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Abstract. Image segmentation is a complex task that aims to simultaneously sat-
isfy various quality criteria. In this context, topology is being increasingly consid-
ered. Guaranteeing correct topological properties is indeed crucial for objects pre-
senting challenging (e.g. small, elongated, numerous) shapes. This is especially
true in medical imaging. Designing topology-aware metrics is then relevant, both
for assessing the quality of segmentation results and for designing losses involved
in learning procedures. In this article, we introduce ccDice (connected component
Dice), a topological metric that generalises the popular Dice score. By contrast
to Dice, that acts at the scale of pixels, ccDice acts at the scale of connected
components of the compared objects, leading to a topological assessment of their
relative structure and embedding. ccDice is a simple, explainable, normalized and
low-computational topological metric. We provide a formal definition of ccDice,
an algorithmic scheme for computing it, and we assess its behaviour by compar-
ison to other usual topological metrics, thus emphasizing its relevance. Code is
available on GitHub: https://github.com/PierreRouge/ccDice.
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1 Introduction

Segmentation is one of the most crucial tasks in medical image analysis. The result of a
segmentation process is a set of pixels that represents a structure of interest (e.g. organ,
tissue, lesion). This digital object should exhibit correct properties with respect to the
real structure it describes, in terms of morphology, geometry and topology.

Early in the raise of computer science, various approaches were proposed to design
topological models for numerical imaging [18, 12] with the purpose to be compliant
with the underlying continuous topology of Euclidean spaces [13, 14]. This opened the
way to the development of a rich panel of tools for digital objects, based on topologi-
cal invariants (e.g. connectedness [17], homology [7], homotopy [5]). These topologi-
cal concepts were progressively involved in the design of methods and tools dedicated
to medical image analysis and processing [19]. For decades, topological notions were
directly embedded in algorithms to guide them by modeling topological priors or pro-
viding topological regularization schemes. The rapid development of deep learning in
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(a) Image (b) Ground truth G (c) Segmentation S 1

Dice = 0.97
βerr

0 = 0
ccDice=0.95

(d) Segmentation S 2

Dice = 0.97
βerr

0 = 0
ccDice=0.82

Fig. 1: An image of cells (a), its ground truth G (b) and two segmentation results S 1 (c)
and S 2 (d). The cluster of cells is incorrectly connected in S 2, which also contains false
positive artifacts, resulting in an identical number of CCs as in (b–c), and thus a null βerr

0
metric. Although the false positives and false negatives are not at the same locations,
their total number is equal in both segmentations, resulting in equal Dice scores (0.97).
Based solely on Dice and βerr

0 , it is impossible to differentiate these segmentations, even
though S 1 is better than S 2. By contrast, ccDice rates S 1 higher than S 2 (0.95 vs. 0.82).

medical image segmentation, together with the growing trend to consider topology as a
quality feature, led to a new paradigm. Topological concepts now tend to be embedded
in metrics, for designing both quality scores dedicated to the evaluation of segmentation
results, and losses dedicated to train topology-aware machine/deep learning models.

Therefore, recent works have introduced novel metrics specifically designed to take
into account topological information. In the context of tubular structure segmentation,
Shit et al. [21] proposed the centerline Dice (clDice), which considers the medial axes of
both the predicted and ground truth segmentation to avoid bias effects induced by larger
vs. smaller structures. Some important works leverage discrete Morse theory (DMT) to
identify important topological structures from the likelihood map outputted by a neural
network. For example, Hu et al. [11] designed a loss focusing on the correct segmen-
tation of these critical structures. Also, Gupta et al. [9] introduced a probabilistic DMT
framework which allows computing a structure-wise uncertainty estimation which is
more interpretable than pixel-wise uncertainty, especially for curvilinear structures. Al-
gebraic topology, including topological descriptors, such as Betti numbers or persistent
barcodes [1], were also investigated. For instance, Clough et al. [4] proposed to include
topological priors in the segmentation. Their loss function enforces the persistent bar-
codes of the predicted segmentation to be in line with the theoretical Betti numbers
of the target object. Byrne et al. [2] extended this approach to the case of multiclass
segmentation. Alternatively, Perret et al. [16] proposed to rely on morphological trees
in order to model topological features related to the first and last homology groups,
leading to a differentiable, low-cost topological loss likely to constrain the structure of
a grey-level image. Hu et al. [10] introduced a loss enforcing the segmentation to have
the same Betti numbers as the ground truth. However, these topological descriptors
lack spatial awareness. Indeed, two images with identical topological descriptors can
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represent significantly different structures. To address this issue, Stucki et al. [22] lever-
aged persistence barcodes and designed a loss function that spatially matches objects
with the same topological features between the predicted and ground truth segmen-
tations. This approach marked a significant progress as it proposed a topological and
spatially coherent matching of observed features. A drawback of this approach is its
high computational cost, which makes it hardly tractable in many cases, in particular in
3 dimensions.

In this article, we propose a novel metric called ccDice, for connected component
Dice, to assess both the topological and spatial accuracy of a segmentation. We designed
a metric being (1) explainable, (2) fast to compute, (3) related to both the topology and
the spatial embedding of the objects. The notion of connected components (CCs), that
provides an intermediate level of topological representation of an object, is a good trade-
off regarding objectives (1–3). ccDice is a generalization of the usual Dice score [6] and
thus shares its relevant properties: an explainable and normalized metric.

The core idea is to design a mapping between the CCs of the prediction and those
of the ground-truth. This mapping is driven by the spatial matching between the CCs,
thus involving spatial embedding in the topological analysis. The behaviour of ccDice
is illustrated in Fig. 1.

We provide a formal definition of ccDice in Sect. 2. In Sect. 3, we describe an
algorithm to compute efficiently ccDice. We experimentally evaluate the relevance of
ccDice in Sect. 4, by comparison with other classic overlap and topological metrics.

2 From Dice to ccDice

We aim to compare binary images based on their CCs. This requires to embed images in
a topological space (e.g. [18, 12]). Connected components will be handled as elements
of a partition of an image. Thus ccDice is valid for digital images, but more generally
for any set subdivided as a partition. Given a (nonempty) binary image X, the set of its
CCs is noted C[X] and is a partition of X.

2.1 Dice from (mis)matching

Let S ,G ⊆ Ω be two subsets of a set Ω (the support of the image), that may represent a
segmentation result (S ) and ground truth (G). The Dice score [6] of S with respect to G
is defined as:

Dice(S ,G) =
2|S ∩G|
|S | + |G|

. (1)

By noting tp(S ,G) = |S ∩G|, f p(S ,G) = |S \G| and f n(S ,G) = |G \ S |, Eq. (1) can be
written as follows:

Dice(S ,G) =
2 · tp(S ,G)

2 · tp(S ,G) + f p(S ,G) + f n(S ,G)
. (2)

This formulation of Eq. (2) is generally the one used in the context of segmentation
evaluation.
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Alternatively to this definition in terms of true positives (tp), false postives ( f p)
and false negatives ( f n), we can view the Dice score as a combination of the number of
matching pixels (m) and mismatching pixels (m) between S and G:

Dice(S ,G) =
m(S ,G) + m(G, S )

m(S ,G) + m(S ,G) + m(G, S ) + m(G, S )
=

m(S ,G) + m(G, S )
|S | + |G|

, (3)

where:

m(S ,G) = m(G, S ) = |S ∩G| = tp(S ,G) = tp(G, S ) (4)
m(S ,G) = |S \G| = f p(S ,G) = f n(G, S ) = |S | − m(S ,G). (5)

2.2 Matching connected components

From Eq. (3), the Dice score can be built based on the notions of (mis)matching. In
Eqs. (4–5), the notions of (mis)matching are defined in a point-wise paradigm. Our
purpose is to extend the notion of Dice from point comparison to CC comparison. Fol-
lowing Eq. (3), this requires to generalize the notions of (mis)matching (Eqs. (4–5))
from sets of points to sets of CCs.

Intuitively, a CC X of the segmentation S matches a CC Y of the ground truth G if
their intersection is significant with respect to the size of X.

Let φλS ,G : C[S ] → C[G] be the matching function of CCs from S to a set G, where
λ ∈ (0, 1] is a parameter controlling the required degree of the overlap.

We define the embedding score, E(X,Y), as a function quantifying the degree of
overlap of X with respect to Y:

E(X,Y) =
|X ∩ Y |
|X|

∈ [0, 1] . (6)

Then, the matching φλS ,G is defined such that for any X ∈ C[S ], we have:

E(X, φλS ,G(X)) ⩾ λ . (7)

Remark 1 A CC X ∈ C[S ] has an image by φλS ,G in C[G] iff there exists a CC Y ∈ C[G]
such that E(X,Y) ⩾ λ.

Remark 2 If λ > 0.5 then φλS ,G is unique.

With this definition, each CC X ∈ C[S ] is associated to at most one CC Y ∈ C[G].
However, each CC Y ∈ C[G] could be associated to many CCs X ∈ C[S ]. This property
is undesirable as we need each CC Y ∈ C[G] to be associated with at most one CC
X ∈ C[S ]. To enforce this behavior, we require φλS ,G to be injective (see Sect. 3).

Based on these notions and hypotheses, We can now define the number of matching
(µ) and of mismatching (µ) on CCs as follows:

µ(S ,G) = |{X ∈ C[S ] | ∃Y ∈ C[G],Y = φλS ,G(X)}| (8)

µ(S ,G) = |{X ∈ C[S ] | ∀Y ∈ C[G],Y , φλS ,G(X)}| = |S | − µ(S ,G) . (9)
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Algorithm 1: Compute ccDice
Input: S ,G ⊆ Ω
Input: λ ∈ (0, 1]
Output: ccDice ∈ [0, 1]

1 Build C[S ]
2 Build C[G]
3 µ(S ,G) := Compute Matching(C[S ],C[G], λ)
4 µ(G, S ) := Compute Matching(C[G],C[S ], λ)
5 ccDice := (µ(S ,G) + µ(G, S ))/(|C[S ]| + |C[G]|)

2.3 ccDice from matching

We are now ready to define the notion of ccDice. This definition consists of substituting
in Eq. (3) the number of (mis)matchings m and m on pixels (Eqs. (4–5)) by the number
of (mis)matchings µ and µ on CCs (Eqs. (8–9)). We set:

ccDice(S ,G) =
µ(S ,G) + µ(G, S )

µ(S ,G) + µ(S ,G) + µ(G, S ) + µ(G, S )
=
µ(S ,G) + µ(G, S )
|C[S ]| + |C[G]|

. (10)

Remark 3 We have ccDice(S ,G) ∈ [0, 1].

Remark 4 We have ccDice(S ,G) = 1 iff |C[S ]| = |C[G]| and both φλS ,G and φλG,S are
bijective.

The notion of ccDice generalizes the notion of Dice. This is established by the
following proposition.

Proposition 5 If we endowΩwith a totally disconnected topological space (i.e. a space
that has only singletons as connected subsets), then for two nonempty sets S ,G ⊆ Ω,
we have Dice(S ,G) = ccDice(S ,G).

3 Computing ccDice

Let S ,G ⊆ Ω be two nonempty sets. We note C[S ] = {Xi}
t
i=1 and C[G] = {Y j}

u
j=1 with

t, u ⩾ 1, the sets of CCs of S and G, respectively.
The computation of ccDice (Alg. 1) with respect to S and G mainly consists of

building the two injective functions φλS ,G : C[S ] → C[G] and φλG,S : C[G] → C[S ] in
order to set the values µ(S ,G) and µ(G, S ). These two functions depend on the param-
eter λ ∈ (0, 1] that determines the tolerance of the embedding between the compared
CCs (Eqs. (6–7)).

The computation of φλS ,G and φλG,S is described in Alg. 2. In practice, we process each
candidate pair (Xi,Y j) ∈ C[S ] × C[G] for which we have precomputed the embedding
score εi, j = E(Xi,Y j).

We add a pair (Xi,Y j) to φλS ,G, i.e. we set φλS ,G(Xi) = Y j and increment µ(S ,G) if
E(Xi,Y j) ⩾ λ. When doing so, the other pairs E(Xi, ⋆) can no longer be considered
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Algorithm 2: Compute matching
Input: C[S ] = {Xi}

t
i=1

Input: C[G] = {Y j}
u
j=1

Input: λ ∈ (0, 1]
Output: µ(S ,G)

1 Build {εi, j}(i, j)∈⟦1,t⟧×⟦1,u⟧

2 Sort E = {(i, j) | εi, j ⩾ λ} by decreasing values of εi, j

3 µ(S ,G) := 0
4 foreach (i, j) ∈ E (sorted) do
5 if (i, ⋆) and (⋆, j) are not discarded then
6 µ(S ,G) := µ(S ,G) + 1
7 Discard (i, ⋆)
8 Discard (⋆, j)

(since φλS ,G is a function) and the same holds for the pairs E(⋆,Y j) (since φλS ,G is injec-
tive).

As stated in Rem. 2, when λ > 0.5, the definition of φλS ,G and φλG,S is unique. By
contrast, when λ ⩽ 0.5, many valid functions may be defined. In order to deal with this
indeterminism, when building φλS ,G we process the candidate pairs (Xi,Y j) ∈ C[S ] ×
C[G] by decreasing value of E(Xi,Y j) (the same holds for φλG,S ). A complexity analysis
(presented in supplementary materials) shown that the overall space and time costs of
Alg. 1 are O(n) and O(n log n), respectively.

Time and space cost We set n = |Ω|, that corresponds to the number of points of
the processed images. Alg. 1 relies on a pre-processing step (Lines 1–2) that consists
of building the CCs of S and G. Standard binary images are composed of points (pix-
els/voxels) with a constant number of adjacent neighbours. In this context, building the
CCs of S (resp. G) has time and space costs O(n) (in particular, we store the CC labels
of S and G). The time and space costs of Lines 3–4 are those of Alg. 2 (see below). The
time and space costs of Line 5 are O(1).

Alg. 2 first builds the embedding costs εi, j = E(Xi,Y j) for the pairs of CCs of C[S ]
and C[G] (Line 1). This can be done by building a t × u (sparse) matrix to store these
values and scanning the points of the CCs of C[S ] and C[G]. The time cost of Line 1 is
then O(n). Since we are only interested by pairs (Xi,Y j) such that εi, j , 0, by assuming
that for each Xi, the number of Y j such that εi, j > 0 is O(1) (which generally holds in
imaging applications), the space cost of Line 1 for storing {εi, j}(i, j) is O(n). The time
cost for sorting the useful subset of ⟦1, t⟧×⟦1, u⟧ with respect to εi, j (i.e. the subset that
correspond to non-null εi, j values) is O(n log n). The space cost for storing this subset
is O(n). The space and time costs of Line 3 are O(1). Line 4 iterates O(n) times. At
each iteration, checking wether (i, ⋆) and (⋆, j) are not already discarded has a time
cost O(1) by relying on the matrix built at Line 1. The space and time costs of Line 6
are O(1). Still by using the matrix built at Line 1, the time costs of Lines 7–8 are O(1).
The overall space and time costs of Alg. 2 are then O(n) and O(n log n), respectively.
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(a) Experiment #1 (b) Experiment #2 (c) Experiment #3

Fig. 2: Illustrations of the three proposed experiments. Green (resp. red) depicts a
matched (resp. unmatched) CC. More formally, a green CC of S means that we have
E(X, φλS ,G(X)) ⩾ λ and a green CC of G means that we have E(X, φλG,S (X)) ⩾ λ. Here λ
is set to 0.5.

It follows that the overall space and time costs of Alg. 1 are alsoO(n) andO(n log n),
respectively. Note that when λ > 0.5, the construction of the two mapping functions is
deterministic and does not require the sorting of the embedding values (i.e. we can skip
Line 2 of Alg. 2). In that case, the overall time cost of Alg. 1 becomes O(n).

4 Evaluation

4.1 Experiments

We compare ccDice with standard metrics dedicated to segmentation assessment: (1)
the Dice score [6] which is the gold standard for pixel-wise segmentation; (2) βerr

0 , the
absolute difference between the number of CCs of the segmentation and the ground-
truth; (3) clDice [21] which is dedicated to topological assessment for curvilinear struc-
tures, and (4) βerr

match [22] which leverages persistence barcodes to obtain a spatial match-
ing between topological objects.

For these comparisons, we use the CHASE dataset [8] that provides 28 retinal im-
ages with vascular annotations. To illustrate the behaviour of ccDice, we propose three
experiments where we modified artificially the annotations to generate several pairs
(G, S ). These experiments represent a type of error that could occur in segmentation,
with a gradual escalation in the number of errors. These experiments are illustrated in
Fig. 2.

Experiment #1: The goal is to study the behavior of metrics with an increasing
number of disconnections in the segmentation. For each annotation, we progressively
add random disconnections and compute the metrics accordingly.

Experiment #2: The goal is to study the behavior of the metrics when the number of
CCs remains constant while the pixel-wise overlap of G and S progressively decreases.
We start from annotations that we randomly disconnect to create G. S is then created
from G by progressively removing true CCs and adding an equivalent number of false
ones.

Experiment #3: The goal is to study the behavior of the metrics when the number
of CCs and pixelwise overlap remain constant between S and G, but with distinct CCs.
We start from an annotation, and we create S and G by randomly introducing the same
number of disconnections in each, but at different locations.
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Fig. 3: Experiments #1 (upper-left), #2 (upper-right), #3 (bottom-left). Average run-
times per image with respect to image size (bottom-right). The sizes of images vary
from 64 × 64 to 850 × 850. Dice (purple), clDice (yellow), ccDice (red), βerr

0 (green)
and βerr

match (blue)

4.2 Results

Fig. 3 depicts the evolution of each metric in the three experiments, where the addition
of errors should be reflected by a decrease of their values.

In Exp. #2, the Dice and clDice decrease, since the modifications to the CCs are
carried out spatially. However, they remain close to 1 (best score) in Exps. #1 and #3 as
the disconnections in S do not significantly alter the pixel-wise / medial axis coherence
between S and G.

In Exp. #1, βerr
0 increases, since the number of CCs between S and G diverges.

However in Exps. #2 and #3, it remains close to 0 (best score) as the number of CCs
remains unchanged.

This shows that neither the Dice/clDice nor βerr
0 are able to correctly assess the

topological relevance of a segmentation across all scenarios. The combination of both
metrics also fails in some cases, as evidenced by Exp. #3.

Both ccDice and βerr
match exhibit correct behaviors in the three experiments. Their

respective values decrease when the number of CCs increases (Exp. #1) or when the
spatial matching between the CCs of S and G diverges (Exps. #2 and #3).

However, ccDice presents various advantages. First it is a normalized metric, with
values in [0, 1], similarly to Dice. By contrast, βerr

match can be arbitrarily high which
makes comparisons between images difficult. Second, ccDice can be computed with
a low time complexity, which is never greater than quasi-linear (or even linear when
λ > 0.5). Fig. 3 (bottom-right) presents the average running times of the metrics with
respect to the image size on the CHASE dataset. The running time of ccDice is very
close to that of Dice, clDice and βerr

0 , whereas the running time of βerr
match is significantly
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greater. Third, we propose a 3D implementation of ccDice3, whereas the βerr
match is only

in 2D.

5 Discussion

Analysing holes with ccDice ccDice allows one to compare two binary images S ,G ⊆ Ω
with respect to their respective “objects”, i.e. the CCs X ∈ C[S ] and Y ∈ C[G], which
correspond to the first homology groups of S and G. It is possible to use ccDice to
investigate the “holes” of S ,G, which correspond to their last homology group. We can
apply ccDice on the complements S = Ω \S and G = Ω \G, i.e. compute ccDice(S ,G).
It is possible to combine ccDice(S ,G) and ccDice(S ,G) to get access to a normalized
metric that evaluates a segmentation with respect to these two homology groups.

Towards ccDice loss One significant limitation of our method is its lack of differentia-
bility, preventing its use as a loss function. In the following discussion, we introduce
two extensions of the ccDice for fuzzy images and grey-level images, respectively. This
sets the stage for future research aimed at developing a differentiable version of the
ccDice.

Soft ccDice It is possible to extend ccDice to a soft version that evaluates fuzzy
images S,G : Ω → [0, 1], instead of binary images S ,G ⊆ Ω. A continous soft version
of ccDice can be defined as follows:

ccDiceSoft(S,G) =
∫ 1

0
ccDice(τv(S), τv(G))dv (11)

where τv is the upper thresholding at value v function defined by τv(S) = {x ∈ Ω |
S(x) ⩾ v}. This soft version is compliant with ccDice. Indeed, if S,G : Ω → [0, 1] are
binary functions, i.e. ifS(x) andG(x) = 0 or 1 for any x ∈ Ω, we have ccDiceSoft(S,G) =
ccDice(τ1(S), τ1(G)). This allows in particular to compare e.g. a fuzzy segmentation
map S = Ω→ [0, 1] with a binary ground truth G ⊆ Ω.

In practice, Eq. (11) is computed in a discrete way, by sampling a finite number of
values in [0, 1]. It is also possible to weight the ccDice components of this sum, leading
to a computationally tractable formulation:

ccDiceSoft(S,G) =
∑
v∈V

αv · ccDice(τv(S), τv(G)) (12)

where V ⊂ [0, 1] is a finite set, αv > 0 and
∑

v∈V αv = 1. In particular, ccDiceSoft can be
computed with a time cost O(|V | · n log n).

Grey-level ccDice More generally, one may want to define a generalization of
ccDice to grey-level images without requiring to explicitly build upon persistent ho-
mology paradigm [22]. A convenient way may consist of relying on the notions of
component-trees (min- and max-tree) [20] or the unifying complete tree of shapes [15],
that allow to model the hierarchical structure of all the CCs (objects and holes) of the
threshold sets of grey-level functions S,G : Ω → R. In particular, these trees can be

3 https://github.com/PierreRouge/ccDice



10 P. Rougé et al.

built in quasi-linear time [3] and can be involved in the design of differentiable losses
[16]. These properties open the way to future developments of a grey-level version of
ccDice.

6 Conclusion

In this paper, we introduced ccDice, which builds upon the notions of CCs and spatial
matching to provide a metric evaluating both the topology and spatial matching of seg-
mentations. Similarly to the Dice metric, it is a normalized, interpretable metric. It also
has the notable property to generalize the Dice metric from pixels to CCs (Prop. 5),
which emphasizes its theoretical soundness. Similarly to βerr

match, it takes into account
topological and spatial embedding of the images in order to evaluate the relevance of a
segmentation. In 2D, ccDice is as discriminant as its concurrent the βerr

match as it can as-
sess the two first homology groups, but it is computation time is largely lower. Finally,
ccDice appears as a relevant tool for topological analysis of segmentation, which opens
the way to further fuzzy / grey-level extensions, a step towards developing a differen-
tiable version of the ccDice.
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