined by the
detailed balance equations in Eq. (5), 𝜈𝑥 is be the averaged jump measure
in Eq. (6), both dependent on 𝑥, and 𝐺(𝜈𝑥, 𝑑𝑧′) is the measure on 𝐷◦

introduced in Eq. (8).

Proof. Put 𝛺 = 1 + ∫𝐷0 𝐺(𝜈𝑥, 𝑑𝑧′). To verify that 𝜇 is edge-reversible
we need to establish for each pair of edges 𝑒𝑢𝑣, 𝑒𝑣𝑢 ∈  the identity

𝛺
(

∫𝐷𝑒𝑢𝑣

𝑓 (𝑧)𝜇(𝑑𝑧) + ∫𝐷𝑒𝑣𝑢

𝑓 (𝑧)𝜇(𝑑𝑧)
)

= 𝜂𝑥𝑢𝜆𝑢𝑣(𝑓𝑢𝑣(𝑥) − 𝑓𝑢𝑢(0)) + 𝜂𝑥𝑢𝜆𝑢𝑣 ∫

1

0
𝑓𝑢𝑣(𝑦)𝐺𝛾𝑢𝑣 (𝑥, 𝑑𝑦)

+ 𝜂𝑥𝑣𝜆𝑣𝑢(𝑓𝑣𝑢(𝑥) − 𝑓𝑣𝑣(0)) + 𝜂𝑥𝑣𝜆𝑣𝑢 ∫

1

0
𝑓𝑣𝑢(𝑦)𝐺𝛾𝑣𝑢 (𝑥, 𝑑𝑦) = 0,

(10)

∈  . Here, using Eq. (4),
1

0
𝑓𝑢𝑣(𝑦)𝐺𝛾𝑢𝑣 (𝑥, 𝑑𝑦) = 𝑞𝛾𝑢𝑣 (𝑥)𝐴𝑢𝑣(𝑥) + (1 − 𝑞𝛾𝑢𝑣 (𝑥))𝐵𝑢𝑣(𝑥)

ith

𝑢𝑣(𝑥) =
1(

𝑓 ′ (𝑦) + 1 𝑓 ′′ (𝑦)
)

(1 − 𝑒−2𝛾𝑢𝑣(1−𝑦)) 𝑑𝑦
∫𝑥 𝑢𝑣 2𝛾𝑢𝑣 𝑢𝑣
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and

𝐵𝑢𝑣(𝑥) = ∫

𝑥

0

(

𝑓 ′
𝑢𝑣(𝑦) +

1
2𝛾𝑢𝑣

𝑓 ′′
𝑢𝑣(𝑦)

)

(𝑒2𝛾𝑢𝑣𝑦 − 1) 𝑑𝑦.

Partial integration twice in each of 𝐴𝑢𝑣(𝑥) and 𝐵𝑢𝑣(𝑥) yield, noticing
that 𝑓𝑢𝑣(𝑦) → 𝑓𝑣𝑣(0) as 𝑦 → 1,

𝐴𝑢𝑣(𝑥) = 𝑓𝑣𝑣(0) − 𝑓𝑢𝑣(𝑥) −
1

2𝛾𝑢𝑣
𝑓 ′
𝑢𝑣(𝑥)(1 − 𝑒−2𝛾𝑢𝑣(1−𝑥))

and

𝐵𝑢𝑣(𝑥) = 𝑓𝑢𝑢(0) − 𝑓𝑢𝑣(𝑥) +
1

2𝛾𝑢𝑣
𝑓 ′
𝑢𝑣(𝑥)(𝑒

2𝛾𝑢𝑣𝑥 − 1).

Since

𝑞𝛾𝑢𝑣 (𝑥)
1 − 𝑒−2𝛾𝑢𝑣(1−𝑥)

2𝛾𝑢𝑣
− (1 − 𝑞𝛾𝑢𝑣 (𝑥))

𝑒2𝛾𝑢𝑣𝑥 − 1
2𝛾𝑢𝑣

= 0,

t follows that

𝛾𝑢𝑣 (𝑥)𝐴𝑢𝑣(𝑥) + (1 − 𝑞𝛾𝑢𝑣 (𝑥))𝐵𝑢𝑣(𝑥)

= 𝑞𝛾𝑢𝑣 (𝑥)(𝑓𝑣𝑣(0) − 𝑓𝑢𝑣(𝑥)) + (1 − 𝑞𝛾𝑢𝑣 (𝑥))(𝑓𝑢𝑢(0) − 𝑓𝑢𝑣(𝑥)),

which is

∫

1

0
𝑓𝑢𝑣(𝑦)𝐺𝛾𝑢𝑣 (𝑥, 𝑑𝑦) = −(𝑓𝑢𝑣(𝑥) − 𝑓𝑢𝑢(0)) + 𝑞𝛾𝑢𝑣 (𝑥)(𝑓𝑣𝑣(0) − 𝑓𝑢𝑢(0)).

Similarly, by symmetry,

∫

1

0
𝑓𝑣𝑢(𝑦)𝐺𝛾𝑣𝑢 (𝑥, 𝑑𝑦) = −(𝑓𝑣𝑢(𝑥) − 𝑓𝑣𝑣(0)) + 𝑞𝛾𝑣𝑢 (𝑥)(𝑓𝑢𝑢(0) − 𝑓𝑣𝑣(0)).

Thus, by combining Eq. (10) with the detailed balance Eq. (5) for the
boundary distribution 𝜂𝑥,

𝛺
(

∫𝐷𝑒𝑢𝑣

𝑓 (𝑧)𝜇(𝑑𝑧) + ∫𝐷𝑒𝑣𝑢

𝑓 (𝑧)𝜇(𝑑𝑧)
)

= 𝜂𝑥𝑢𝜆𝑢𝑣𝑞𝛾𝑢𝑣 (𝑥)(𝑓𝑣𝑣(0) − 𝑓𝑢𝑢(0)) + 𝜂𝑥𝑣𝜆𝑣𝑢𝑞𝛾𝑣𝑢 (𝑥)(𝑓𝑢𝑢(0) − 𝑓𝑣𝑣(0)) = 0,

and therefore ∫𝐷 𝑓 (𝑧)𝜇(𝑑𝑧) = 0 in view of Eq. (9). □

We are not aware of previous results of this type for any closely
related model. Peng and Li (2013) obtain stationary distributions for
diffusion processes defined on an open, bounded domain in R𝑑 with
holding and jumping from a regular boundary. These results, however,
are not directly comparable or applicable to our situation, and are
obtained using different techniques (Peng and Li, 2013, Theorem 4.2).

3. Large population size scaling

The polymorphic segments of the path of 𝑋 through the interior
𝐷◦ run on the time scale of evolution, which is a characteristic of
the Wright–Fisher diffusion. The generic re-scaling approach behind
the Wright–Fisher diffusion approximation considers the change in
frequency in a population of size 𝑁 over the time span of 𝑁 gener-
ations. Simultaneously, the relevant selection coefficient at the level of
generations, 𝑠, is of the order 𝑠 ∼ 𝛾∕𝑁 → 0, where 𝛾 is the selection
coefficient of the limiting diffusion process. In the present model we
have for each edge 𝑒𝑢𝑣 such a 𝛾𝑢𝑣 as well as a remaining free parameter
𝑥. To properly adapt the holding time distribution to the evolutionary
time scale, we introduce a parameter 𝑁 as a proxy of population
size and prescribe that the jumps into the interior of the state space
have size 𝑥 = 1∕𝑁 . The time scale of the system is then set by the
speed of mutation 𝜆𝑢𝑣∕𝑥 = 𝜆𝑢𝑣𝑁 , the population mutation intensity
per evolutionary time unit. Our goal in this section is to analyze the
stationary distribution 𝜇 in Theorem 1 with 𝑥 = 1∕𝑁 for large but
fixed 𝑁 . Specifically we identify the dominant terms in the asymptotic
expansion of 𝜇 under scaling for large 𝑁 and drop remainder terms
of order ln𝑁∕𝑁 and smaller. During this procedure it is convenient
to make a number of simplifying approximations valid formally in
the limit 𝑁 → ∞. It is important to keep in mind however that the
population size proxy 𝑁 is kept as a finite model parameter.
17

m

3.1. Approximation of the stationary distribution

We recall that in our model two vertices 𝑢 and 𝑣 are always
connected by two directed edges 𝑒𝑢𝑣 and 𝑒𝑣𝑢 whenever the jump rates
between 𝑢 and 𝑣 are positive. For each edge 𝑒𝑢𝑣, as 𝑁 → ∞, we
introduce the scaled fixation probability 𝜔𝛾 , where 𝛾 = 𝛾𝑢𝑣, by

𝑞𝛾 (1∕𝑁) =
𝜔𝛾

𝑁
+ 𝑂

( 1
𝑁2

)

, 𝜔𝛾 =
2𝛾

1 − 𝑒−2𝛾
, 𝛾 ≠ 0, 𝜔0 = 1. (11)

Due to assumption (2) on directional selection, we obtain the symmetry
relation

𝜔𝛾𝑣𝑢 = 𝜔−𝛾𝑢𝑣 = 𝑒−2𝛾𝑢𝑣 𝜔𝛾𝑢𝑣 . (12)

As before, the collection of jump rates {𝜆𝑢𝑣 ∶ 𝑒𝑢𝑣 ∈ } and selection
coefficients {𝛾𝑢𝑣 ∶ 𝑒𝑢𝑣 ∈ } again define an embedded scaled continuous
time Markov chain on  . In analogy with the previous relation (5),
the unique solution 𝜂 = {𝜂(𝑧) = 𝜂𝑢 ∶ 𝑧 = (𝑢, 𝑢, 0) ∈ 𝜕𝐷} of the detailed
balance equations

𝜂𝑣𝜆𝑣𝑢𝜔𝛾𝑣𝑢 = 𝜂𝑢𝜆𝑢𝑣𝜔𝛾𝑢𝑣 , 𝑒𝑢𝑣, 𝑒𝑣𝑢 ∈  , (13)

is the scaled stationary boundary distribution of the embedded Markov
chain. The solution 𝜂 of (13), that no longer depends on 𝑁 , is a
convenient approximation of the solution 𝜂𝑥 of (5) with 𝑥 = 1∕𝑁 .
The distribution of the first jump averaged over the scaled boundary
distribution,

𝜈1∕𝑁 =
∑

𝑢,𝑣∈
𝜂𝑢𝜆𝑢𝑣𝛿(𝑢,𝑣,1∕𝑁), (14)

still depends on the initial mutation frequency 1∕𝑁 . The next result
records the dominant terms in Theorem 1, where we have fixed all
mutation and selection parameters, and then choose 𝑥 = 1∕𝑁 and 𝑁
large enough so that remainder terms of order 𝑂(ln𝑁∕𝑁) and smaller
may be removed.

Proposition 1. The stationary single site distribution 𝜇 in Theorem 1
satisfies for large 𝑁 the approximation

𝜇(𝑧) = 𝜇𝑁 (𝑧) + 𝑂(1∕𝑁), 𝑧 ∈ 𝐷,

where the approximating distribution 𝜇𝑁 has monomorphic site probabilities

𝜇𝑁 (𝑢, 𝑢, 0) =
𝜂𝑢
𝛺′

𝑁
, 𝑢 ∈  ,

for 𝑧 = (𝑢, 𝑢, 0), polymorphic density given by

𝜇𝑁 (𝑢, 𝑣, 𝑦) 𝑑𝑦 =
2𝜂𝑢𝜆𝑢𝑣
𝛺′

𝑁

{𝜔𝛾𝑢𝑣 (1 − 𝑒−2𝛾𝑢𝑣(1−𝑦))
2𝛾𝑢𝑣𝑦(1 − 𝑦)

1{1∕𝑁<𝑦<1}

+ (𝑁 − 𝜔𝛾𝑢𝑣 ) 1{0<𝑦<1∕𝑁}

}

𝑑𝑦,

or 𝑧 = (𝑢, 𝑣, 𝑦), and is normalized by 𝛺′
𝑁 = 𝛺𝑁 + 𝑂(ln𝑁∕𝑁), with

𝑁 = 1 + 2
∑

𝑢,𝑣∈
𝜂𝑢𝜆𝑢𝑣(1 + ln𝑁 +𝐾𝛾𝑢𝑣 ), (15)

here

𝛾 = 𝜔𝛾 ∫

1

0
(− ln 𝑦)(𝑒−2𝛾𝑦 − 𝑒−2𝛾(1−𝑦)) 𝑑𝑦.

Before proving Proposition 1, we first elaborate on its consequences,
tate the approximate distribution 𝜇𝑁 for the case of neutral evolution
n Remark 1, and comment on some properties of the function 𝐾𝛾 in
emark 2.

The stationary single site distribution 𝜇𝑁 consists of three categories
hat are recovered in the normalization factor 𝛺𝑁 . The weight of
onomorphic states is given by the stationary distribution on the

oundary, 𝜂𝑢, 𝑢 ∈  , summing up to one. Polymorphic states are split
p into observable polymorphisms (1∕𝑁 < 𝑦 < 1) and those that are
ractically non-observable (0 < 𝑦 < 1∕𝑁), where the latter only exist

athematically as a result of the diffusion approximation. The weight
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of observable polymorphisms is given by the sum over ln𝑁 + 𝐾𝛾𝑢𝑣 in
𝑁 . Clearly, for large 𝑁 the term ln𝑁 , which represents low-frequency
olymorphisms in the allele frequency spectrum, dominates over 𝐾𝛾𝑢𝑣 .
e note, however, that if 𝑁 → ∞, which corresponds to 𝑥 → 0,
utations could not at all be established in the population.

emark 1. For the special case of neutral evolution, 𝛾𝑢𝑣 = 0 for all
𝑢𝑣 ∈  , we have 𝜔0 = 1 and 𝐾0 = 0, so

𝑁 (𝑢, 𝑢, 0) =
𝜂𝑢
𝛺′

𝑁
, 𝑢 ∈  ,

and

𝜇𝑁 (𝑢, 𝑣, 𝑦) 𝑑𝑦 =
2𝜂𝑢𝜆𝑢𝑣
𝛺′

𝑁

{

𝑦−1 1{1∕𝑁<𝑦<1} + (𝑁 − 1) 1{0<𝑦<1∕𝑁}

}

𝑑𝑦,

for (𝑢, 𝑣, 𝑦) ∈ 𝐷◦, where 𝜂𝑢, 𝑢 ∈  , is the unique solution of the balance
equations

𝜂𝑣𝜆𝑣𝑢 = 𝜂𝑢𝜆𝑢𝑣, 𝑒𝑢𝑣, 𝑒𝑣𝑢 ∈  ,

and 𝛺′
𝑁 = 𝛺𝑁 +𝑂(1∕𝑁) the normalization factor under neutrality with

𝛺𝑁 = 1 + 2(1 + ln𝑁)
∑

𝑢∈
𝜂𝑢𝜆𝑢.

emark 2. First, we have 𝐾𝛾 ≥ 0, 𝛾 ≥ 0. Second, the function 𝐾𝛾
s odd, 𝐾−𝛾 = −𝐾𝛾 . In particular, 𝐾𝛾𝑣𝑢 = 𝐾−𝛾𝑢𝑣 = −𝐾𝛾𝑢𝑣 . Third, 𝐾𝛾
rows logarithmically for large 𝛾: with 𝛾𝑒 = 0.5772… denoting Euler’s
onstant,

𝛾 ≤
{

𝛾, 0 ≤ 𝛾 ≤ 1,
𝛾𝑒 + ln 2𝛾, 𝛾 ≥ 1,

𝐾𝛾 ∼ 𝛾𝑒 + ln 2𝛾 for large 𝛾.

roof. For fixed 𝑧′ = (𝑢, 𝑣, 𝑦),

(𝜈1∕𝑁 , 𝑧′) = 𝜂𝑢𝜆𝑢𝑣𝑁𝐺𝛾𝑢𝑣 (1∕𝑁, 𝑦).

ere, using Eq. (11) with large 𝑁 and 𝛾 = 𝛾𝑢𝑣,

𝐺𝛾

( 1
𝑁

, 𝑦
)

= 𝑁𝑞𝛾
( 1
𝑁

)1 − 𝑒−2𝛾(1−𝑦)

𝛾𝑦(1 − 𝑦)
1{1∕𝑁<𝑦<1}

+𝑁
(

1 − 𝑞𝛾
( 1
𝑁

)) 𝑒2𝛾𝑦 − 1
𝛾𝑦(1 − 𝑦)

1{0<𝑦<1∕𝑁}

= 𝜔𝛾
1 − 𝑒−2𝛾(1−𝑦)

𝛾𝑦(1 − 𝑦)
1{1∕𝑁<𝑦<1}

+ 2(𝑁 − 𝜔𝛾 ) 1{0<𝑦<1∕𝑁} + 𝑂
( 1
𝑁

)

,

from which we obtain 𝛺′
𝑁𝜇𝑁 (𝑧), 𝑧 ∈ 𝐷◦. Moreover,

𝑁 ∫

1

0
𝐺𝛾

( 1
𝑁

, 𝑦
)

𝑑𝑦 = 𝜔𝛾 ∫

1

1∕𝑁

1 − 𝑒−2𝛾(1−𝑦)

𝛾𝑦(1 − 𝑦)
𝑑𝑦 + 2 + 𝑂

( 1
𝑁

)

.

y partial integration the remaining integral evaluates to
1

1∕𝑁
{𝑦+(1 − 𝑦)} 1 − 𝑒−2𝛾(1−𝑦)

𝛾𝑦(1 − 𝑦)
𝑑𝑦

= ∫

1−1∕𝑁

0

1 − 𝑒−2𝛾𝑦

𝛾𝑦
𝑑𝑦 + ∫

1

1∕𝑁

1 − 𝑒−2𝛾(1−𝑦)

𝛾𝑦
𝑑𝑦

= 2 ln𝑁
𝜔𝛾

+ 2∫

1

0
(− ln 𝑦)(𝑒−2𝛾𝑦 − 𝑒−2𝛾(1−𝑦)) 𝑑𝑦 + 𝑂

( ln𝑁
𝑁

)

.

Hence,

𝑁 ∫

1

0
𝐺𝛾

( 1
𝑁

, 𝑦
)

𝑑𝑦 = 2(1 + ln𝑁 +𝐾𝛾 ) + 𝑂
( ln𝑁

𝑁

)

.

ntegration over 𝐷◦ yields

𝐷0
𝐺(𝜈1∕𝑁 , 𝑧′) 𝑑𝑧′ = 2

∑

𝑢,𝑣∈
𝜂𝑢𝜆𝑢𝑣(1 + ln𝑁 +𝐾𝛾𝑢𝑣 ) + 𝑂

( ln𝑁
𝑁

)

.

he representation of an approximate distribution 𝜇𝑁 (𝑧) as stated now
follows from Theorem 1.
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Remark 1 follows directly from Proposition 1 with 𝛾𝑢𝑣 = 0 for all
𝑒𝑢𝑣 ∈  .

Finally, to verify the claims in Remark 2, for 𝛾 > 0,
𝐾𝛾

𝜔𝛾
= ∫

1∕2

0
(− ln 𝑦)(𝑒−2𝛾𝑦 − 𝑒−2𝛾(1−𝑦)) 𝑑𝑦

− ∫

1∕2

0
(− ln(1 − 𝑦))(𝑒−2𝛾𝑦 − 𝑒−2𝛾(1−𝑦)) 𝑑𝑦 ≥ 0.

The relation 𝜔−𝛾 = 𝑒−𝛾𝜔𝛾 implies the symmetry 𝐾−𝛾 = −𝐾𝛾 . Further-
more, the change-of-variable 𝑥 = 2𝛾𝑦 yields

𝐾𝛾 =
𝜔𝛾

2𝛾 ∫

2𝛾

0
(− ln 𝑥 + ln(2𝛾))𝑒−𝑥 𝑑𝑥 −

𝜔𝛾

2𝛾 ∫

2𝛾

0
− ln(1 − 𝑥∕2𝛾) 𝑒−𝑥 𝑑𝑥.

he rightmost integral is positive and tends to zero as 𝛾 → ∞, by an
application of the monotone convergence theorem. Also, 𝜔𝛾∕(2𝛾) → 1
as 𝛾 → ∞. Thus,

𝐾𝛾 − ln(2𝛾) ∼
𝜔𝛾

2𝛾 ∫

2𝛾

0
(− ln 𝑥)𝑒−𝑥 𝑑𝑥 → 𝛾𝑒, 𝛾 → ∞. □

3.2. Allele frequency spectra

An immediate result of the large 𝑁 approximation in Proposition 1
is the allele frequency spectrum (AFS), one of the most important
summary statistics of the stationary distribution in population genetics
to investigate genetic variation. The unfolded AFS describes the allele
frequency distribution of the derived allele at a biallelic site and can
be retrieved using the modeling setup with two directed edges between
each pair of types. For a given locus, the unfolded AFS corresponds to
∑

𝑢,𝑣∈ 𝜇𝑁 (𝑢, 𝑣, 𝑦), 0 < 𝑦 < 1, representing the density of the derived
llele frequency of any type. We visualize the polymorphic density on
wo directed edges 𝑒𝑢𝑣 and 𝑒𝑣𝑢 of a multi-allele model for 𝛾𝑢𝑣 = 1 in

Fig. 2A.
In practice, the unfolded AFS relies on a polarization of poly-

morphisms into derived and ancestral types, knowledge that requires
additional information such as outgroup data, which is not always
readily available. If this is the case, a folded AFS can be derived
from data. The folded AFS takes biallelic observations and typically
measures the minor allele at some frequency 𝑦 ∈ [0, 0.5], and the other
allelic type at complementary frequency 1 − 𝑦 ∈ [0.5, 1]. To formalize
representations of unfolded and folded allele frequency spectra using
the stationary distribution in the current model, we introduce the set
of unordered pairs of vertices  ∶= {⟨𝑢, 𝑣⟩∶ 𝑢, 𝑣 ∈ }, with || =

(

||
2

)

.
Restricting to the edges of the pair ⟨𝑢, 𝑣⟩, the polymorphic density of
the process when type 𝑣 has frequency 𝑦 and type 𝑢 frequency 1 − 𝑦
equals

𝜇𝑁 (⟨𝑢, 𝑣⟩, 1 − 𝑦, 𝑦) ∶= 𝜇𝑁 (𝑢, 𝑣, 𝑦) + 𝜇𝑁 (𝑣, 𝑢, 1 − 𝑦).

The folded density of the minor allele on ⟨𝑢, 𝑣⟩ is therefore

𝜇fold(⟨𝑢, 𝑣⟩, 𝑦) ∶= 𝜇𝑁 (⟨𝑢, 𝑣⟩, 1 − 𝑦, 𝑦) + 𝜇𝑁 (⟨𝑣, 𝑢⟩, 1 − 𝑦, 𝑦), 0 < 𝑦 ≤ 1∕2.

ig. 2B depicts the polymorphic density 𝜇𝑁 (⟨𝑢, 𝑣⟩, 1 − 𝑦, 𝑦) on edges
onnecting a pair ⟨𝑢, 𝑣⟩.

orollary 1. We have

𝑁 (⟨𝑢, 𝑣⟩, 1 − 𝑦, 𝑦) 𝑑𝑦 =
2𝜂𝑢𝜆𝑢𝑣
𝛺′

𝑁

{ 𝑒2𝛾𝑢𝑣𝑦

𝑦(1 − 𝑦)
1{1∕𝑁<𝑦<1−1∕𝑁}

+𝑁 1{0<𝑦<1∕𝑁} +𝑁𝑒2𝛾𝑢𝑣 1{1−1∕𝑁<𝑦<1}

}

𝑑𝑦,

and

𝜇fold(⟨𝑢, 𝑣⟩, 𝑦) 𝑑𝑦 =
2𝜂𝑢𝜆𝑢𝑣
𝛺′

𝑁

{ 𝑒2𝛾𝑢𝑣𝑦 + 𝑒2𝛾𝑢𝑣(1−𝑦)

𝑦(1 − 𝑦)
1{1∕𝑁<𝑦≤1∕2}

+ 𝑁(1 + 𝑒2𝛾𝑢𝑣 ) 1{0<𝑦<1∕𝑁}

}

𝑑𝑦,

with the normalization factor 𝛺′ in Proposition 1.
𝑁
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Fig. 2. Polymorphic densities of two types 𝑢 and 𝑣 with selection coefficient 𝛾𝑢𝑣 = 1. Panel A: Relative log-scaled densities for type 𝑢 at frequency 1 − 𝑦 on the directed edge
𝑒𝑢𝑣, 𝜇𝑁 (𝑢, 𝑣, 𝑦) in red, and on the directed edge 𝑒𝑣𝑢, 𝜇𝑁 (𝑣, 𝑢, 1 − 𝑦) in blue. Panel B: The relative log-scaled density on the edges of the pair ⟨𝑢, 𝑣⟩ for type 𝑢 at frequency 1 − 𝑦,
𝑁 (⟨𝑢, 𝑣⟩, 1 − 𝑦, 𝑦) in purple, which is the sum of the two curves in panel A. The relative log-scaled density for type 𝑣 at frequency 1 − 𝑦, 𝜇𝑁 (⟨𝑣, 𝑢⟩, 1 − 𝑦, 𝑦) in pink, is symmetric to
he purple curve around 𝑦 = 0.5.
Fig. 3. Allele frequency spectra for a four type model. Panel A: State space for a model with four types. Panel B: Log-scaled unfolded (orange) and folded (red) AFS. Parameters:
opulation size 𝑁 = 104, selection coefficients defined as fitness differences with 𝐹𝑢 = 𝐹𝑧 = 0 and 𝐹𝑣 = 𝐹𝑤 = 1, and equal mutation intensity 𝜆 = 𝑁 × 10−8 among all types.
c

C
i
𝑢
u
𝜇
b
a

𝜃

Proof. Consider a fixed pair of types ⟨𝑢, 𝑣⟩ ∈  . The density of
he process when 𝑣 has frequency 𝑦 follows from adding up the two
ensities on each directed edge derived in Proposition 1, 𝜇𝑁 (𝑢, 𝑣, 𝑦) +
𝑁 (𝑣, 𝑢, 1 − 𝑦).

Using detailed balance, Eq. (13), and the relationship 𝛾𝑣𝑢 = −𝛾𝑢𝑣,
he contribution from the interior, 1∕𝑁 < 𝑦 < 1 − 1∕𝑁 , for large 𝑁 is

𝑢𝜆𝑢𝑣𝜔𝛾𝑢𝑣

{

1 − 𝑒−2𝛾𝑢𝑣(1−𝑦)

𝛾𝑢𝑣𝑦(1 − 𝑦)
+ 1 − 𝑒−2𝛾𝑣𝑢𝑦

𝛾𝑣𝑢𝑦(1 − 𝑦)

}

= 2𝜂𝑢𝜆𝑢𝑣
𝑒2𝛾𝑢𝑣𝑦

𝑦(1 − 𝑦)
.

The contributions from close to the boundaries at zero, 0 < 𝑦 < 1∕𝑁 ,
and at one, 1 − 1∕𝑁 < 𝑦 < 1, for large 𝑁 , follow analogously.

As the alternative view of merging the directed edges simply en-
ails reshuffling contributions, the normalization constant does not
hange. Finally, the expression for 𝜇fold(⟨𝑢, 𝑣⟩, 𝑦) 𝑑𝑦 results from similar

calculations. □

An example of the unfolded AFS in a four type model with state
space shown in Fig. 3A is given as the orange curve in Fig. 3B. Similarly
as for the unfolded AFS, the sum ∑

⟨𝑢,𝑣⟩∈ 𝜇fold(⟨𝑢, 𝑣⟩, 𝑦), 0 < 𝑦 ≤
1∕2, yields the folded, type-independent distribution of derived allele
frequencies at a locus (Fig. 3B, red curve).

3.3. Extension to multiple loci

The model introduced here applies directly to a collection of 𝐿
independent loci, where a locus represents either a single site or a
nucleotide triplet. A collection of consecutive sites represents a DNA
sequence. Thus, even though the following considerations are in gen-
eral about a collection of independent loci, we may use the term
19
sequence instead. The state of the sequence is defined by a collection
of independent holding and jumping diffusion processes 𝑋𝑗 , 1 ≤ 𝑗 ≤ 𝐿,
with values in the direct product set ∏𝐿

𝑗=1 
𝑗 , where all graphs 𝑗 have

the same vertex set  and edge set  . We allow the set of selection
oefficients {𝛾𝑗𝑢𝑣 ∶ 𝑒𝑢𝑣 ∈  , 1 ≤ 𝑗 ≤ 𝐿} to differ from one locus to another,

but assume that the transition rates {𝜆𝑢𝑣 ∶ 𝑒𝑢𝑣 ∈ } are the same among
loci or along the sequence. For this it is convenient to introduce scaled
intensities 𝜃𝑢𝑣 = 𝜆𝑢𝑣𝐿, 𝑢, 𝑣 ∈  . The results in Proposition 1 and

orollary 1 then apply with 𝜆𝑢𝑣 = 𝜃𝑢𝑣∕𝐿. Summing over 𝑣, the total
ntensity 𝜃𝑢 =

∑

𝑣∈ 𝜃𝑢𝑣 of a mutation from type 𝑢 becomes 𝜃𝑢 = 𝜆𝑢𝐿,
∈  , and so 𝑁𝜃𝑢 is the total rate in the collection of loci per time

nit of a mutation affecting 𝑢. In contrast, the steady-state probabilities
𝑗 (𝑧), 𝑧 ∈ 𝐷, and the boundary probabilities 𝜂𝑗𝑢 , 𝑢 ∈  typically vary
etween loci, 1 ≤ 𝑗 ≤ 𝐿. The total mutation rate on the boundary, 𝜃,
veraged across loci, is

̂= 1
𝐿

𝐿
∑

𝑗=1
𝜃𝑗 , 𝜃𝑗 =

∑

𝑢∈
𝜂𝑗𝑢𝜃𝑢. (16)

The quantities 𝜃𝑗 are the jump rates of the distribution 𝜈1∕𝑁 in Eq. (14).
Clearly,

𝜃min ∶= min
𝑢∈

𝜃𝑢 ≤ 𝜃 ≤ max
𝑢∈

𝜃𝑢 =∶ 𝜃max. (17)

The closely related summation

𝜃eff =
∑

𝜇𝑢𝜃𝑢, 𝜇𝑢 =
1
𝐿

𝐿
∑ 𝜂𝑗𝑢

𝑗 (18)

𝑢∈ 𝑗=1 𝛺𝑁
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represents the effective mutation rate of the sequence, weighted by the
average probability that loci are monomorphic. Of course, 𝜃eff ≤ 𝜃.
We say that the mutation mechanism on the graph is homogeneous if
the total rates in each vertex coincide, i.e. 𝜃𝑢 = 𝜃, 𝑢 ∈  . Under the
stronger assumption of homogeneous mutation,

𝜃 = 𝜃, 𝜃eff =
1
𝐿

𝐿
∑

𝑗=1

1
𝛺𝑗

𝑁

𝜃. (19)

We summarize the steady-state of the collection of loci by con-
sidering the measure-valued process ∞ =

∑𝐿
𝑗=1 𝛿𝑋𝑗

∞
, where 𝑋𝑗

∞ has
the stationary single locus distribution 𝜇𝑗 on 𝑗 . The corresponding
unfolded AFS across multiple loci is given by

1
𝐿

𝐿
∑

𝑗=1

∑

𝑢,𝑣∈
𝜇𝑗
𝑁 (𝑢, 𝑣, 𝑦), 0 < 𝑦 < 1.

For suitable functions 𝑓 , 𝑓 (𝑧) = 𝑓𝑢𝑣(𝑦), 𝑧 ∈ 𝐷,

⟨∞, 𝑓⟩ =
𝐿
∑

𝑗=1
𝑓 (𝑋𝑗

∞), 𝑓 ∈  ,

represents the sequence equilibrium distribution. The steady-state ex-
pectation under the approximate large population size distribution 𝜇𝑁
in Proposition 1 is

E𝑁 ⟨∞, 𝑓⟩ =
𝐿
∑

𝑗=1

{

∑

𝑢∈
𝑓𝑢𝑢(0)𝜇

𝑗
𝑁 (𝑢, 𝑢, 0)

+
∑

𝑢,𝑣∈
∫

1

0
𝑓𝑢𝑣(𝑦)𝜇

𝑗
𝑁 (𝑢, 𝑣, 𝑦) 𝑑𝑦

}

.

(20)

4. Impact of directional selection on genetic variation

There exists a number of summary statistics to assess genetic vari-
ation in a population or a sample from a population. These arise as
the result of evaluating functionals E𝑁 ⟨∞, 𝑓⟩ for specifically chosen
functions 𝑓 and can be analyzed by using Eq. (20). The first term in the
sum over 𝐿 in (20) provides the weight of the boundary probabilities
𝜇𝑗 (𝑢, 𝑢, 0), 1 ≤ 𝑗 ≤ 𝐿, over monomorphic loci, and the second term
adds the relevant contributions from the allele frequency spectrum of
the polymorphic loci. We begin with a list of the basic instances of
such statistics. As a reference for each case we specialize to neutral
evolution and derive the relevant neutral summary statistics. Under the
assumption 𝛾𝑢𝑣 = 0 for every 𝑢, 𝑣 ∈  , Eq. (20) simplifies into

E𝑁 ⟨∞, 𝑓⟩ = 𝐿
𝛺𝑁

∑

𝑢∈
𝑓𝑢𝑢(0)𝜂𝑢

+ 2
𝛺𝑁

∑

𝑢,𝑣∈
𝜂𝑢𝜃𝑢𝑣

(

𝑓𝑢𝑣(0+) + ∫

1

1∕𝑁

𝑓𝑢𝑣(𝑦)
𝑦

𝑑𝑦
)

+𝑁

(21)

with

𝛺𝑁 = 1 +
2(1 + ln𝑁)𝜃 0

𝐿
, 𝜃 0 =

∑

𝑢∈
𝜂𝑢𝜃𝑢 ≤ 𝜃max,

𝑁 = 𝑂(ln𝑁∕𝑁), and 𝑓𝑢𝑣(0+) is the limit of 𝑁 ∫ 1∕𝑁
0 𝑓𝑢𝑣(𝑦) 𝑑𝑦 as 𝑁 →

∞. Here, 𝜂𝑢, 𝑢 ∈  , is the solution of the neutral detailed balance
equation, that is, 𝜂𝑢𝜃𝑢𝑣 = 𝜂𝑣𝜃𝑣𝑢, for every 𝑢, 𝑣 ∈  , c.f. Remark 1. Under
homogeneous mutation, 𝜃 0 = 𝜃.

4.1. Summary statistics under neutral evolution

The following listing is derived from (21) with the remainder term
𝑁 suppressed. In order to emphasize the relative magnitude of the
various terms arising from (21) we assume in addition that ln𝑁∕𝐿 is
20

small and indicate this approximation by writing ∼ instead of =.
(i) Average effective mutation rate
Define 𝑓 by 𝑓𝑢𝑢(0) = 𝜃𝑢 and 𝑓𝑢𝑣(𝑦) = 0. The expected value
𝜃 0
eff = E𝑁 ⟨∞, 𝑓⟩∕𝐿 is the average effective mutation rate per

sequence under neutral evolution, specifically taking into effect
that mutations only occur on the boundary of the graph. The first
term in (21) yields

𝜃 0
eff =

𝜃 0

1 + 2𝐿−1(1 + ln𝑁)𝜃 0
∼ 𝜃 0

(

1 −
2(1 + ln𝑁)

𝐿
𝜃 0

)

.

(ii) Polymorphic allele functionals
Using the effective mutation rate in (i), we observe for functions
𝑓 which only depend on the frequency 𝑦 and are independent of
the type, i.e. with 𝑓𝑢𝑢(0) = 0 and 𝑓𝑢𝑣(𝑦) = 𝑓 (𝑦), 𝑢, 𝑣 ∈  , that (21)
has the form

E𝑁 ⟨∞, 𝑓⟩ = 2𝜃 0
eff

(

𝑓 (0+) + ∫

1

1∕𝑁

𝑓 (𝑦)
𝑦

𝑑𝑦
)

≤ 2𝜃 0
(

𝑓 (0+) + ∫

1

1∕𝑁

𝑓 (𝑦)
𝑦

𝑑𝑦
)

.

(iii) Number of monomorphic sites
Let 𝑓 = 𝑓 𝜕 be the indicator function on the boundary 𝜕𝐷. The
expected number of monomorphic sites out of 𝐿 is

E𝑁 ⟨∞, 𝑓 𝜕
⟩ = 𝐿

𝛺𝑁
= 𝐿

1 + 2𝐿−1(1 + ln𝑁)𝜃 0
∼ 𝐿 − 2(1 + ln𝑁) 𝜃 0.

(iv) Number of polymorphic sites
Let 𝑓 ◦ = 1 − 𝑓 𝜕 . For 𝐿 sufficiently large compared to ln𝑁 we
obtain the familiar approximation of the expected number of
polymorphic sites as

E𝑁 ⟨∞, 𝑓 ◦
⟩ = 𝐿 − 𝐿

𝛺𝑁
∼ 2(1 + ln𝑁)𝜃 0

eff ≤ 2(1 + ln𝑁)𝜃 0.

(v) Number of segregating sites in a sample
To obtain the number of segregating sites in a sample of size 𝑚,
we take 𝑓𝑢𝑢(0) = 0 and 𝑓𝑢𝑣(𝑦) = 𝑔𝑚(𝑦), where

𝑔𝑚(𝑦) =
𝑚−1
∑

𝑘=1

(

𝑚
𝑘

)

𝑦𝑘(1 − 𝑦)𝑚−𝑘 = 1 − 𝑦𝑚 − (1 − 𝑦)𝑚, 0 ≤ 𝑦 ≤ 1,

is the probability that a sample of size 𝑚 ≥ 2 is polymorphic when
drawn from a population with derived frequency 𝑦. Then, it holds
∫ 1∕𝑁
0 𝑔𝑚(𝑦) 𝑑𝑦 ∼ 𝑂(1∕𝑁2) and

∫

1

1∕𝑁
𝑦−1𝑔𝑚(𝑦) 𝑑𝑦 ∼ ∫

1

0
𝑦−1𝑔𝑚(𝑦) 𝑑𝑦 =

𝑚−1
∑

𝑘=1

1
𝑘
.

Hence

𝑆𝑚
𝑁,𝐿 = E𝑁 ⟨∞, 𝑓⟩ ∼ 2𝜃 0

eff

𝑚−1
∑

𝑘=1

1
𝑘
≤ 2𝜃 0

𝑚−1
∑

𝑘=1

1
𝑘
.

(vi) Pair-wise nucleotide differences
The standard measure of genetic diversity in the population,
typically denoted 𝜋, is the average number of pair-wise nucleotide
differences normalized per site (Nei and Li, 1979). For sample size
𝑚 we take 𝑓𝑢𝑢(0) = 0 and 𝑓𝑢𝑣(𝑦) = ℎ𝑚(𝑦), where

ℎ𝑚(𝑦) =
(

𝑚
2

)−1 𝑚−1
∑

𝑘=1
𝑘(𝑚 − 𝑘)

(

𝑚
𝑘

)

𝑦𝑘(1 − 𝑦)𝑚−𝑘 = 2𝑦(1 − 𝑦).

Hence

𝜋 = E𝑁 ⟨∞, 𝑓⟩∕𝐿 = 2
𝜃 0
eff
𝐿

≤ 2 𝜃 0

𝐿
,

which turns out to be the average mutation load per site and is the
same as the expected proportion of segregating sites in a sample
of size two, 𝑆2 ∕𝐿.
𝑁,𝐿
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4.2. Allele frequency statistics and their upper bounds

We are interested in the overall effect of directional selection acting
on the functionals covered above and closely related quantities, as
compared to their counterparts under neutral evolution. Our main
result shows that any presence of directional selection among the alleles
essentially benefits monomorphic loci and constrains the number of
polymorphic loci.

Theorem 2. We consider the Wright–Fisher graph model extended to
𝐿 loci with fixed, arbitrary parameters {𝜃𝑢𝑣 ∶ 𝑒𝑢𝑣 ∈ } for mutation and
{𝛾𝑗𝑢𝑣 ∶ 𝑒𝑢𝑣 ∈  , 1 ≤ 𝑗 ≤ 𝐿} for selection.

(1) With 𝜃, 𝜃eff , 𝜃min and 𝜃max defined in Eqs. (16)–(18), we have
𝜃min

1 + 2𝐿−1(1 + ln𝑁)𝜃min
≤ 𝜃eff ≤ 𝜃 ≤ 𝜃max.

(2) Let 𝑓 be a function on 𝐷 such that 𝑓𝑢𝑣(𝑦) = 𝑓 (𝑦) ≥ 0 is a function
only of the frequency 𝑦 with 𝑓 (𝑦) → 𝑓 (0+) ≥ 0, 𝑦 → 0, and 𝑓 (0) = 0.
Then

0 ≤ E𝑁 ⟨∞, 𝑓⟩ ≤ 2𝜃eff
{

𝑓 (0+) + ∫

1

1∕𝑁

𝑓 (𝑦)
𝑦

𝑑𝑦
}

≤ 2𝜃
{

𝑓 (0+) + ∫

1

1∕𝑁

𝑓 (𝑦)
𝑦

𝑑𝑦
}

. (22)

If, moreover, ∫ 1
0 𝑦−1𝑓 (𝑦) 𝑑𝑦 < ∞, then

E𝑁 ⟨∞, 𝑓⟩ ≤ 2𝜃eff ∫

1

0

𝑓 (𝑦)
𝑦

𝑑𝑦 ≤ 2𝜃 ∫

1

0

𝑓 (𝑦)
𝑦

𝑑𝑦. (23)

While the strength and direction of selection may vary arbitrarily
within and between sites, Theorem 2 illustrates that the effect of
selective forces on measures of genetic variation is only channeled
through to the upper bounds via the average mutation rates 𝜃eff and
𝜃, respectively. It is seen furthermore that the proportionality constant
𝜃eff is contained inside an interval that does not depend on selection
parameters, namely the interval formed by the leftmost and the right-
most estimate in Theorem 2, (1). As a corollary we observe that under
the stronger assumption of homogeneous mutation rates, introduced in
Section 3.3, then 𝜃 will be independent of any selective mechanisms,
and the upper bounds in Eqs. (22) and (23) will coincide with the
corresponding expressions for neutral evolution in Section 4.1 (ii).

Corollary 2. For the case when the mutation rates are homogeneous over
all vertices, i.e. 𝜃𝑢 = 𝜃 for all 𝑢 ∈  , then

𝜃 = 𝜃 0 = 𝜃

and
𝜃

1 + 2𝐿−1(1 + ln𝑁)𝜃
≤ 𝜃eff ≤ 𝜃.

ence,

𝑁 ⟨∞, 𝑓⟩ ≤ 2𝜃
{

𝑓 (0+) + ∫

1

1∕𝑁

𝑓 (𝑦)
𝑦

𝑑𝑦
}

and

E𝑁 ⟨∞, 𝑓⟩ ≤ 2𝜃 ∫

1

0

𝑓 (𝑦)
𝑦

𝑑𝑦,

espectively.

roof of Theorem 2. (1) For each single locus 𝑗,

𝑗
𝑁 = 1 + 2

𝐿
∑

𝑢,𝑣∈
𝜂𝑗𝑢𝜃𝑢𝑣(1 + ln𝑁 +𝐾𝛾𝑗𝑢𝑣

)

= 1 + 2𝜃𝑗
𝐿

(1 + ln𝑁) + 2
𝐿

∑

𝑢,𝑣∈
𝜂𝑗𝑢𝜃𝑢𝑣𝐾𝛾𝑗𝑢𝑣

.

21
Here, by rewriting the double sum over all vertices in  as the sum
over all unordered pairs of vertices in  (see Section 3.2),
∑

𝑢,𝑣∈
𝜂𝑗𝑢𝜃𝑢𝑣𝐾𝛾𝑗𝑢𝑣

=
∑

⟨𝑢,𝑣⟩∈
{𝜂𝑗𝑢𝜃𝑢𝑣𝐾𝛾𝑗𝑢𝑣

+ 𝜂𝑗𝑣𝜃𝑣𝑢𝐾𝛾𝑗𝑣𝑢
}

=
∑

⟨𝑢,𝑣⟩∈
𝜂𝑗𝑢𝜃𝑢𝑣(1 − 𝑒2𝛾

𝑗
𝑢𝑣 )𝐾𝛾𝑗𝑢𝑣

≤ 0,

or every 𝛾𝑗𝑢𝑣. Hence 1 ≤ 𝛺𝑗
𝑁 ≤ 1 + 2𝜃𝑗 (1 + ln𝑁)∕𝐿 and therefore

̂≥ 𝜃eff =
1
𝐿

𝐿
∑

𝑗=1

𝜃𝑗

𝛺𝑗
𝑁

≥ 1
𝐿

𝐿
∑

𝑗=1

𝜃𝑗

1 + 2𝜃𝑗 (1 + ln𝑁)∕𝐿
≥

𝜃min

1 + 2𝐿−1(1 + ln𝑁)𝜃min
.

(2) To prove the bound of E𝑁 ⟨∞, 𝑓⟩ in the second statement we
ake 𝑓𝑢𝑢(0) = 𝑓 (0) = 0 in Eq. (20) and start from the representation

𝑁 ⟨∞, 𝑓⟩ =
𝐿
∑

𝑗=1

∑

𝑢,𝑣∈
∫

1

0
𝑓 (𝑦)𝜇𝑗

𝑁 (𝑢, 𝑣, 𝑦) 𝑑𝑦.

s we apply Proposition 1 it is convenient to have the auxiliary notation
𝑢𝑣(𝑦) (only used in this proof)

𝑢𝑣(𝑦) =
1 − 𝑒−2𝛾𝑢𝑣(1−𝑦)

2𝛾𝑢𝑣(1 − 𝑦)
, 0 < 𝑦 < 1.

hen

∫

1

0
𝑓 (𝑦)𝜇𝑗

𝑁 (𝑢, 𝑣, 𝑦) 𝑑𝑦 =
2𝜂𝑗𝑢𝜃𝑢𝑣
𝐿𝛺𝑗

𝑁

{

𝑓 (0+) + ∫

1

1∕𝑁

𝑓 (𝑦)
𝑦

𝜔𝛾𝑗𝑢𝑣
𝐽 𝑗
𝑢𝑣(𝑦) 𝑑𝑦

}

.

We partition the right hand side as

∫

1

0
𝑓 (𝑦)𝜇𝑗

𝑁 (𝑢, 𝑣, 𝑦) 𝑑𝑦 =
2𝜂𝑗𝑢𝜃𝑢𝑣
𝐿𝛺𝑗

𝑁

{

𝑓 (0+) + ∫

1

1∕𝑁

𝑓 (𝑦)
𝑦

𝑑𝑦
}

− 𝑅𝑗
𝑁 (𝑢, 𝑣),

ith

𝑗
𝑁 (𝑢, 𝑣) =

2𝜂𝑗𝑢𝜃𝑢𝑣
𝐿𝛺𝑗

𝑁
∫

1

1∕𝑁

𝑓 (𝑦)
𝑦

{

1 − 𝜔𝑗
𝛾𝑢𝑣

𝐽 𝑗
𝑢𝑣(𝑦)

}

𝑑𝑦.

etting 𝑅𝑁 denote the sum

𝑁 =
𝐿
∑

𝑗=1

∑

𝑢,𝑣∈
𝑅𝑗
𝑁 (𝑢, 𝑣),

hese considerations imply

𝑁 ⟨∞, 𝑓⟩ =
∑

𝑢,𝑣∈
𝜇𝑢 2𝜃𝑢𝑣

{

𝑓 (0+) + ∫

1

1∕𝑁

𝑓 (𝑦)
𝑦

𝑑𝑦
}

− 𝑅𝑁 .

o complete the proof it remains to show that 𝑅𝑁 ≥ 0. Now,

𝑅𝑁 =
𝐿
∑

𝑗=1

2
𝐿𝛺𝑗

𝑁
∫

1

1∕𝑁

𝑓 (𝑦)
𝑦

∑

𝑢,𝑣∈
𝜂𝑗𝑢𝜃𝑢𝑣

{

1 − 𝜔𝛾𝑗𝑢𝑣
𝐽 𝑗
𝑢𝑣(𝑦)

}

𝑑𝑦.

hus, it suffices to show, for each site 𝑗 and each frequency 𝑦,
∑

,𝑣∈
𝜂𝑗𝑢𝜃𝑢𝑣

{

1 − 𝜔𝛾𝑗𝑢𝑣
𝐽 𝑗
𝑢𝑣(𝑦)

}

≥ 0.

y rewriting the double summation as sum over all unordered pairs
𝑢, 𝑣⟩ ∈  , the previous inequality has the equivalent representation
∑

𝑢,𝑣⟩∈

{

𝜂𝑗𝑢𝜃𝑢𝑣
{

1 − 𝜔𝛾𝑗𝑢𝑣
𝐽 𝑗
𝑢𝑣(𝑦)

}

+ 𝜂𝑗𝑣𝜃𝑣𝑢
{

1 − 𝜔𝛾𝑗𝑣𝑢
𝐽 𝑗
𝑣𝑢(𝑦)

}

}

≥ 0.

y applying the detailed balance equation to each site and each edge,
he task is to show
∑

𝑢,𝑣⟩∈
𝜂𝑗𝑢𝜃𝑢𝑣

{

{

1 − 𝜔𝛾𝑗𝑢𝑣
𝐽 𝑗
𝑢𝑣(𝑦)

}

+
𝜔𝛾𝑗𝑢𝑣
𝜔𝛾𝑗𝑣𝑢

{

1 − 𝜔𝛾𝑗𝑣𝑢
𝐽 𝑗
𝑣𝑢(𝑦)

}

}

≥ 0.

Equivalently,
∑

𝜂𝑗𝑢𝜃𝑢𝑣𝜔𝛾𝑗𝑢𝑣
𝑅𝑗
𝑢𝑣 ≥ 0, 𝑅𝑗

𝑢𝑣 = 𝜔−1
𝛾𝑗

− 𝐽 𝑗
𝑢𝑣(𝑦) + 𝜔−1

𝛾𝑗
− 𝐽 𝑗

𝑣𝑢(𝑦).

⟨𝑢,𝑣⟩∈ 𝑢𝑣 𝑣𝑢
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Next we use the anti-symmetric relation (2) for the selection coef-
ficients. If we take a fixed site 𝑗 and an edge which connects two
ertices, 𝑢 and 𝑣 say, and let 𝛾 = 𝛾𝑗𝑢𝑣 = −𝛾𝑗𝑣𝑢 be one of the relevant
election coefficients, then it is straightforward to check that 𝑅𝑗

𝑢𝑣 is
indeed nonnegative for any signed parameter 𝛾 and 0 < 𝑦 < 1,

𝑗
𝑢𝑣 = 𝑒2𝛾 − 𝑒−2𝛾

2𝛾
− 𝑒2𝛾(1−𝑦) − 𝑒−2𝛾(1−𝑦)

2𝛾(1 − 𝑦)
≥ 0.

This verifies the claim 𝑅𝑁 ≥ 0 and yields

𝑁 ⟨∞, 𝑓⟩ ≤
𝐿
∑

𝑗=1

∑

𝑢,𝑣∈

2𝜂𝑗𝑢𝜃𝑢𝑣
𝐿𝛺𝑗

𝑁

{

𝑓 (0+) + ∫

1

1∕𝑁

𝑓 (𝑦)
𝑦

𝑑𝑦
}

= 2𝜃eff
{

𝑓 (0+) + ∫

1

1∕𝑁

𝑓 (𝑦)
𝑦

𝑑𝑦
}

.

e note that this proof actually provides a more general result for
unctions 𝑓 on 𝐷 that are not independent of 𝑢 and 𝑣 but fulfill 𝑓𝑢𝑣(𝑦) =
𝑣𝑢(𝑦) ≥ 0. Then

≤ E𝑁 ⟨∞, 𝑓⟩ ≤ 2
∑

𝑢,𝑣∈
𝜇𝑢𝜃𝑢𝑣

{

𝑓𝑢𝑣(0+) + ∫

1

1∕𝑁

𝑓𝑢𝑣(𝑦)
𝑦

𝑑𝑦
}

.

he other statement in part (2) of Theorem 2 is straightforward under
he additional assumption. □

roof of Corollary 2. A simple calculation verifies that 𝜃 = 𝜃 0 = 𝜃 if
𝑢 = 𝜃 for every 𝑢 ∈  . The rest of the corollary follows directly from
heorem 2. □

.3. The number of segregating sites and genetic diversity

We are now in position to consider concrete measures of genetic
ariation in a population under the general model with selection and
ompare with the known properties of these measures for neutral
volution as listed in Section 4.1. Theorem 2 provides general estimates
alid for arbitrary coefficients of directional selection. First, Theorem 2
pplied with the functions 𝑓 𝜕 and 𝑓 ◦ yield bounds which directly
elate to the listed items (iii) and (iv) of Section 4.1. In particular, the
xpected number of segregating sites under selection satisfies

𝑁 ⟨∞, 𝑓 ◦
⟩ ≤ 2𝜃eff (1 + ln𝑁), 𝜃eff =

∑

𝑢∈
𝜇𝑢𝜃𝑢. (24)

he parallel result for the number of segregating sites in a sample, i.e.
heorem 2 applied with the function 𝑓 specified in item (v), reads

𝑚
𝑁,𝐿 = E𝑁 ⟨∞, 𝑓⟩ ≤ 2𝜃eff

𝑚−1
∑

𝑘=1

1
𝑘
. (25)

Similarly, the expected genetic diversity in the population satisfies 𝜋 ≤
2𝜃eff∕𝐿, which extends (vi) of Section 4.1.

For specific functions 𝑓 we may of course extract more detailed
nformation in addition to the upper bounds discussed here. It is again
onvenient to carry out summation over unordered pairs of graph
ertices. For this, let us assume that 𝑓𝑢𝑢(0) = 0, 𝑓𝑢𝑣(𝑦) = 𝑓 (𝑦), and

∫ 1
0 𝑦−1𝑓 (𝑦) 𝑑𝑦 < ∞. Then

E𝑁 ⟨∞, 𝑓⟩ =
𝐿
∑

𝑗=1

∑

⟨𝑢,𝑣⟩∈

2𝜂𝑗𝑢𝜃𝑢𝑣𝜔𝛾𝑗𝑢𝑣

𝐿𝛺𝑗
𝑁

∫

1

0

𝑓 (𝑦)
𝑦(1 − 𝑦)

( 𝑒2𝛾
𝑗
𝑢𝑣(1−𝑦) − 𝑒−2𝛾

𝑗
𝑢𝑣(1−𝑦)

2𝛾𝑗𝑢𝑣

)

𝑑𝑦.

n particular, for 𝑓 (𝑦) = 2𝑦(1 − 𝑦),

= E𝑁 ⟨∞, 𝑓⟩∕𝐿 =
∑

⟨𝑢,𝑣⟩∈

2𝜃𝑢𝑣
𝐿

1
𝐿

𝐿
∑

𝑗=1

2
𝛺𝑗

𝑁

𝜂𝑗𝑢
𝜔𝛾𝑗𝑣𝑢

.

The functional 𝑓 ◦ to obtain the expected number of segregating
sites does not fulfill the condition ∫ 1

0 𝑦−1𝑓 ◦(𝑦) 𝑑𝑦 < ∞. Nevertheless we
obtain an explicit representation of the expected number of segregating

𝑗

22

sites. Since the probability that a single site 𝑗 is polymorphic is (𝛺𝑁 −
1)∕𝛺𝑗
𝑁 , the expected number of segregating sites in a sequence of length

𝐿 is

E𝑁 ⟨∞, 𝑓 ◦
⟩ =

𝐿
∑

𝑗=1

𝛺𝑗
𝑁 − 1

𝛺𝑗
𝑁

=
𝐿
∑

𝑗=1

2
∑

⟨𝑢,𝑣⟩∈ 𝜂𝑗𝑢𝜃𝑢𝑣{1 + ln𝑁 +𝐾𝛾𝑗𝑢𝑣
+ 𝑒2𝛾

𝑗
𝑢𝑣 (1 + ln𝑁 −𝐾𝛾𝑗𝑢𝑣

)}

𝐿 + 2
∑

⟨𝑢,𝑣⟩∈ 𝜂𝑗𝑢𝜃𝑢𝑣{1 + ln𝑁 +𝐾𝛾𝑗𝑢𝑣
+ 𝑒2𝛾

𝑗
𝑢𝑣 (1 + ln𝑁 −𝐾𝛾𝑗𝑢𝑣

)}
.

. Discussion

We have set up a multi-allele, multi-locus Wright–Fisher graph
odel to derive rigorous upper bounds for a wide class of summary

tatistics of genetic variation in Theorem 2. For any representative
easure in this class the upper bound is a multiple of the average

ffective mutation rate 𝜃eff. The multiplicative factor is independent
f directional selection and purely depends on the measure of genetic
iversity. Hence, mutation and directional selection only affect the
pper bound through 𝜃eff or 𝜃. To obtain selection-independent upper
ounds for arbitrary mutation rates, 𝜃 can be replaced with e.g. 𝜃max.
he additional observation in Corollary 2 that homogeneous mutation
ates make 𝜃 independent of directional selection shows that the upper
ounds are the same as those for neutral evolution, and hence veri-
ies the general presumption that directional selection reduces genetic
ariation.

There exists a number of deterministic models to verify the reduc-
ion of genetic variation due to directional selection (Feldman, 1971;
ovak and Barton, 2017; Pontz and Feldman, 2020), also referred to
s ‘‘constant frequency-independent selection’’. These models are based
n replicator equations, that were initially used by Feldman (1971)
n this field. Within this deterministic modeling approach analytical
esults on the interactions between loci due to physical linkage and/or
pistasis can be derived, whereas mutation and genetic drift as addi-
ional evolutionary forces are often not taken into account. The effect
f interactions among loci on genetic variation highly depends on the
ombination of several evolutionary processes such as the magnitude
f recombination relative to the mutational input, the strength of
election, and the relative order of epistasis in comparison to the latter
rocesses (McVean and Charlesworth, 2000; Barton, 2016; Novak and
arton, 2017). Within our current setting the effects of these phenom-
na are not addressed. Instead, we take a complementary approach and
ncorporate mutation and genetic drift, which is in particular relevant
or the discussion of weak selection forces (Wright, 1931; Kimura,
983; Ohta, 1992). In the following section we will illustrate the
elevance of this setting for studying the interaction between mutation
nd fixation bias.

.1. Interaction between mutation and fixation bias

We say that there is a mutation bias between two allelic types
, 𝑣 ∈  , if mutation from one type to the other occurs more often
han in the reverse direction, i.e. if 𝜃𝑢𝑣 ≠ 𝜃𝑣𝑢, and there is fixation bias
etween 𝑢 and 𝑣 whenever 𝛾𝑢𝑣 ≠ 0. In addition to selection, fixation

bias can be caused by biased gene conversion. Relevant combinations
of mutation bias and fixation bias may act in opposite directions and
hence counterbalance their influence on the stationary distribution or
act in the same direction and thus reinforce each other.

For a scenario with homogeneous mutation rates and prescribed
selection parameters, Corollary 2 shows that genetic variation overall
behaves much in the same way as for the case with no fixation bias.
Homogeneous mutation, however, is arguably not necessarily realis-
tic for genetic data, except perhaps on graphs of constant degree,
i.e., graphs with the same number of edges attached in each vertex.
Hence, whenever the total mutation rates among types differ, it is worth
studying the combined impact of mutation bias and fixation bias on the
upper bounds in Theorem 2. Mutation rates among the four nucleotides
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Fig. 4. Genetic diversity 𝜋 (solid lines) and its upper bound 2𝜃eff∕𝐿 (dashed lines) in panel A and the expected number of segregating sites and its upper bound 2𝜃eff (1 + ln𝑁)
dashed lines) in panel B for different combinations of mutation parameters in a two-type model with equal selection coefficient among loci. Gray curves: 𝜃𝑢 = 𝜃𝑣 = 1.5 ⋅ 10−3, green
urves: 𝜃𝑢 = 3 ⋅ 10−3 > 𝜃𝑣 = 1 ⋅ 10−3, pink curves: 𝜃𝑢 = 1 ⋅ 10−3 < 𝜃𝑣 = 3 ⋅ 10−3. Other parameters: population size 𝑁 = 500 and number of loci 𝐿 = 1500.
&
t

D

c
i

D

A

d
c
t
H

for example are frequently found to be different (Stoltzfus and Norris,
2015; Long et al., 2018). The four nucleotide model (Fig. 3A, nodes
representing nucleotides) can be reduced to a model with two types
by grouping the nucleotides into two classes: weak (A and T) and
strong (C and G) bases. This classification is commonly used to describe
gBGC (Duret and Galtier, 2009; Mugal et al., 2015). The fixation bias
towards GC over AT nucleotides in the presence of gBGC interacts with
the mutation bias between the two classes, which acts in the opposite
direction in several taxa (Long et al., 2018). This illustrates that the
two-type model can be relevant to describe multiple alleles that can be
classified into two types.

Interaction of mutation and fixation bias in a two-type model. We consider
the graph with two types, 𝑢 and 𝑣, in which the dynamics at a fixed
locus 𝑗 are determined by three parameters 𝜃𝑢, 𝜃𝑣 and 𝛾𝑗 = 𝛾𝑗𝑢𝑣, 1 ≤ 𝑗 ≤
𝐿. To illustrate the results obtained in Theorem 2, the upper bounds
are controlled by

𝜃eff =
1
𝐿

𝐿
∑

𝑗=1

1
𝛺𝑗

𝑁

𝜃𝑢𝜃𝑣(1 + 𝑒2𝛾𝑗 )
𝜃𝑣 + 𝜃𝑢𝑒2𝛾

𝑗 ≤ 𝜃 = 1
𝐿

𝐿
∑

𝑗=1

𝜃𝑢𝜃𝑣(1 + 𝑒2𝛾𝑗 )
𝜃𝑣 + 𝜃𝑢𝑒2𝛾

𝑗 ,

hich we can compare with the harmonic mean of the mutation rates
ppearing under neutral evolution, namely

̂0
eff =

1
𝛺𝑁

2𝜃𝑢𝜃𝑣
𝜃𝑣 + 𝜃𝑢

≤ 𝜃 0 =
2𝜃𝑢𝜃𝑣
𝜃𝑣 + 𝜃𝑢

.

onsidering the ratio 𝜃∕𝜃 0 for 𝛾𝑗 = 𝛾, 1 ≤ 𝑗 ≤ 𝐿, we obtain the relations

𝜃
𝜃 0

=
(𝜃𝑢 + 𝜃𝑣)(1 + 𝑒−2𝛾 )
2(𝜃𝑢 + 𝜃𝑣𝑒−2𝛾 )

⎧

⎪

⎨

⎪

⎩

> 1 if (𝜃𝑢 > 𝜃𝑣 ∧ 𝛾 < 0) ∨ (𝜃𝑢 < 𝜃𝑣 ∧ 𝛾 > 0),
= 1 if 𝛾 = 0 ∨ 𝜃𝑢 = 𝜃𝑣,
< 1 if (𝜃𝑢 < 𝜃𝑣 ∧ 𝛾 < 0) ∨ (𝜃𝑢 > 𝜃𝑣 ∧ 𝛾 > 0).

This implies that 𝜃 > 𝜃 0 if mutation bias is opposing fixation bias and
𝜃 < 𝜃 0 if mutation and fixation biases enhance each other.

Such insights can be used together with the results of Theorem 2,
for instance, considering the case of genetic diversity (Fig. 4),

𝜋 = 1
𝐿𝛺𝑁

4𝜃𝑢𝜃𝑣
𝜃𝑣 + 𝜃𝑢𝑒2𝛾

𝑒2𝛾 − 1
2𝛾

≤ 2
𝜃eff
𝐿

= 1
𝐿𝛺𝑁

2𝜃𝑢𝜃𝑣(1 + 𝑒2𝛾 )
𝜃𝑣 + 𝜃𝑢𝑒2𝛾

.

Without mutation bias or with a mutation bias that enhances the
fixation bias, genetic diversity decreases monotonically as selection
becomes stronger (gray and green solid curves in Fig. 4A). If mutation
bias counteracts fixation bias, genetic diversity first increases in the
weak selection regime compared to neutral evolution until a maximum
is reached for an intermediate selection coefficient, and decreases
thereafter for stronger selection (pink solid curve in Fig. 4A). A sim-
23

ilar behavior is observed and discussed in McVean and Charlesworth E
(1999). The upper bound (dashed lines in Fig. 4A) is constant for equal
mutation rates, decreases monotonically if mutation and fixation bias
reinforce each other, and increases monotonically for counterbalancing
biases. The behavior of the expected number of segregating sites and
its upper bounds under the different combinations of mutation rates is
very akin to the curves for genetic diversity (Fig. 4B).

The scenario depicted here where all loci have equal selective
pressure that can become arbitrarily large is rather artificial. In many
taxa the genome-wide average of fixation bias in gBGC takes a value in
the weak selection regime (De Maio et al., 2013; Glémin et al., 2015;
Galtier et al., 2018; Boman et al., 2021). Likewise, according to the
nearly neutral theory (Ohta, 1976, 1992) polymorphisms segregate in
a population if selection is neutral or nearly neutral. In this selection
regime the upper bounds capture the behavior of the measure of genetic
variation well. Only when selection becomes strong, the upper bounds
become more generous. However, strong selection immediately re-
moves genetic variation and consequently, the interaction of mutation
and fixation bias in the strong selection regime is less relevant when
considering a large collection of loci.
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