

ccDice: A Topology-Aware Dice Score Based on Connected Components

10/10/2024 TGI3@MICCAI

Pierre Rougé¹²

Supervisors :

Nicolas Passat¹ Odyssée Merveille² ¹Université de Reims Champagne Ardenne, CRESTIC, Reims, France ²CREATIS; CNRS (UMR 5220); INSERM (U1294); INSA Lyon; Université de Lyon, France

Context

Context

Medical image segmentation involves objects with complex geometries and shapes which need to be preserved during segmentation.

For such objects, standard metrics (like Dice or Hausdorff distance) are often inadequate.

Topological metrics or loss functions allow to correctly measure the topogical structure of segmentations.

State of the art

GT

Method

Pre	di	ct	ior	
			_	

2

Dice = 0.97

Image

Limitations of the current topological metrics

- Betti numbers:
 - \circ β_0 : number of connected components.
 - \circ β_1 : number of holes(2D)/tunnels(3D).
 - \circ β_2 : number of cavities.
- Limitation: not spatially correlated.

				0
Context	State of the art	Method	Results	Conclusion

4

Limitations of the current topological metrics

- Betti numbers:
 - \circ eta_0 : number of connected components.
 - \circ β_1 : number of holes(2D)/tunnels(3D).
 - $\circ eta_2$: number of cavities.
- Limitation: not spatially correlated.

 $\begin{array}{ll} \mbox{Reference} & \mbox{Prediction} \\ \beta_0^{err} = |\beta_0^{pred} - \beta_0^{ref}| = 0 \end{array}$

Context	State of the art	Method	Results	Conclusion

Limitations of the current topological metrics

• Betti numbers:

- \circ eta_0 : number of connected components.
- \circ β_1 : number of holes(2D)/tunnels(3D).
- $\circ eta_2$: number of cavities.
- Limitation: not spatially correlated.

		GT	Prediction	n 2
ontext	State of the art	Method	Results	Conclusion

Limitations of the current topological metrics

• Betti numbers:

- \circ β_0 : number of connected components.
- \circ β_1 : number of holes(2D)/tunnels(3D).
- \circ eta_2 : number of cavities.
- Limitation: not spatially correlated.

Prediction 2

\sim		1	•
$(\cap$	nc	II IC	11
	110	IUS	1.

6

State of the art

Method

Results

7

Conclusion

Limitations of the current topological metrics

• Betti numbers:

Context

- \circ eta_0 : number of connected components.
- $\circ \beta_1$: number of holes(2D)/tunnels(3D).
- \circ β_2 : number of cavities.
- Limitation: not spatially correlated.
- Betti matching (Stucki et al. 2022)
 - spatially match the topological objects thanks to the persistence barcodes of the respective images.

State of the art

Method

• Limitation: not normalized and expensive to compute.

Results

8

Limitations of the current topological metrics

- Betti numbers:
 - \circ eta_0 : number of connected components.
 - \circ β_1 : number of holes(2D)/tunnels(3D).
 - \circ β_2 : number of cavities.
- Limitation: not spatially correlated.
- Betti matching (Stucki et al. 2022)
 - spatially match the topological objects thanks to the persistence barcodes of the respective images.
- Limitation: not normalized and expensive to compute.

ccDice overcomes these limitations by being spatially correlated, normalized and fast to compute.

CReSTIC

9

From Dice to ccDice

Let S, G be two binary images representing a segmentation and a ground truth.

Context	State of the art	Method	Results	Conclusion

CReSTIC

From Dice to ccDice

We can define Dice in terms of number of matching ${\mathcal M}$ and mismatching $\overline{{\mathcal m}}$ pixels.

$$Dice(S,G) = \frac{m(S,G) + m(G,S)}{m(S,G) + \overline{m}(S,G) + m(G,S) + \overline{m}(G,S)}$$

Mismatching pixels $ar{m}(S,G)=|Sar{G}|$ Matching pixels m(S,G)=m(G,S)Mismatching pixels $ar{m}(G,S)=|Gar{S}|$

Ground Truth G

Prediction S

10

				10
Context	State of the art	Method	Results	Conclusion

Intersection

How to define (mis)matching for connected components?

First case

- S and G: segmentation and ground truth.
- $\mathcal{C}[G]$ and $\mathcal{C}[S]$ sets of CCs
- $X \in \mathcal{C}[S]$ $Y \in \mathcal{C}[G]$

- We define $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ the **matching function** of CCs.
- Embedding score $\mathcal{E}(X,Y) = \frac{|X \cap Y|}{|X|} \in [0,1]$
- Then the **matching function** $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ is defined for an $X \in \mathcal{C}[S]$ such that:

$$\mathcal{E}(X,\varphi_{S,G}^{\lambda}(X)) \geqslant \lambda$$

 $Ground \ Truth \ G \ \ Intersection$

 $Prediction\,S$

Context State of the art **Method** Results Conclusion

How to define (mis)matching for connected components?

First case

- S and G: segmentation and ground truth.
- $\mathcal{C}[G]$ and $\mathcal{C}[S]$ sets of CCs
- $X \in \mathcal{C}[S]$ $Y \in \mathcal{C}[G]$
- We define $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ the **matching function** of CCs.
- Embedding score $\mathcal{E}(X,Y) = \frac{|X \cap Y|}{|X|} \in [0,1]$
- Then the **matching function** $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ is defined for an $X \in \mathcal{C}[S]$ such that:

$$\mathcal{E}(X,\varphi_{S,G}^{\lambda}(X)) \geqslant \lambda$$

 $Ground \ Truth \ G \ \ Intersection$

Prediction S

12

ContextState of the artMethodResultsConclusion

 $arphi_{S,G}^{\lambda}:\mathcal{C}[S]
ightarrow\mathcal{C}[G]$

How to define (mis)matching for connected components?

Second case

- S and G: segmentation and ground truth.
- $\mathcal{C}[G]$ and $\mathcal{C}[S]$ sets of CCs
- $X \in \mathcal{C}[S]$ $Y \in \mathcal{C}[G]$

 $\lambda = 0.5$ YMatching CCs Mismatching CCs $arepsilon(X_1,Y)=1.0 \ arepsilon(X_2,Y)=1.0$ $\varepsilon(X_3, Y) = 1.0$ X_3

Ground Truth G Intersection

- We define $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ the matching function of CCs.
- Embedding score $\mathcal{E}(X,Y) = \frac{|X \cap Y|}{|X|} \in [0,1]$
- Then the **matching function** $\varphi_{SG}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ is defined for an $X \in \mathcal{C}[S]$ such that:

$$\mathcal{E}(X,\varphi_{S,G}^{\lambda}(X)) \geqslant \lambda$$

Context State of the art Method Results Conclusion

Prediction S

How to define (mis)matching for connected components?

Second case

- S and G: segmentation and ground truth.
- $\mathcal{C}[G]$ and $\mathcal{C}[S]$ sets of CCs
- $X \in \mathcal{C}[S]$ $Y \in \mathcal{C}[G]$
- We define $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ the **matching function** of CCs.
- Embedding score $\mathcal{E}(X,Y) = \frac{|X \cap Y|}{|X|} \in [0,1]$
- Then the matching function $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ is defined for an $X \in \mathcal{C}[S]$ such that:

$$\mathcal{E}(X,\varphi_{S,G}^{\lambda}(X)) \geqslant \lambda$$

Ground Truth G Intersection Pr

Prediction S

14

• Note: • we force $\varphi_{S,G}^{\lambda}$ being **injective.**

Context State of the art Method Results Conclusion

 $\varphi_{G,S}^{\lambda}: \mathcal{C}[G] \to \mathcal{C}[S]$

How to define (mis)matching for connected components?

Second case

- S and G: segmentation and ground truth.
- $\mathcal{C}[G]$ and $\mathcal{C}[S]$ sets of CCs
- $X \in \mathcal{C}[S]$ $Y \in \mathcal{C}[G]$

 $\lambda=0.5$ Matching CCs YMismatching CCs $arepsilon(Y,X_1)=0.22$ $arepsilon(Y,X_2)=0.26$ $arepsilon(Y,X_3)=0.28$ X_2

- We define $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ the **matching function** of CCs.
- Embedding score $\mathcal{E}(X,Y) = \frac{|X \cap Y|}{|X|} \in [0,1]$
- Then the matching function $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ is defined for an $X \in \mathcal{C}[S]$ such that:

$$\mathcal{E}(X,\varphi_{S,G}^{\lambda}(X)) \geqslant \lambda$$

 $Ground \ Truth \ G \ Intersection$

Prediction S

15

• Note: • we force $\varphi_{S,G}^{\lambda}$ being **injective.**

Context State of the art Method Results Conclusion

From Dice to ccDice: matching for connected components

Based on the introduced notions, we can now define formally the number of matching $\,\mu$ and mismatching $\overline{\mu}$ connected components.

$$\mu(S,G) = |\{X \in \mathcal{C}[S] \mid \exists Y \in \mathcal{C}[G], Y = \varphi_{S,G}^{\lambda}(X)\}|$$

$$\overline{\mu}(S,G) = |\{X \in \mathcal{C}[S] \mid \forall Y \in \mathcal{C}[G], Y \neq \varphi_{S,G}^{\lambda}(X)\}|$$

Context	State of the art	Method	Results	Conclusion

17

From Dice to ccDice: matching for connected components

Based on the introduced notions, we can now define formally the number of matching $\,\mu$ and mismatching $\overline{\mu}$ connected components.

$$\mu(S,G) = |\{X \in \mathcal{C}[S] \mid \exists Y \in \mathcal{C}[G], Y = \varphi_{S,G}^{\lambda}(X)\}|$$

$$\overline{\mu}(S,G) = |\{X \in \mathcal{C}[S] \mid \forall Y \in \mathcal{C}[G], Y \neq \varphi_{S,G}^{\lambda}(X)\}|$$

Then we can define ccDice (connected component Dice) from the previous definition of Dice.

From:

$$Dice(S,G) = \frac{m(S,G) + m(G,S)}{m(S,G) + \overline{m}(S,G) + m(G,S) + \overline{m}(G,S)}$$

To:

$$ccDice(S,G) = \frac{\mu(S,G) + \mu(G,S)}{\mu(S,G) + \overline{\mu}(S,G) + \mu(G,S) + \overline{\mu}(G,S)}$$

				17
Context	State of the art	Method	Results	Conclusion

Context State of the art **Method** Results Conclusion

CREATIS

Experiments

- Experiment #1: Study the behaviour of metrics with an **increasing number of disconnections in the segmentation.**
- Experiment #2: Investigate the metrics when the connected components **are not spatially coherent and not overlapped.**
- Experiment #3: Analyse the metrics when the connected components **are not spatially coherent and overlapped.**
- **Goal:** compare ccDice to other metrics.

CReSTIC

19

Results: experiment #1

• Experiment #1: Study the behaviour of metrics with an increasing number of disconnections in the segmentation.

Context	State of the art	Method	Results	Conclusion

CReSTIC

Results: experiment #2

• Experiment #2: Investigate the metrics when the connected components **are not spatially coherent and not overlapped.**

Context State of the art

Results

Conclusion

CReSTIC

21

Results: experiment #3

• Experiment #3: Analyse the metrics when the connected components **are not spatially coherent and overlapped.**

				= 1
Context	State of the art	Method	Results	Conclusion

CReSTIC

22

Results: experiment #3

• Only ccDice and Betti matching exhibit correct behavior in the three experiments.

Context	State of the art	Method	Results	Conclusion

23

Runtime analysis: average runtime for one image

• ccDice is significantly less computationally expensive than Betti matching.

Context	State of the art	Method	Results	Conclusion

Conclusion

- We proposed a new metric called **ccDice** based on the spatial matching of connected components.
- We evaluated its behaviour on three representative experiments

	β_{match}^{err}	ccDice
Spatial coherence	1	\checkmark
Computation time	×	\checkmark
Normalisation	×	\checkmark
Implementation	2D	2D/3D
Homology groups	All	In 2D : All
nomology groups		In 3D : first and last
Differentiability	√	×

				24
Context	State of the art	Method	Results	Conclusion

Paper

Thank you for your attention !

Contact

Backup slides

27

Results

Algorithm ccDice

 Algorithm 1: Compute ccDice

 Input: $S, G \subseteq \Omega$

 Input: $\lambda \in (0, 1]$

 Output: ccDice $\in [0, 1]$

 1 Build C[S]

 2 Build C[G]

 3 $\mu(S, G) :=$ Compute Matching($C[S], C[G], \lambda$)

 4 $\mu(G, S) :=$ Compute Matching($C[G], C[S], \lambda$)

 5 ccDice := $(\mu(S, G) + \mu(G, S))/(|C[S]| + |C[G]|)$

```
Algorithm 2: Compute matching
   Input: C[S] = \{X_i\}_{i=1}^t
   Input: C[G] = \{Y_i\}_{i=1}^{u}
   Input: \lambda \in (0, 1]
   Output: \mu(S, G)
1 Build \{\varepsilon_{i,j}\}_{(i,j)\in[\![1,t]\!]\times[\![1,u]\!]}
2 Sort E = \{(i, j) \mid \varepsilon_{i,j} \ge \lambda\} by decreasing values of \varepsilon_{i,j}
3 \mu(S,G) := 0
4 foreach (i, j) \in E (sorted) do
       if (i, \star) and (\star, j) are not discarded then
5
            \mu(S,G) := \mu(S,G) + 1
6
            Discard (i, \star)
7
            Discard (\star, j)
8
```


How to define (mis)matching for connected components?

First case

- S and G: segmentation and ground truth.
- $\mathcal{C}[G]$ and $\mathcal{C}[S]$ sets of CCs
- $X \in \mathcal{C}[S]$ $Y \in \mathcal{C}[G]$

Ground Truth G Intersection

- We define $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ the **matching function** of CCs.
- Embedding score $\mathcal{E}(X,Y) = \frac{|X \cap Y|}{|X|} \in [0,1]$
- Then the **matching function** $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ is defined for an $X \in \mathcal{C}[S]$ such that:

$$\mathcal{E}(X,\varphi_{S,G}^{\lambda}(X)) \geqslant \lambda$$

Context State of the art Method Results Conclusion

Prediction S

How to define (mis)matching for connected components?

First case

- S and G: segmentation and ground truth.
- $\mathcal{C}[G]$ and $\mathcal{C}[S]$ sets of CCs
- $X \in \mathcal{C}[S]$ $Y \in \mathcal{C}[G]$
- We define $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ the **matching function** of CCs.
- Embedding score $\mathcal{E}(X,Y) = \frac{|X \cap Y|}{|X|} \in [0,1]$
- Then the **matching function** $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ is defined for an $X \in \mathcal{C}[S]$ such that:

$$\mathcal{E}(X,\varphi_{S,G}^{\lambda}(X)) \geqslant \lambda$$

 $Ground \ Truth \ G \ \ Intersection$

Prediction S

Context State of the art Method Results Conclusion

How to define (mis)matching for connected components?

Second case

- S and G: segmentation and ground truth.
- $\mathcal{C}[G]$ and $\mathcal{C}[S]$ sets of CCs
- $X \in \mathcal{C}[S]$ $Y \in \mathcal{C}[G]$

Ground Truth G Intersection

- We define $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ the matching function of CCs.
- Embedding score $\mathcal{E}(X,Y) = \frac{|X \cap Y|}{|X|} \in [0,1]$
- Then the **matching function** $\varphi_{SG}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ is defined for an $X \in \mathcal{C}[S]$ such that:

$$\mathcal{E}(X,\varphi_{S,G}^{\lambda}(X)) \geqslant \lambda$$

Context State of the art Method Results Conclusion

Prediction S

How to define (mis)matching for connected components?

Second case

- S and G: segmentation and ground truth.
- $\mathcal{C}[G]$ and $\mathcal{C}[S]$ sets of CCs
- $X \in \mathcal{C}[S]$ $Y \in \mathcal{C}[G]$
- We define $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ the **matching function** of CCs.
- Embedding score $\mathcal{E}(X,Y) = \frac{|X \cap Y|}{|X|} \in [0,1]$
- Then the **matching function** $\varphi_{S,G}^{\lambda} : \mathcal{C}[S] \to \mathcal{C}[G]$ is defined for an $X \in \mathcal{C}[S]$ such that:

$$\mathcal{E}(X,\varphi_{S,G}^{\lambda}(X)) \geqslant \lambda$$

 $Ground \ Truth \ G \ \ Intersection$

Prediction S

Persistence barcode

