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Abstract

This paper presents inhomogeneous marked point processes with interactions that are applied
to the analysis of morphostructures exhibited by a paleo-biological dataset presented in Kolesnikov
(2018). Specifically, due to the nature of the dataset, we model the probability density function
describing the models by considering three effects: the distance to the nearest edge, the distance
to the lower right corner, and the distance to a reference circle. Furthermore, interactions between
the points through the observed marks are introduced. This is done using the Strauss and Area-
Interaction processes. Such models have four parameters that must be estimated. The proposed
procedure is as follows. First, the sufficient statistics of the proposed model are computed from the
data. Then, posterior sampling of the parameters is performed using the ABC Shadow algorithm.
Next, the quality of the estimation is assessed by calculating the estimation errors and evaluating
the significance of the model parameters. Finally, the model is verified using a Global Envelopes test
from Myllymäki et al. (2017); Myllymäki M (2023).

The C++ library DRLib is the main programming tool used to perform model simulations, and
parametric statistical inference based on the ABC Shadow algorithm the R package spatstat is used
for the exploratory analysis, for the model verification analysis by global envelope tests and for the
graphical presentation of the results.
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1 Introduction

The data set analysed in this paper is issued from a study of specific morphostructures observed in a
salina pond at Guérande (France). From a simple geometrical perspective, these morphostructures are
discs with different radii located in rectangle as shown in Figure 1. The spatial distribution of these
structures together with the evolution of their respective sizes is important for the specialists, since they
may reveal relevant connections with the morphology of Ediacaran fossils Kolesnikov (2018).

Several aspects should be taken into account. First, the distribution of these structures is influenced
by the manner the salina workers they proceed. These induce some edge and circular efects. The second
element to be taken into account is the water arrival in the pond. And finally, the possible interaction
between these structures should be also considered.

Exploratory analysis of these data done by Kolesnikov (2018) rejected the Poissonian distribution of
the discs centres. In addition, inhomogeneous Poisson point process and area-interaction models using a
fixed interaction radii were fitted to these data by Rhimi and Stoica (2019).

This work propose to make a step forward towards the modelling of this data set by fitting models that
take into account the variability of the size of the observed discs structures. This is achieved through
Bayesian inference Gillot et al. (2023); Stoica et al. (2017). This allows to discuss the quality of the
estimation and the significativity of the model components. The performance of the fitted models is
evaluated using Global envelope tests procedures developed in Myllymäki et al. (2017), and available in
the R package GET (Myllymäki et al., 2017).

The structure of the paper is as follows Section 2 provides the theoretical background and framework
where we describe the type of data, the used models, simulation algorithms and the Bayesian inference
method via the ABC Shadow algorithm. Section 3 uses the aforementioned methodology to the salina
pond data, presenting and discussing the results. Section 4 discuss the main obtained results and outlines
futures perspectives.
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Figure 1: Observed data set: discoidal morphostructures of different sizes distributed in a rectangular
pond.
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2 Framework and Methods

2.1 Marked Point Pattern

Point processes are stochastic models for random configurations of points in a given region W . These pro-
cesses can be generalised to marked point processes, if characteristics or marks, characterised by a prob-
ability distribution, can be attached to the points. The reader should refer to Møller and Waagepetersen
(2004); Van Lieshout (2000) for a rigorous and detailed introduction to marked point processes.

In order to model the observed data, we consider a marked point process with realisations given
by x = {(w1, r1), . . . , (wn, rn)}, where {w1, . . . , wn} ⊂ W ⊂ R2 correspond to the point positions in a
compact observation window W , and {r1, . . . , rn} ⊂ R+

0 are the non-negative radii associated with each
point.

2.2 Examples of Point Process Models

The models presented belong to the exponential family. That is, for a parameter vector θ, their corre-
sponding probability density function with respect to the standard Poisson process, is given by

f(x|θ) =
exp〈t(x), θ〉

c(θ)
, (1)

where t(x) corresponds to the vector of sufficient statistics for θ (Møller and Waagepetersen (2004);
Van Lieshout (2000)). The difficulty in straightforward use of these models is that the normalising
constant c(θ) is not available in a closed analytical form. Therefore, adapted strategies for sampling and
statistical inference are required. The Metropolis-Hastings dynamics for model simulation and the ABC
Shadow algorithm for parametric inference use appropriate techniques to avoid the computation of the
involved normalising constants. These algorithms will be presented later in the paper. Due to these
reasons, it is common to specify a model just by its un-normalised probability density

f(x|θ) ∝ exp〈t(x), θ〉.

2.2.1 Poisson Point Process

This process is maybe the most known point process. Its probability density distributes points indepen-
dently in W and it can be expressed as

f(x | θ) ∝ exp

n(x)∑
i=1

log(ρ(wi, ri))

 , (2)

where ρ represents the intensity measure and n(x) is the number of point in the configuration. If
ρ(wi, ri) = ρ for all i, the process is said to be homogeneous; otherwise, it is inhomogeneous. In this case,
the intensity function models the spatial distribution of points in W .

2.2.2 Strauss Point Process

The Strauss point process was introduced by Kelly and Ripley (1976); Strauss (1975) and it is appropriate
for modelling repulsive point patterns. Its probability density is given by

f(x | β, γs) ∝ exp [n(x) log(β) + sR(x) log(γs)] . (3)

The parameter β > 0 controls the number of points in a configuration. The parameter γs ∈]0, 1[ controls
the number of R-close pairs of points in x, via the statistic

sR(x) =
∑
{ξ,η}⊆x

1[‖wξ − wη‖ ≤ R],

with the parameter R controlling the interaction range.
For our purpose, the marks of the observed point pattern are integrated within the interaction function

as range parameters. Specifically, for the marked point pattern x = {(w1, r1), . . . , (wn, rn)}, we consider
the following interaction statistic:

s(x) =
∑

{(wi,ri),(wj ,rj)}⊆x

1 [‖wi − wj‖ ≤ ri + rj ] .
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2.2.3 Area-Interaction Point Process

The Strauss process presented previously exhibits distance based interactions and it does not produce
clustered patterns. The Area-Interaction process introduced by A. J. Baddeley and van Lieshout (1995)
exhibits territorial interactions and it is able to produce both clustered and regular point patterns.

Similar to the Strauss process, set R ≥ 0 as the interaction range. With β > 0 and γA > 0, the
probability density function of an Area-Interaction point process takes the form:

f(x) ∝ exp (n(x) log(β) + aR(x) log(γA)) , (4)

where the sufficient statistic aR(x) = −
∣∣∣⋃ξ∈x b(wξ, R)

∣∣∣, with b(wξ, R) being the ball of radius R and

centre wξ, denotes the area covered by balls with centres {wξ : ξ ∈ x} and fixed radius R. Therefore
this model controls the area covered by the point pattern. The process tends to favour configurations
that occupy a minimised area whenever γA ≥ 1 hence producing clustering. The other way around the
process encourage configurations that occupy a more territory if 0 < γA < 1, hence producing regular or
repulsive point patterns.

Analogous to the Strauss point process, we introduce the marks into the sufficient statistics statistic
as:

a(x) = − 1

πr̄2

∣∣∣∣∣∣
⋃

(wi,ri)∈x

b(wi, ri)

∣∣∣∣∣∣ ,
such a modification yields to a general occupation of the territory depending on the contribution to it of
each marked point. Here, the term r̄ is given by the mean value of the observed the radii.

2.3 Bayesian inference: ABC Shadow

The ABC Shadow algorithm, introduced in Stoica et al. (2017), operates within a Bayesian framework.
Its primary goal is to estimate parameters by effectively sampling from the posterior distribution. This
process is mathematically represented as:

f(θ | x) ∝ f(x | θ)p(θ),

where p(·) represents the prior distribution of the parameters.
The algorithm employs simulation techniques to mimic the behaviour of an ideal chain, which in

theory allows for drawing samples directly from the posterior distribution. Nonetheless, this approach
is prone to an approximation error. Importantly, the magnitude of this error can be controlled and
minimised (Stoica et al., 2021). For a given vector of perturbation parameters δ of the same dimension
as θ, initial condition θ0, and number of iterations m, the ABC Shadow algorithm can be described by
the following steps:

Step 1: Assume the pattern x is observed.

Step 2: Generate y according to f(y|θ).

Step 3: For k = 1 to m:

(a) Generate a new parameter ψ according to the density Uδ(θk+1 → ψ) defined by Uδ(θ →
ψ) = 1

|b(θ,δ/2)|1b(θ,δ/2){ψ}.

(b) Accept the new state θk = ψ with probability αs(θk−1 → ψ) = min
{

1, f(x,θk)p(θk)
f(x|θk−1)p(θk−1)

f(y|θk−1)
f(y|θk)

}
.

Step 4: Return θm.

Step 5: If more samples are needed, repeat from step 1 with θ0 = θm.

The output are samples from the approximated posterior density f(θ|x). This approximation is well
controlled under rather smooth conditions (Stoica et al., 2017). The probability density f should be
continuously differentiable with respect the parameters θ. Comparing with Møller et al. (2006); Murray
et al. (2006) no exact simulation is required for the simulation of the auxiliary pattern y. In our case,
the needed samples are obtained via the Algorithm 1 which is a Metropolis-Hastings algorithm that is
φ−irreducible, Harris recurrent and geometric ergodic (C. Geyer, 1999; C. J. Geyer & Møller, 1994; Møller
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& Waagepetersen, 2004; Van Lieshout, 2019). The implemented ABC Shadow algorithm is detailled in
Algorithm 2.

Estimation errors can be approximated. The data is assumed to be a sample of the considered
model depending on a “true” parameter which is unknown. The asymptotic normality of the Maximum
Likelihood Estimator (MLE) is used to compute estimation errors. Precisely, there are two types of error
to consider: the error related to the discrepancy between the maximum likelihood estimator (MLE) and

the true parameter, denoted as θ̂ − θ; and the error associated with the difference between the Monte
Carlo maximum likelihood estimation and the unknown exact MLE, denoted as θ̂n − θ̂. The methods to
compute these asymptotic errors have been presented and utilised in several studies, including C. Geyer
(1994, 1999); Gillot et al. (2023); Van Lieshout and Stoica (2003).

Model validation procedure has been done using Global Envelope Tests Myllymäki et al. (2017) based
on chosen summary statistics such as the empty space function, the nearest neighbour distribution, the
pair correlation function and the J function.

Most of the work was developed using the C++ library DRlib (Gemmerlé et al., 2022). This library
was specially build to perform simulation and to produce inference for point processes with interactions.
The current available models are Poisson, Strauss and Area-Interaction with and without marks. The
previously mentioned Metropolis-Hastings and ABC Shadow algorithms are also implemented. However,
at its current state of development, the use of spatstat R library (A. Baddeley et al., 2015) may be
required in order to perform calculations of point patterns summary statistics. These GET envelope tests
were performed using the R package GET (Myllymäki M, 2023).

3 Application: morphostructure spatial distribution and inter-
actions

In the following, the models from the previous section are fitted to the data. The summary statistics
of the point pattern data are depicted in Figure 2 and they will be used to verify the quality of the
modelling. The very first model that we fit is the inhomogeneous Poisson point processes. Since this
process exhibits no interaction between points, it takes into account only the impact of the workers on
the salina pond together with the influence of the position of the water source. In order to explore the
possible interactions between the structures, to the Poisson process, an Area-Interaction and a Strauss
point processes are superposed, alternatively.

3.1 Inhomogeneity Effects

In view of modelling the possible interactions in the point pattern, it is necessary first to consider the
inherent inhomogeneity of the phenomenon, which can be addressed by proposing a function, ρ, in a
suitable form. To this end, and motivated by Rhimi and Stoica (2019), we consider three proposals that
are depicted in Figure 3, where the first two are related to the effect of salina workers and the third one
is considering the direction of water arrival:

• Edge effect: it is considered that points appear more likely as they move away from the edge

ϕ1(wi) = d(wi, ∂W ).

• Influenced area: we assume that the affected zone by the salina workers can be modelled as a region
where the probability to observer a point is low. In this regard, we consider the function

ϕ2(wi) = 1− g
(
r2 − ‖wi − z0‖

r2 − r1

)
,

where the function g(x) is a mollifier function given by g(x) = f(x)/(f(x) + f(1− x)) and f(x) =
exp{−1/x} for x > 0 and 0 if x ≤ 0. The point z0 = (0.777, 0.289) is the center of the empty area,
r1 = 0.0799 is the minimum distance between the z0 and x, whilst r2 = 0.1667 is obtained as the
10th-closest point to z0.

• Preferred direction: from the bottom right corner, say c0, a preferred direction for the appearance
of structures is assumed

ϕ3(wi) = d(wi, c0).
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3.2 Proposed models

The different models considered here are based on the structure of Equations (2), (3), and (4). The
proposed models are build within three steps:

Step 1: consider only the inhomogeneity effect with no interaction between points, i.e., the Poisson com-
ponent f(x | θ) given by the equation (2), where we define θβ = (log(β1), log(β2), log(β3)) and:

ρ(wi | θβ) = β
ϕ1(wi)
1 β

ϕ2(wi)
2 β

ϕ3(wi)
3 .

Step 2: include interaction between points by adding the Strauss component to model repulsion be-
haviour, taking into account the number of points close enough to each other, that is

fs(x | θβ , γs) ∝ f(x | θ) exp [s(x) log(γs)]

Step 3: use an Area-Interaction component instead of a Strauss component to model either repulsion or
attraction by controlling the area generated by the discs:

fA(x | θβ , γA) ∝ f(x | θβ) exp [a(x) log(γA)] .

It can be noticed that all those models belong to the exponential family. In consequence, the parameter
vector can be written as

θ =


θβ , if Poisson

(θβ , log(γs)), if with Strauss

(θβ , log(γA)), if with Area-Interaction

and the sufficient statistic vector is

t(x) =


(t1(x), t2(x), t3(x)) , if Poisson

(t1(x), t2(x), t3(x), s(x)) , if with Strauss

(t1(x), t2(x), t3(x), a(x)) , if with Area-Interaction

, with tj(x) =

n(x)∑
i=1

ϕj(wi),

where those values for the described data set are calculated using DRlib and showed in the table 1.

Table 1: Sufficient statistics calculated for the Sel de Guerande point pattern

t1(x) t2(x) t3(x) s(x) a(x)
59.051 300.383 200.006 214 -88.2704

3.3 ABC Shadow set-up and results analysis

3.4 Set-up of the algorithm

The use of the ABC Shadow algorithm requires to set hyper-parameters such as: delta step to update
the proposal, the initial values of the parameters, define the interval where to look the real parameter,
the number of iterations and the number of samples. There is no a exact rule to select them and these
parameter have a direct influence on the convergence of the algorithm. Here, these parameters were
chosen after several trials and error on simulated data. In fact, model with known parameters were
simulated, hence the estimation result from these simulation is perfectly known, this allowing the set-up
of the hyper-parameters . The choices adopted here are presented in Table 2.

Given those hyper-parameters, only the sufficient statistics of the data set regarding of the respective
exponential family model and the mark distribution are required. Here for the marks, the uniform
distribution is chosen.

The sampling from the posterior of the different models are presented in the Figure 7, for the models
Poisson, with Strauss and with Area-Interaction respectively. It is noted that the posterior effectively
look as a Gaussian, then the respective estimation of each parameter is selected by the mean of the
posterior.
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Parameter Value
General setting
Observation window 1.2× 0.8
Probability of birth (pb) 0.5
Probability of death (pd) 0.5
Number of loop theta (N) 1× 105

Number of iterations theta (m) 100
MH time for generating an x sample 250
Observed statistics
Poisson Edge effect (t1(x)) 59.051
Poisson Influenced area (t2(x)) 300.383
Poisson Preferred direction (t3(x)) 200.006
Strauss (s(x)) 214
Area-Interaction (a(x)) -88.2704
Poisson components parameters
Interval of log(βi) range [−30.0, 30.0]
Perturbation parameter (δ) 0.01

Initial value log(β
(0)
i ) 0.0

Strauss model parameters
Interval of log(γs) range [−10.0, 0.0]
Perturbation parameter (δ) 0.001

Initial value log(γ
(0)
s )) -0.5

Strauss random radius range U [0.0025, 0.0450]
Area Interaction model parameters
Interval of log(γA) [−10.0, 10.0]
Perturbation parameter (δ) 0.01

Initial value log(γ
(0)
A )) 0.0

Area-Interaction random radius range U [0.0025, 0.0450]

Table 2: Parameter setting for the ABC Shadow algorithm.

3.5 Results analysis

The ABC Shadow algorithm was run in order to obtain 10, 000 samples of the parameter vector for each
considered model. For all the models, their corresponding parameters were estimated by the Maximum
Posterior Mode. For these values of the parameters, simulations of the models were drawn in order to
compute asymptotics and to perform global envelope tests.

The histogram of the selected parameters via ABC Shadow for the Poisson, Strauss, and Area inter-
action point process are depicted in Figure 7. For all the models we conclude that the parameters are
statistically significant.

The evolution of the sufficient statistics of the models with the estimated parameters are presented
in Figures 4, 5, 6 indicate good behaviour of the algorithms: the sufficient statistics curves look stable
suggesting the stationary regime is reached. The average values of the sufficient statistics are close the
values of the observed statistics. This announces a rather good quality of the parameter estimation,
which is assessed by the asymptotic errors presented in Table 3.

The adequacy of each model was explored using statistical tests based on different summary statistics.
In this regard, we sample from the posterior distribution of the parameters by storing a point pattern after
two hundred simulations until 999 simulations are reached. Then, under the hypothesis of independence,
the stored samples are used to build 95% area envelopes (Myllymäki et al., 2017; Myllymäki M, 2023)
based on the following summary statistic: the K, F , G, J- functions and the pair correlation function.
The resulting envelopes under the Poisson, Strauss, and Area interaction models are depicted in Figures
8, 9, and 10 respectively. Following Figures 8, 9, the Poisson model and Strauss models are rejected for
all the tests since they have a rather low p-value. Indeed, following the K, G, and the pair correlation
function, both models do not reproduce the aggregation levels of the observed data. For the case of the
Area-Interaction model, Figure 10 the p-values of the tests for the K, F , and pcf tend to be greater.
Since, the envelope test is not rejected for theses statistics, this indicates a better performance of this
model with respect to the Poisson and the Strauss process.
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4 Conclusions

In this paper we provide a methodology to analyse point patterns with marks using statistical Bayesian
learning with the ABC Shadow algorithm with models such allows interaction behaviour in the points
related to their marks.

The results shows that the integration of interaction model as the Strauss and Area-Interaction have
a significant role in order to understand the behaviour of the studied data set.

Moreover, the analysis realised in conjoint with the summary statistic functions indicates that the
Area-Interaction model, with attraction parameter value, represent better the relations between the
points and their marks. However, this model is not enough to understand the point pattern because of
a remaining repulsion which can be modelled by including the Strauss component in this model.

Some perspectives deserve to be outlined. First, the information related to the radii distribution
of the pattern should be better integrated into the model as mark distribution or into more adequate
interaction functions. As an argument in favour of it, Figure 11, panels 11a and 11b shows the envelopes
of the radii distribution obtained from the samples of the Strauss and Area-Interaction models simulated
with the estimated parameters, respectively. It appears, that even if not perfectly, the Area-Interaction
model captures important features of the radii distribution of the observed pattern. Then, a Bayesian
framework can be considered for the choice of the hyper-parameters of the algorithm in an integrated
form. And finally, investigate whether it is possible that the residual analysis of point processes A. Bad-
deley et al. (2015) may be incorporated within this framework in order to determine simultaneously the
best model and its related parameters.

Considering the milestone role of DRLib in this work, it is proposed to continue to develop this library
since it allows intensive simulation study of point process based inference.
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ĝRipley(r)
gPois(r)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.
2

0.
4

0.
6

0.
8

1.
0

r

J
(r

)
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Figure 2: From left to right and up to down: Real point pattern (without the marks) with its empirical K-
function, F-function, G-function, pair correlation function and J-function. All of the estimated functions
where computed considering the edge correction function and without considering the marks.
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Poisson 0.00074 0.0001 7.6e-05 - -

Poisson + Strauss 0.0018 0.0002 0.0001 3.1e-05 -
Poisson + AreaInt 0.0006 0.0001 7.8e-5 - 9.1e-5
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6 Appendix A: Metropolis Hastings Algorithms

Algorithm 1 Metropolis-Hastings algorithm to simulate a Point Pattern

Require: N ≥ 0, a initial configuration x(0) = {(w1, r1), . . . , (wn, rn)}, parameter vector θ, two positive
real numbers pb, pd such that pb + pd = 1
for k = 1, . . . , N do

Set x(k) = x(k−1)

Simulate a Bernoulli random variable B with P (B = 1) = pb.
if B = 1 then . Birth procedure

Generate a random point (ξ, r) within region W and set x′ = x ∪ {(ξ, r)}.
Compute rb = min

{
1, pdpb

f(x∪(ξ,r)|θ)
f(x|θ)

|W |
n(x)+1

}
.

With probability rb, set x(k) = x′; otherwise, do nothing.
else . Death procedure

Choose a random point (ξ, r) from x and set x′ = x \ {(ξ, r)}.
Calculate rd = min

{
1, pbpd

f(x\(ξ,r)|θ)
f(x|θ)

n(x)
|W |

}
.

With probability rd, set x(k) = x′; otherwise, do nothing.
end if

end for
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7 Appendix B: ABC Shadow Algorithm

Algorithm 2 ABC Shadow algorithm to approxmate samples from the posterior distribution

Require: A integer N > 0 of number of samples needed, a perturbation parameter δ > 0, a initial
condition θ0, m number of iterations. Assume a pattern x is observed.
for k = 1, . . . , N do

Generate a point pattern y according to f(y|θ0).
for n = 1 to m do

Generate a new parameter ψ according to the density Uδ(θn−1 → ψ) defined by Uδ(θ → ψ) =
1

|b(θ,δ/2)|1b(θ,δ/2){ψ}.

Compute r = f(x|ψ)p(ψ)
f(x|θn−1)p(θn−1)

× f(y|θn−1)
f(y|ψ)

With probability α = min{1, r}, set θn = ψ; otherwise, θn = θn−1.
end for
A sample θ(k) = θn is obtained.
Set θ0 = θ(k).

end for
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Figure 4: Plot of the computed summary statistic of the first 10,000 simulations of the Metropolis-
Hastings algorithm to simulate a Poisson point process. The summary statistic of the sample is depicted
with red and the average of the 10,000 simulations is depicted with green.
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Figure 5: Plot of the computed summary statistic of the first 10,000 simulations of the Metropolis-
Hastings algorithm to simulate a Strauss point process. The summary statistic of the sample is depicted
with red and the average of the 10,000 simulations is depicted with green.
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Figure 6: Plot of the computed summary statistic of the first 10,000 simulations of the Metropolis-
Hastings algorithm to simulate an Area interaction point process. The summary statistic of the sample
is depicted with red and the average of the 10,000 simulations is depicted with green.
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Figure 7: From up to down: estimated posterior density from the sampling of the parameters using ABC
Shadow for the Poisson (upper row), Strauss (middle row) and Area-Interaction models (lower row).
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Figure 8: From left to right and then up to down: Simulation of the last point pattern and envelopes for
the K, F, G, partial correlation function and J function under the Poisson model.
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Figure 9: From left to right and then up to down: Simulation of the last point pattern and envelopes for
the K, F, G, partial correlation function and J function under the Strauss model.
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Figure 10: From left to right and then up to down: Simulation of the last point pattern and envelopes
for the K, F, G, partial correlation function and J function under the Area interaction model.
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(a) Strauss point process
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(b) Area-Interaction point process

Figure 11: Envelopes for the radii cumulative distribution build from the simulation of two estimated
models.
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