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Assessing generalisability of deep 
learning‑based polyp detection 
and segmentation methods 
through a computer vision 
challenge
Sharib Ali 1,2,3*, Noha Ghatwary 4, Debesh Jha 5,6, Ece Isik‑Polat 7, Gorkem Polat 7, Chen Yang 8, 
Wuyang Li 8, Adrian Galdran 9, Miguel‑Ángel González Ballester 9,10, Vajira Thambawita 5, 
Steven Hicks 5, Sahadev Poudel 11, Sang‑Woong Lee 11, Ziyi Jin 12, Tianyuan Gan 12, 
ChengHui Yu 13, JiangPeng Yan 14, Doyeob Yeo 15, Hyunseok Lee 16, Nikhil Kumar Tomar 17, 
Mahmood Haithami 18, Amr Ahmed 19, Michael A. Riegler 5,6, Christian Daul 20, 
Pål Halvorsen 5,21, Jens Rittscher 2, Osama E. Salem 22, Dominique Lamarque 23, 
Renato Cannizzaro 24,30, Stefano Realdon 24,25,30, Thomas de Lange 26,27,28,30 & 
James E. East 3,29,30

Polyps are well‑known cancer precursors identified by colonoscopy. However, variability in their 
size, appearance, and location makes the detection of polyps challenging. Moreover, colonoscopy 
surveillance and removal of polyps are highly operator‑dependent procedures and occur in a highly 
complex organ topology. There exists a high missed detection rate and incomplete removal of colonic 
polyps. To assist in clinical procedures and reduce missed rates, automated methods for detecting 
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and segmenting polyps using machine learning have been achieved in past years. However, the major 
drawback in most of these methods is their ability to generalise to out‑of‑sample unseen datasets 
from different centres, populations, modalities, and acquisition systems. To test this hypothesis 
rigorously, we, together with expert gastroenterologists, curated a multi‑centre and multi‑population 
dataset acquired from six different colonoscopy systems and challenged the computational expert 
teams to develop robust automated detection and segmentation methods in a crowd‑sourcing 
Endoscopic computer vision challenge. This work put forward rigorous generalisability tests and 
assesses the usability of devised deep learning methods in dynamic and actual clinical colonoscopy 
procedures. We analyse the results of four top performing teams for the detection task and five top 
performing teams for the segmentation task. Our analyses demonstrate that the top‑ranking teams 
concentrated mainly on accuracy over the real‑time performance required for clinical applicability. 
We further dissect the devised methods and provide an experiment‑based hypothesis that reveals 
the need for improved generalisability to tackle diversity present in multi‑centre datasets and routine 
clinical procedures.

Colorectal cancer (CRC) is the third leading cause of cancer deaths, with a reported mortality rate of nearly 51%1. 
CRC can be characterised by early cancer precursors such as adenomas or serrated polyps that may, over time, 
lead to cancer. While polypectomy is a standard technique to remove  polyps2 by placing a snare (thin wire loop) 
around the polyp and closing it to cut through the polyp tissue either with diathermy (heat to seal vessels) or 
without (cold snare polypectomy), identifying small or flat polyps (e.g. lesion less than 10 mm) can be extremely 
challenging. This is due to the complex organ topology of the colon and rectum that makes navigation and treat-
ment procedures difficult and requires expert-level skills. Similarly, the localisation and removal of polyps can be 
very challenging due to constant organ deformations, making it sometimes impossible to keep track of the lesion 
boundary, making the complete resection difficult and subjective to the endoscopists’ experience. Computer-
assisted systems can help to reduce operator subjectivity and improve adenoma detection rates (ADR). Similarly, 
computer-aided detection and segmentation methods can also assist in localising polyps and guiding surgical 
procedures (e.g. polypectomy) by showing the polyp locations and margins. Some of the major requirements of 
such a system to be utilised in the clinic are real-time performance and algorithmic robustness. The detection 
task involves both the classification and localisation of polyps, whereas segmentation provides the grouping of 
pixels in an image that are associated with an object belonging to the same category.

Machine learning advances, in particular deep learning, and tremendous improvements in hardware have 
enabled the possibility to design deeper neural networks that can provide real-time performance despite their 
complexity. However, one major challenge in developing these methods is the lack of comprehensive public data-
sets that include diverse patient populations, imaging modalities and endoscope manufacturers. Incorporating 
real-world challenges in the dataset can only be the way forward in building guaranteed robust systems. There 
have been several attempts to collect and curate gastrointestinal (GI) datasets that include other GI lesions and 
polyps (Supplementary Table 1). A significant limitation of the publicly available datasets is that they consist 
of a single centre or a data cohort representing a single population. The most widely used public datasets have 
sampled frames and consist of mostly single modality images. Moreover, even though conventional white-light 
endoscopy (WLE) is used in standard colonoscopic procedures, narrow-band imaging (NBI), a type of virtual 
chromo-endoscopy, is widely used by experts for polyp identification and characterisation.

For polyp, most deep learning-based  detection3–5 and  segmentation6–9 methods are trained and tested on 
the same centre dataset and WLE modality only. In the literature, there are two types of frameworks for object 
detection: single-stage detection framework and multi-stage detection framework. Segmentation deep learning 
methods can be generally classified into fully convolutional networks (FCN), Encoder–Decoder architecture, 
pyramid-based and dilate convolution-based  architectures10. All of these method types have been explored by 
different groups in their works localisation and segmentation tasks of polyps. Details on the methodologies for 
both of these tasks for polyp can be found in the “Related work” section of the Supplementary Notes. It is impor-
tant to note that most of these methods are supervised deep learning techniques that have a major issue in not 
being able to generalise to unseen data from a different centre  population11 or even different modality from the 
same  centre12. The type of endoscope used also adds to the compromise in robustness. Due to selective image 
samples provided by most of the available datasets for method development, the test dataset is also comprised 
of similarly collected set data  samples9,13,14. Like most endoscopic procedures, colonoscopy is a continuous 
visualisation of mucosa with a camera and a light source. During this process, live videos are acquired, which 
are often corrupted with specularity, floating objects, stool, bubbles and pixel  saturation15. The mucosal scene 
dynamics such as severe deformations, view-point changes, and occlusion can be major limiting factors for 
algorithm performance. It is thus important to cross-examine the generalisability of developed algorithms more 
comprehensively and on variable data settings, including modality changes and continuous frame sequences. 
These challenges often lead to the failure of medical image analysis methods. Even for the current CNN-based 
methods imaging artefacts can cause either no detection of polyps or poor accuracies. Similarly, for segmentation 
methods where precise boundary recognition is important, these challenges often tend algorithms to under or 
over-segment areas that can affect automated therapy or resection procedures leading to sub-optimal treatment 
causing the re-occurrence of polyps.

With the presented crowd-sourced Endoscopic Computer Vision challenge in 2021 (EndoCV2021) conducted 
in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI), we collected and curated 
a multicentre  dataset16 aiming at the generalisability assessment of colonoscopy polyp detection and polyp 
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segmentation challenge tasks. For this, we took a strategic approach of providing single modality (white light 
endoscopy modality, WLE) data from five hospitals (both single frame and sequence) for training and validation 
while the test data consisted of four different real-world colonoscopy configurations—(a) mixed centre unseen 
data with WLE modality comprising of samples from five centres also present in the training data, (b) a different 
modality data (narrow-band imaging modality, NBI) from all centres for testing only, (c) a hidden sixth centre 
single frame data for testing only and (d) a hidden sixth centre continuous frame sequence data for testing only. 
While hold-out data with centres included in training assesses the traditional way of testing the supervised 
machine learning methods on held-out data, unseen modality and hidden centre test data gauge the algorithm’s 
generalisability. Similarly, sequence test data split mimics the occurrence of polyps in data as observed in routine 
clinical colonoscopy procedures. The same data was used for assessing both detection and segmentation tasks.

Material and methods
Dataset
The EndoCV2021 challenge addresses the generalisability of polyp detection and segmentation tasks in endos-
copy frames. The colonoscopy video frames utilised in the challenge are collected from six different centres, 
including two modalities (i.e. WL and NBI) with both sequence and non-sequence frames (Fig. 1a). The challenge 
included five different types of data: (1) multi-centre video frames from five centres for training and validation, 
(2) polyp size-based, (3) single frame and sequence data split, (4) modality split (only for testing phase), and 
(5) one hidden centre test (test phase only). The training dataset consisted of 3242 WL frames from five centres 
(i.e. C1–C5) with both single and sequence frames. Participants were allowed to combine accordingly for their 
train-validation splits. The test dataset consists of (a) dataset with unseen modality, NBI (data 1), (b) dataset with 
single frames from the unknown centre (data 2), (c) frame sequences from the mixed centres (C1–C5, data 3), 
and iv) the unseen centre sequence frames (C6, data 4). A total of 777 frames were used, and data 3 was picked 
as the base dataset against which the generalisability of methods were assessed. Polyp size distribution (Fig. 1b, 
on left) and its size in log-scale on resized images of the same resolution ( 540× 720 pixels) (see Fig.  1b, right) 
in both training and test sets are presented. These sizes were divided into null (for no polyp in frames), small 
( < 100× 100 pixels bounding box), medium (between 100× 100 pixels and 200× 200 pixels polyp bound-
ing box) and large ( > 200× 200 pixels polyp bounding box). These numbers were 534, 1129, 1224 and 705, 
respectively, for null, small, medium and large polyps (accounting for 3058 polyp instances) in the training set. 
Similarly, for the test set, the numbers were 134, 144, 296 and 261, respectively, for null, small, medium and 
large size polyps (in total 701 polyp instances). The size variation in both datasets is nearly identical i.e., there 
are similar variations in different polyp sizes (in pixels) (Fig. 1b, on the right), which is due to the defined range 
for categorically representing their occurrence.

Annotation protocol
The annotation process was conducted by a team of three experienced researchers using an online annotation tool 
called Labelbox (see https:// label box. com). Each annotation was cross-validated by the team and by the centre 
expert for accurate polyp boundaries segmentation. At least one senior gastroenterologist was assigned for an 
independent binary review process. A set of protocols for manual annotation of polyp were designed as follows:

• Clear raised polyps: Boundary pixels should include only protruded regions. Precautions were taken when 
delineating along the normal colon folds.

• Inked polyp regions: Only part of the non-inked appearing object delineation
• Polyps with instrument parts: Annotation should not include instrument and is required to be carefully 

delineated and may form more than one object
• Pedunculated polyps: Annotation should include all raised regions unless appearing on the fold
• Flat polyps: Zooming the regions identified with flat polyps before manual delineation. Also, consulting a 

centre expert if needed.

The annotated masks were examined by experienced gastroenterologists who gave a binary score indicating 
whether a current annotation can be considered clinically acceptable or not. Additionally, some experts provided 
feedback on the annotation where these images were placed into an ambiguous category for further refine-
ment based on the expert’s feedback. A detailed process along with the number of annotations conducted and 
reviewed is outlined in Supplementary Fig. 1, and a few exemplary labels for each protocol case are shown in 
Supplementary Figure 2.

Challenge tasks:
EndoCV2021 included two tasks (see Fig. 2): (1) detection and localisation task and (2) pixel-level segmentation 
task. For both the tasks generalisability assessment was also conducted. For the detection task, participants were 
provided with single and sequence frames with manually annotated ground truth polyp labels and their cor-
responding bounding box locations (origin, height, and width). Participants were required to train their model 
for predicting “polyp” class label, bounding box coordinates (origin, height, and width), and confidence scores 
for localisation. For the semantic segmentation task, the pixel-level segmentation ground truths from experts 
were provided that included the same data as provided for the detection task. The participants were challenged 
to obtain close-to-ground truth binary map prediction for each pixel (zero for background and 1 for polyp). Both 
of these challenge tasks were assessed rigorously to understand the generalisability of the developed methods. In 
this regard, the test data consisted of four different categories: data 1, data 2, data 3 and data 4. Data 1 consisted 

https://labelbox.com
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Figure 1.  Multi-centre training and test samples. (a) Colonoscopy video frames for which the annotation 
samples were reviewed and released as training (left) and test (right) are provided. Training samples included 
nearly proportional frames from five centres (C1–C5). In contrast, test samples consisted of a majority of single 
and sequence frames from the unseen centre (C6) with white light modality (WL) only. Test data from the seen 
centres C1, C3, and C5 consisted of only NBI images, while centres C2 and C4 consisted of white light (WL) and 
narrow-band imaging (NBI) modalities. (b) The number of polyp counts and samples with no polyps per centre 
are provided. Polyp sizes (in pixels) were classified based on resized image frames of 540× 720 pixels. Polyp 
sizes (in pixels) are provided on the left, along with their intra-size variability (in log10 scale) on the right for 
training (top) and testing data (bottom).
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of unseen modality with NBI data widely used in colonoscopy; data 2 comprised single frames of unseen centre 
C6; data 3 consisted of mixed seen centre (C1–C5) sequence data. In contrast, data 4 included sequence data 
from unseen centre C6. The scores between data 3 (seen centre data) were compared with the other unseen data 
categories for generalisability assessment. All test results were evaluated on a standard NVIDIA Tesla V100 
GPU. Tabulated summaries are provided highlighting the nature of the devised methods and basis of choice in 
terms of speed and accuracy for detection and segmentation (see Table 1). Most of the participating teams were 
motivated on building ensemble models to benefit from the advantages provided by the ensemble concept. The 
process of ensemble learning incorporates several unique models to achieve better generalisation performance, 
reduce generalisation error and provide improved predictive accuracy when compared to the individual  models17.

Method summary for participating teams
In this paper, we have dissected only the top 4 teams for detection and the top 5 for segmentation based on the 
final leaderboard for round two of the challenge (https:// endoc v2021. grand- chall enge. org/ evalu ation/ round- ii- 
segme ntati on- genra lizat ion- chall enge/ leade rboard/). For the detection tasks, team  AIM_CityU18 employed the 
one-stage anchor-free FCOS as the core detection algorithm and chose ResNeXt-101-DCN with FPN as their final 
feature extractor. Team  JIN_ZJU19 proposed several data augmentation techniques to train the standard YOLOV5 
as the baseline detection algorithm. An ensemble-based architecture for polyp detection was developed, utiliz-
ing the EfficientDet model by team  GECE_VISION20 by aggregating various versions of the Efficient predictors.

For the segmentation task, team  aggcmab21 proposed approach involves employing a cascaded double 
encoder–decoder convolutional neural network. This network architecture aims to enhance the representation 
capabilities of the encoder while also adjusting to a multi-site selection method. Team  AIM_CityU18 has put out 
a suggestion for a low-rank module that aims to distribute feature mappings from a high-dimensional space to a 
low-dimensional manifold while using HRNet as the backbone network. Furthermore, team  MLC_SimulaMet22 
proposed a two-ensemble modelthat incorporates several segmentation methods and a new TriUNet for their 
DivergentNet ensemble model. Additionally, team  sruniga23 also used the HarDNet-MSEG as the backbone 
network and made sure there were few shortcuts. They also used a data augmentation strategy to make the 
model more general. Finally, team  HoLLYS_ETRI24 utilized the Mask R-CNN framework in both task detection 
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Figure 2.  EndoCV2021 challenge tasks: participants performed model training on white light imaging data 
collected from five centres (C1–C5). The tasks included detection and segmentation. Trained models were 
then tested on both seen and unseen centre datasets and on unseen data modality (widely used narrow-band 
imaging). Generalisability assessment is obtained by computing deviations between these unseen samples w.r.t. 
seen samples. Task outputs included bounding box prediction with confidence and class label for detection task 
and binary mask prediction for polyp segmentation.
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and segmentation of the polyps. Ensemble learning was employed, using a 5-fold cross-validation approach to 
improve the overall performance.

Main network framework devised by five top teams are illustrated in Fig. 3. More details about top-performing 
teams participating in detection and segmentation tasks are in a later section.

Evaluation metrics
Assessment of challenge tasks was conducted both on widely used standard metrics and novel generalisation 
metrics developed by the organisers to determine performance gaps between different test-splits (for reproduc-
ibility see https:// github. com/ sharib- vision/ EndoC V2021- polyp_ det_ seg_ gen).

Polyp detection
For the polyp detection task, standard computer vision metrics such as average precision (AP) and intersection-
of-union (IoU)25 defined below were computed.

• IoU: The IoU metrics measures the overlap between two bounding boxes A and B as the ratio between the 
target mask and predicted output, IoU(A,B) = A∩B

A∪B . Here, ∩ represents intersection and ∪ represents the 
union.

• AP: AP is computed as the area under curve (AUC) of the precision-recall curve of detection sampled at all 
unique recall values ( r1, r2, . . . ) whenever the maximum precision value drops. The mathematical formula-
tion is given by: AP =

∑

n

{

(rn+1 − rn)pinterp(rn+1)
}

 . Here, pinterp(rn+1) = max
r̃≥rn+1

p(r̃) . Here, p(rn) denotes 
the precision value at a given recall value. This definition ensures monotonically decreasing precision. AP 
was computed as an average APs at 0.50 and 0.95 with the increment of 0.05. Additionally, we have calculated 
APsmall , APmedium , APlarge . More description about the detection evaluation metrics and their formulas are 
provided at this link (see:  https:// github. com/ sharib- vision/ EndoC V2021- polyp_ det_ seg_ gen/ blob/ main/ 
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Figure 3.  Deep learning methods for segmentation and detection of colonoscopy polyps: method design 
of all top teams for detection and segmentation tasks are depicted. Each network is fed with an input image 
and the output prediction is then either directly predicted or an ensemble of network is used for prediction. 
The description of backbone and nature of these networks is provided in Table 1. Each output prediction for 
detection task is bounding box prediction with class label polyp while for segmentation are the pixel-wise 
classification where polyp classes are provided with label 1 and background pixels as label 0. At bottom, an 
overlay on the original image, bounding box prediction (in black) and segmentation prediction (in red) are also 
shown.

https://github.com/sharib-vision/EndoCV2021-polyp_det_seg_gen
https://github.com/sharib-vision/EndoCV2021-polyp_det_seg_gen/blob/main/evaluationMetrics
https://github.com/sharib-vision/EndoCV2021-polyp_det_seg_gen/blob/main/evaluationMetrics
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Polyp segmentation
For polyp segmentation task, widely accepted computer vision metrics were used that include Sørensen-Dice 
Coefficient ( DSC =

2·tp
2·tp+fp+fn ), Jaccard Coefficient ( JC =

tp
tp+fp+fn ), precision ( p =

tp
tp+fp ), recall ( r = tp

tp+fn ), 

overall accuracy ( Acc = tp+tn
tp+tn+fp+fn ), and F2 ( = 5p×r

4p+r ). Here, tp, fp, tn, and fn represent true positives, false 
positives, true negatives, and false negatives, respectively. In addition to the performance metrics, run time of 
each algorithm was also computed and reported in milliseconds ms.

Another commonly used segmentation metric that is based on the distance between two point sets, ground 
truth (G) and estimated or predicted (E) pixels, was used. The metric is known as an average Hausdorff distance 

( Hd ) and formulated as Hd(G,E) =

(

1
G

∑

g∈G mine∈E d(g , e)+
1
E

∑

e∈E ming∈G d(g , e)

)

/2 . Hd is normalised 

between 0 and 1 by dividing it by the maximum value for a given test set. Thus, 1−Hd can be considered as the 
range for which higher values represented smaller distance between ground truth and estimated segmentation 
boundaries.

Polyp generalisation metrics
Generalisability score was defined based on the stability of the algorithm performance on seen centre dataset with 
WLE modality (data 3) versus unseen centre splits (data 2 and data 4) and unseen modality (data 1) in the test 
dataset. We conducted the generalisability assessment for both detection and segmentation approaches separately.

For detection, the deviation in score between seen and unseen data types were computed over different AP 
categories, k ∈ {mean, small,medium, large} with empirically set tolerance of 10% tolerance, ( tl = 0.1):

Similarly, for segmentation, the deviation in score between seen and unseen data types are computed over 
different segmentation metric categories, k ∈ {DSC, F2, p, r,Hd} with empirically set tolerance of 5%, ( tl = 0.05):

(1)

dev_g =
1

|k|

∑

k

{

|APk
seen − APk

unseen|, if APk
unseen ≥ APk

seen − tl ∗ APk
seen or APk

unseen ≤ APk
seen + tl ∗ APk

seen

0, otherwise.

(2)

dev_g =
1

|k|

∑

k

{

|Sk
seen − Sk

unseen|, for Sk
unseen ≥ Sk

seen − tl ∗ Sk
seen or Sk

unseen ≤ Sk
seen + tl ∗ Sk

seen

0, otherwise.

Table 1.  Summary of the participating teams detection and segmentation tasks for the crowd-sourced polyp 
generalisation challenge. All test was done on NVIDIA V100 GPU provided by the organisers. In total 11 
different methods are provided together with the nature of these methods and basis of their choice that the 
teams considered. All codes for each team are available for reproducibility. FCOS fully convolutional one-stage 
object detection, FPN feature pyramid network, ATSS adaptive training sample selection. YOLO You Only 
Look Once, SGD Stochastic Gradient ‘escent, [d1]–[d4] hyperlinked GitHub repos. LRM low-rank module, 
MSFF multi-scale feature fusion, DPN dual path network, FPN feature pyramid network, BCE binary cross 
entropy BCE binary cross entropy, DSC dice similarity coefficient, IoU intersection over union, W weighted, 
SGD Stochastic gradient descent.

Team name Algorithm Backbone Nature Choice  basis Data  Aug. Loss Opt. Code

 No. of  
parameters 
(M)

Task I: polyp detection

  AIM_CityU18 FCOS FPN, ResNeXt
-101-DCN ATSS Accuracy

speed No Generalized
Focal loss SGD [d1] 51.0

  HoLLYS_ETRI24 Mask R-CNN FPN
ResNet34 Ensemble Accuracy++ No Smooth L1 SGD [d2] 63.75 

  JIN_ZJU19 YOLOV5 CSPdarknet
SPP Ensemble speed++ Yes BECLogits SGD [d3] 140.70 

  GECE_VISION20 EfficientDet EfficientNet
D0-D3 Ensemble Accuracy Yes Focal loss Adam [d4] 30.60 

Task II: Polyp segmentation

  Aggcmab21 DPN92-FPN DPN92-FPN Cascaded Accuracy++ Yes BCE SGD [s1] 75.91 

  AIM_CityU18 HRNet + LRM HRNet MSFF Accuracy
speed Yes BCE,

DSC SGD [s2] 49.90 

  HoLLYS_ETRI24 Mask R-CNN ResNet50 Ensemble Accuracy+
speed+ Yes Smooth

L1 SGD [s3] 63.75 

  MLC_Simu-
laMet22 DivergentNet TriUNet Ensemble Accuracy++ No BCE,

DSC Adam [s4] 180.64 

  Sruniga23 HarDNet68 HarDNet68 Multiscale Accuracy+
speed++ No BCE Adam [s5] 17.42 

https://github.com/sharib-vision/EndoCV2021_teamCodes/tree/main/AIMCityU
https://github.com/EndoCV2021/detectron
https://github.com/GTYuantt/EndoCV2021_yolov5
https://github.com/GorkemP/EndoCV2021-EfficientDet-Pytorch
https://github.com/sharib-vision/EndoCV2021_teamCodes/tree/main/aggcmab
https://github.com/CityU-AIM-Group/EndoCV-2021
https://github.com/EndoCV2021/detectron
https://github.com/sharib-vision/EndoCV2021_teamCodes/tree/main/MLC_SimulaMet
https://github.com/SahadevPoudel/HarDNet-MSEG
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A higher tolerance value is chosen for detection compared to segmentation because the mean intersection-
over-union overlap between the detected and ground truth boxes can have a 10% offset but can still localise the 
polyps well enough, while for segmentation, a larger change can refer to under or over-segmentation.

Challenge setup, and ranking procedure
A challenge website with an automated docker system for metric-based ranking procedures was setup (see 
https:// endoc v2021. grand- chall enge. org). Challenge participants were required to perform inference on our 
cloud-based system that incorporated NVIDIA Tesla V100 GPU and provided a test dataset with instructions 
for using GPU directly without downloading the data for the first two rounds. However, the round 3 was added 
to assess participant’s trained model on an additional unseen sequence dataset by the organisers and dissect 
the methods for fairness reporting and experiment-based hypothesis as learning lessons. Thus, the challenge 
consisted of three rounds, where all provided test frames were from unseen patient data to prevent data leakage. 
Further details on data samples in each round are summarised below:

• Round 1: This round consisted of a subset of test samples released in round 2 and 3. This test subset consisted 
of three data splits each with 50 image samples (in total 150 samples) including unseen modality (data 1, 
50/135 samples), unseen single sample (data 2, C6, 50/86 samples) and mixed centre C1–C5 sequence data 
(data 3, 50/124 samples).

• Round 2: Test subset-II comprised 88 (out of 135) samples of data 1 (unseen modality), 86 samples of data 2 
(unseen single sample, C6) and 124 samples of data 3 (mixed C1–C5). The total test subset-II comprised of 
298 frames.

• Round 3: The organisers performed inference on round 3 data using the same GPU. This round comprised of 
a full test set with 135 samples of data 1 (unseen modality), 86 samples of data 2 (unseen single sample, C6), 
124 samples of data 3 (mixed centre C1–C5 sequence data) and an additional set of 432 sequence samples 
(data 4) from unseen centre C6. Test data 4 was not used in rounds 1 and 2. The total test set thus comprised 
a total of 777 frames.

We conducted elimination for both round 1 and round 2 based on the metric scores on the leaderboard and 
timely submission. In round 2, we eliminated teams with very high computational time for inference (over two 
seconds) and low metric scores on the leaderboard. The metric criteria set for elimination for both rounds was 
10% lower values compared to our baseline model evaluation on the results for worst performing test data (e.g., 
0.10 on average AP and less than 0.50 on DSC). The chosen participants were requested for the method descrip-
tion paper at the EndoCV  proceeding26 to allow transparent reporting of their methods. All accepted methods 
were eligible for round 3 evaluation and have been reported in this paper. Based on leaderboard valid submission, 
only eight top performing teams out-of 16 for segmentation task and four top performing teams teams out-of 
6 teams for detection task were invited for round 2 and round 3 evaluations. Teams with lower scores and high 
processing time were also eliminated.

We rank teams in each category first. The categories for detection included—average detection scores across 
all data, deviation of each method with the training distribution (that is, held-out test data 3) and other distribu-
tions (test data 1, data 2 and data 4), and finally, the time. We then take the average of these rankings (the lowest 
ranking to be the best) and round them. Teams with the lowest value are sorted in ascending order to get the 
ranks. Similarly, for team ranking on the segmentation task, we used average segmentation score and deviation 
scores (between seen and unseen data) using the same datasets as used in the detection task. Each score including 
the time, were ranked individually first, and rounded. Teams with the lowest value are sorted in ascending order 
to get the ranks. All scores involved in the ranking were equally weighted. Please refer to section “Evaluation 
metrics”**** for details.

Ethical approval and privacy aspects of the data
The EndoCV2021 data was gathered from 6 different centres in five countries (i.e. UK, Italy, France, Norway 
and Egypt). Each responsible centre handled the relevant data’s ethical, legal, and privacy (see Supplementary 
Table 2). All data used in the experiments were collected through informed patient consent. All institutions 
required institutional approvals. Collected imaging data were approved by IDRCB for the Ambroise Paré Hospital 
(Paris, France) (IDRCB: 2019-A01602-55); for John Radcliffe Hospital (Oxford, UK) institutional research ethics 
committee approved the collection and use of the data under REC Ref: 16/YH/0247, and other collected images 
at other centres were approved by the institutional data inspectorate. It is to be noted that no tissue samples 
were used. All imaging data used in this study were collected and fully anonymised following the General Data 
Protection Regulation (GDPR) and the Declaration of Helsinki. All methods were carried out in accordance 
with relevant guidelines and regulations.

Results
Our crowd-sourced challenge focuses establishing an objective generalisation study for detection and segmenta-
tion of polyps. We collated a multi-centre dataset with 600 patients videos and consisted of polyps with variable 
sizes, presence of both single and sequence frames, an unseen modality and an unseen centre. The endoscopy 
video frames were gathered from six centres across varied populations (France, UK, Italy, Norway and Egypt), 
including two modalities (i.e. white light and narrow-band imaging). Annotations were made by three researchers 
and reviewed by expert GI consultants in the challenge. The training dataset consisted of 3242 colonoscopy video 
frames from five centres with both binary masks for the segmentation task and bounding box coordinates for 

https://endocv2021.grand-challenge.org
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the detection task. For the test dataset, frames from additional sixth centre were included to provide 777 frames 
from all six centres with a variation between single and sequence frames (see Fig. 1). There was a variation in 
the polyp sizes (in pixels) in both the training and testing set as shown in Fig. 1b. All image files provided in the 
training data were explicitly separated at both patient and video levels from the test samples to make sure that 
there is no data leakage.

Aggregated performance and ranking on detection task
The average precision (AP) at multiple IoU thresholds and polyp-sizes were calculated to understand the precise-
ness in localisation of the detected polyps in the entire test dataset (Fig. 4a,b). Higher IoU thresholds mean better 
polyp localisation. It can be observed that HoLLYS_ETRI and JIN_ZJU teams provided the best two results for 
most IoU thresholds except for AP90 (i.e. IoU threshold of 0.90), where team AIM_CityU showed the second-
best result (Fig. 4a). Similar observations can be noted for polyp size-based AP and average recall (AR), for which 
AIM_CityU has very close results to team JIN_ZJU for small polyps and to team HoLLYS_ETRI for medium 
polyps (Fig. 4b). The precision-recall curve showing the trade-off between precision and recall at various cut-off 
also illustrate that the top-performing teams for most range (recall ≥ 0.5–1.0, Fig. 4c) are HoLLYS_ETRI and 
JIN_ZJU teams. However, this is not true for below range values for JIN_ZJU for all datasets, while AIM_CityU 
team showed consistent performance for all ranges (Fig. 4c and Supplementary Fig. 3). A comparable observation 
can be identified about the deviation scores in the assessment of generalisability (Fig. 4d-e). Even though the 
proposed single-stage YOLO-based detector by JIN_ZJU provided a second best score on the seen data sequence 
(data 3), it showed the highest performance drop (Fig. 4f) to the unseen sequence data (data 4) of nearly above 
25% on AP (Supplementary Table 3).

For the single frame datasets (i.e. both NBI image samples, data 1 and unseen centre WLE image samples, 
data 2), the methods presented by teams HoLLYS_ETRI and JIN_ZJU outperformed in terms of AP values. The 
results by both teams on data 1 had an increased difference for APmean (> 9%), AP50 (> 9%) and AP75 (> 10%) 
when compared to the other teams (Supplementary Table 3). Additionally, team HoLLYS_ETRI provided the best 
AP performance across the different scales. Similarly, on data2, teams HoLLYS_ETRI and JIN_ZJU delivered a 
high AP value compared to the other teams. However, team AIM_CityU produced comparable results leading 
them to third place with a small difference of 0.0051 for APmean score when compared to team HoLLYS_ETRI.

For the seen sequence dataset (Data 3, Supplementary Table 3), team JIN_ZJU preserved the high perfor-
mance when evaluating the APmean (i.e. higher than second-best team AIM_CityU by 4.19%) and the AP75 
(i.e. higher than second-best team HoLLYS_ETRI by 3.29%). Team HoLLYS_ETRI provides the best result for 
AP50 with a difference of 2.10% when compared to AIM_CityU that comes in second place. Furthermore, the 
method by HoLLYS_ETRI surpassed the results of other teams and baseline methods on the unseen sequence 
(Data 4) where the second teams take place with a difference of greater than 0.037, 0.04 and 0.055 on APmean , 
AP50 and AP75 , respectively. In general, results by teams HoLLYS_ETRI, JIN_ZJU and AIM_CityU achieved the 
best performance even when compared to the baselines method. It can be derived that the three teams HoL-
LYS_ETRI, JIN_ZJU and AIM_CityU provided a high performance showing a larger area under the curve for 
all datasets (Supplementary Figure 3), while the baseline method EfficientDetD2 gave the lowest performance, 
followed by the YOLOv4.

Table 2 shows the ranking of the detection task of the polyp generalisation challenge after calculating the 
average detection precision, average deviation scores and time. Team AIM_CityU ranks the first place with 
inference time of 100 ms per frame and lowest deviation scores of dev_g2−3 (0.134), dev_g4−3 (0.056) and dev_g 
(0.093). Followed by team HoLLYS_ETRI in second place with an increased inference time of 690 ms per frame 
and difference of dev_g2−3 (0.078), dev_g4−3 (0.426) and dev_g (0.051). But, it secured the top score for average 
detection with a value of 0.491. Finally, in the third place, team JIN_ZJU takes place with 1900 ms per frame for 
the inference time and the second-best average detection result of 0.478.

Aggregated performance and ranking on segmentation task
Figure 5a demonstrate the boxplots for each teams and baseline methods. It can be observed that the median val-
ues for all area-based metrics (dice, precision, recall and F2) are above 0.8 for most teams when compared on all 
777 test samples. However, a greater variability can be observed for all teams and baselines represented by a large 
number of outlier samples. Only marginal change can be seen for the mean distance-based normalised metric 
( 1−Hd ) for which top teams have higher values as expected. On observing closely only the dice similarity metric 
in Fig. 5b where dot and box plots are provided, teams MLC_SimulaMet and aggcmab obtained the best scores 
demonstrating least deviation and with most samples concentrated in the interquartile range. It can be observed 
that paired aggcmab and MLC_SimulaMet; DeepLabV3+(ResNet50) and ResNetUNet(ResNet34); and HoL-
LYS_ETRI and PSPNet have similar performances since their quartiles Q1, Q2, and Q3 scores are very close to 
each other. Although the mean DSC score of team aggcmab is slightly higher than the MLC_SimulaMet, there was 
no observed a statistically significant difference between these two teams. However, both of these teams reported 
significant differences with p < 0.05 when compared to the best performing baseline DeepLabV3+(ResNet50).

For data 1 (NBI single frame images, Supplementary Table 4), the method suggested by teams sruniga and 
AIM_CityU outperformed against the other team’s baseline methods in terms of JC (> 0.65), DSC (> 0.74) 
and F2 (> 0.73). The team sruniga had an outstanding performance in segmenting fewer false-positive regions 
achieving a PPV result of 81.52 %, which is higher than other methods by at least 5%. Nevertheless, the top recall 
value for team MLC_SimulaMet and HoLLYS_ETRI (> 0.86) proves their ability in detecting more true positive 
regions. The accuracy results on this data were comparable between all teams and baseline methods ranging 
from 95.78 to 97.11% with the best performance by team AIM_CityU. For data 2 (i.e., white light, unseen centre, 
single frames), the methods developed by teams MLC_SimulaMet and aggcmab produced the top values for JC 
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Figure 4.  Assessment of detection methods: (a,b) demonstrate mean average precision (AP) in both IoU-
based and polyp size-based average precision. The downward trend towards the right signifies lower values 
for the baselines than the team values. In (b), the top of the blueish region represents the average precision 
(AP), while the bottom represents the average recall (AR). The black line demonstrates the mean of these two 
values. Both AP and AR are preferred to be higher. (c) Precision-recall (PR) curve for detection task for all test 
sets (aggregated). A separate PR-curve for each test set is shown in Supplementary Figure 2. (d) Deviation in 
mAP scores for data 1, data 2 and data 4 wrt data 3. The box plot with a lower interquartile range and median 
value demonstrates lower deviation and improved generalisability. Clearly, most teams have lower deviations 
compared to baseline methods. (e,f) Generalisation assessment on detection task for which mean average 
precision (mAP) on all data versus deviation computed between seen centre with unseen modality and unseen 
centre is provided in (e). The least deviation (below the dashed line) with a larger mean average precision (mAP 
in the X-axis) is desired. Similarly, a comparison of mAP for both teams and baseline methods on seen centre 
sequence data (C1–C5, data 3) versus unseen centre sequence data, C6 (data 4). Higher values along both axes 
are desired. The size of the circle only refers to a different team or baseline method for better illustration.
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(> 0.77), DSC (> 0.82) and F2 (> 0.81) with comparable results between two teams (second row of the data type 
column, Supplementary Table 4). The PPV value was maintained with the method proposed by team sruniga 
(i.e. as discussed for data 1) with value of 0.8698 ± 0.21 followed by team MLC_SimulaMet in second place with 
a value of 0.8635 ± 0.26. Additionally, the method by team MLC_SimulaMet surpassed the results for all evalu-
ation measures when compared to the other teams and baseline methods on data 3 (third row of the data type 
column, Supplementary Table 4). Moreover, the method proposed by team aggcmab comes in second place with 
more the 5% reduction of results for the JC, DSC and HDF. For this dataset, the baseline method DeepLabV3+ 
(ResNet50) showed improved performance compared to results on previously discussed data (i.e. data 1 and data 
2), where it acquires second place for the F2 and accuracy with a result of 82.66% and 95.99% respectively. On 
Data 4 (unseen centre sequence, last row of the data type column in Supplementary Table 4) methods by teams 
MLC_SimulaMet and aggcmab produce the best results for most of the evaluation measures JC (> 0.68), DSC 
(> 0.73), F2 (> 0.71), ACC (> 0.97) and HDF (< 0.34). Generally, throughout the evaluation process for all tables 
on the different datasets, team sruniga provided a high PPV value on data 1, data 2 and data 4. Furthermore, the 
baseline methods showed low performance in different segmentation metrics compared to the methods proposed 
by the participants, especially with data 1, data 2 and data 4. Supplementary Figure 4 represents the proportion 
of each test data split contributing to the ranking of each team and baseline methods. It can be observed that 
team MLC_SimulaMet and team aggcmab were consistently ranked higher (% of data samples aligning around 
top rank 1) across almost all test data splits except for data 1, in which case most samples for team sruniga and 
team AIM_CityU were ranked better in comparison. Similarly, Supplementary Figure 6a demonstrates that 
around 28.33% of data 1, 21.25% of data 2, 21.66% of data 3 and 31.5% of data 4 has DSC equal or lower than 
0.50. Polyp size variabilitiy for each image sample showed that the highest metric values were those with more 
obvious protruded polyps (Supplementary Figure 5), while subtle polyps appearing next to the folds were among 
worse performing samples (refer Supplementary Figure 6b) including image samples with partial polyp views in 
sequence data were among the flagged worse samples (data 3 and data 4 in Supplementary Figure 6b).

To understand the behaviour of each method for provided test data splits, we plotted DSC values each 
separately and compared the ability of methods to generalise on these. From Fig. 5c,d it can be observed that 
difference in data setting affected almost all methods. It can be observed that there is nearly up to 20% gap in 
performance of the same methods when tested on WLE and NBI. In the same way, this applies to both the single 
frame and sequence frame scenarios, as well as to the use of previously unseen center data. However, it could 
be observed that those methods that had very close values (e.g., HoLLYS_ETRI) suffered in achieving higher 
metric values compared to the other methods. A difference was also observed in single frames from the seen 
centre (data 3) sequence to the unseen centre (data 4) sequence (Fig. 5e).

To assess generalisability of each method, we also computed deviation scores for semantic segmentation 
referred to as dev_g (see Table 3; Fig. 5f). For this assessment, team aggcmab ranked first on both average seg-
mentation scores R seg and deviation score R dev . Even though team sruniga was only third on R seg , they were 
second on R dev and ranked at the 1st position for their computation time with an average inference time of only 
17 ms per second. Team MLC_SimulaMet only was ranked third due to their large computational time of 120 ms 
per frame and more significant deviations (lower generalisation ability). Additionally, Supplementary Figure 7 
illustrates that imperfections in colonoscopic frames pose a challenge to the efficacy of various approaches since 
most of them are susceptible to producing a higher number of false positives. Our illustration shows that team 
aggcmab and team MLC_SimulaMet that used ensemble methods provided the least false positives. We provide 
the results of teams with performance below the baseline and poor ranking compared to the top five teams ana-
lysed in the paper in the Supplementary Table 5 for completeness. It is to be noted that these teams were selected 
in round 3 of the challenge as well but have not been analysed in this paper due to their below baseline scores.

Table 2.  Ranking of detection task of polyp generalisation challenge. Average precision across all test splits 
is provided as Avg_det. Deviation scores are calculated between the test data 3 w.r.t. data 1 (dev_g1−3 ), data 2 
(dev_g2−3 ) and data 4 (dev_g4−3 ). An average deviation score dev_g is computed by averaging the computed 
deviations for each data. Test execution time is provided in ms. Finally, a rank column is used to provide an 
average rank based on the computed ranks for each Avg_det, dev_g and time. Top-two values for each metric 
are highlighted in bold. ↑ : best increasing         ↓ : best decreasing.

Team/method Avg_det ↑

Avg. deviation scores ↓ Time ↓

Rank ↓dev_g1−3 dev_g2−3 dev_g4−3 dev_g (in ms)

AIM_CityU18 0.450 0.089 0.134 0.056 0.093 100 1

GECE_VISION20 0.384 0.056 0.253 0.069 0.126 320 5

HoLLYS_ETRI24 0.491 0.122 0.212 0.098 0.144 690 2

JIN_ZJU19 0.478 0.062 0.230 0.091 0.128 1900 3

YOLOv427 0.316 0.099 0.178 0.060 0.112 13 6

RetinaNet (ResNet50)28 0.320 0.031 0.086 0.040 0.052 27 4

EfficientDetD229 0.298 0.058 0.173 0.078 0.103 200 7
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Discussion
While polyp detection and segmentation using computer vision methods, in particular deep learning, have 
been widely studied in the past, rigorous assessment and benchmarking on the centre-wise split, modality split 
and sequence data have not been comprehensively studied. Our EndoCV2021 edition challenged participants 
to address the generalisability mentioned above issues in polyp detection and segmentation methods on a mul-
ticentre dataset.

For polyp detection and localisation, 3/4 teams chose feature pyramid-based network architectures that 
use regions to localise objects of interest within an image. In contrast, one team (JIN_ZJU) used the YOLOV5 
ensemble paradigm based on multiple differently sized grid boxes but is a faster model than the former. Unlike 
most other team methods that require anchors to detect various objects of different scales and overlap, team 
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Figure 5.  Generalisation assessment on segmentation task: (a) box plots for all segmentation metrics (dice 
coefficient, DSC; precision, PPV; recall, Rec; F2, type-II error; and Hausdorff distance, Hd) used in the challenge 
for all test data samples. (b) Boxplots representing descriptive statistics overall cases (median, quartiles and 
outliers) are combined with horizontally jittered dots representing individual data points in all test data. A 
red line represents the best median line. It can be observed that teams aggcmab and MLC_SimulaMet have 
similar results and with Friedman–Nemenyi post-hoc p value < 0.05 , denoting a significant difference with the 
best-performing baseline DeepLabv3+ method. (c) White light endoscopy, WLE versus narrow-band imaging, 
NBI, (d) single versus sequence data, (e) seen centres, C1–C5 versus unseen centre, C6 and (f) deviation scores. 
The red line in (c–e) represents performance gaps among all the methods. It can be observed that the gaps are 
variable for different data for most methods. However, for some teams, the performance gaps are smaller than 
the baseline while maintaining a higher DSC score. Finally, for (e), a dashed line with 5% deviation is drawn, 
showing three out of 5 team methods aligning with this line while only PraNet and ResNetUNet aligned with 
this demonstrating lower deviation in DSC scores when compared with the aggregated deviation of test sets w.r.t 
unseen test data 3.
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AIM_CityU used an anchor free fully convolution, one-stage object detection (FCOS) method. HoLLYS_ETRI 
mainly focused on accuracy and used an ensemble to train five different models, i.e., one model per centre, and 
an aggregated model output was devised for the test inference. Even though the HoLLYS_ETRI team showed 
top ranking on the average detection score on almost test data splits (Supplementary Table 3, and average 
precision scores in Fig. 4a–c), the observed detection speed of 690 ms and the high deviation in generalisation 
scores only put them on the second rank (see Table 2). On the contrary, AIM_CityU team, with their anchor 
free single stage network, performed consistently well in almost all data with the fastest inference of 100 ms and 
the slightest deviation scores (see Fig. 4d,e; Table 2) between teams. Anchor free methods perform better than 
other methods on sequence data (2nd best for both seen and unseen sequences) because FCOS-based detection 
methods are less sensitive to the dynamic scene changes as they do not depend on pre-defined anchor boxes and 
region proposals. Thus, it can be concluded that anchor free detection methods can better generalise compared 
to methods that require anchors in heterogeneous multicentre datasets. This is strictly true as the polyp sizes (in 
pixels) in the dataset is varied (Fig. 1b) and also the image sizes ranged from 388× 288 pixels to 1920× 1080 
pixels. Also, for the video sequences anchor, free methods are more suitable as polyps occurrences are observed 
at multiple visual scales.

Since all methods trained their algorithm on single-frame images, detection scores for all methods are rela-
tively higher for the data 2 (WLE-single, Supplementary Table 3), compared to the other data categories, although 
they came from unseen data centre 6. However, performance drop can be observed for both seen (centres, 
C1–C5, data 3) and unseen (centre, C6, data 4) sequence data that consisted of WLE images only. In addition, 
change in modality has a detrimental effect on the performance for all methods, even on single frames (see for 
data 1, NBI-single, Supplementary Table 3). A similar drop in performance (nearly 25% difference in average 
precision compared to the seen sequence) was observed for the unseen centre sequence test data (data 4). As a 
result, the average deviation scores in detection for computed for each team were above 10% deviation line for 
the overall aggregated overall deviation scores (Fig. 4e) and significantly lower scores compared to seen sequence 
(data 3) and unseen sequence (data 4) test splits (Fig. 4f). Thus, the methods trained on single frames produce 
sub-optimal and inconsistent detection in videos as image-based object detection cannot leverage the rich 
temporal information inherent in video data. The scenario worsens when applied to a different centre to that on 
which it was trained. To address the limitation of generalization to sequence data, it is possible to employ Long 
Short-Term Memory (LSTM) based techniques, which effectively preserve temporal information to encourage 
the improvement of  predictions34.

For segmentation task, while most teams used ensemble technique targeting to win on the leaderboard 
(MLC_SimulaMet, HoLLYS_ETRI, aggcmab), there were some teams who worked towards model efficiency 
network (e.g., team sruniga) or modifications for faster inference and improved accuracy (e.g., team AIM_CityU). 
Lightweight model using HarDNet68 backbone with aggregated maps across scales (team sruniga) and use of 
multi-scale feature fusion network (HRNet) with low-rank disentanglement by team AIM_CityU outperformed 
all other methods on narrow-band imaging modality (data 1), including the baseline segmentation methods 
(Supplementary Table 4). These methods showed acceptable performance for single frames on unseen data (data 
2, WLE-single) as well. However, on sequence data (both for seen sequence data 3 and unseen sequence data 4), 
both of these methods performed poorly compared to ensemble-based techniques (see Fig. 5). Several networks 
conjoint by MLC_SimulaMet and dual UNet network used by the team aggcmab have the disadvantage of large 
inference time (nearly six times higher than the fastest method). However, it can also be observed that these 
teams provided more robust output in the sequence data (Supplementary Figure 7) where most other methods 
were affected by frame corruption giving more false positives. It is essential to note that this is major bottleneck 
of most deep learning methods for polyp detection and segmentation. Similarly, when it came to capturing the 
size-variability of polyps ensemble segmentation models are more appropriate than using a single model (see 

Table 3.  Ranking of segmentation task of polyp generalisation challenge: ranks are provided based on (a) 
semantic score aggregation, R seg ; (b) average deviation score, R dev ; and (c) overall ranking (Rall ) that takes into 
account R seg , R dev and time. For ties in the final ranking (Rall ), segmentation score is taken into account. For 
time, ranks are provided into three categories: teams with < 50 ms, between 50–100 ms and > 100 ms. Top-two 
values for each metric are highlighted in bold.

 Team/method

Average Seg_score ↑  Average Dev_score ↓ Time ↓
(ms) Rseg ↓  (avg.) Rdev ↓  (avg.) Rall ↓  (avg.)Data 1 Data 2 Data 4 dev_g1−3 dev_g2−3 dev_g4−3

Aggcmab21 0.746 0.849 0.788 0.119 0.024 0.099 107 1 1 1

AIM_CityU18 0.762 0.777 0.589 0.128 0.132 0.107 80 4 3 5

HoLLYS_ETRI24 0.714 0.777 0.746 0.045 0.086 0.049 84 5 1 4

MLC_SimulaMet22 0.741 0.858 0.781 0.151 0.051 0.142 120 2 3 3

Sruniga23 0.771 0.830 0.611 0.035 0.070 0.141 17 3 2 2

Baselines

 DeepLabV3+ (ResNet50)30 0.669 0.838 0.726 0.184 0.042 0.131 19 NA NA NA

  PSPNet30,31 0.593 0.832 0.710 0.235 0.050 0.155 45 NA NA NA

  FCN832 0.651 0.787 0.684 0.137 0.024 0.115 27 NA NA NA

 ResNetUNet-ResNet3433 0.658 0.823 0.729 0.162 0.048 0.090 13 NA NA NA
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Supplementary Figure 5. So the takeaway message is that on single-frame data, multi-scale feature fusion net-
works perform better irrespective of their modality changes. This is without requiring the ensemble of the same 
or multiple models for inference which ideally increases both model complexity and inference time. However, 
on sequence data and capturing varied-sized polyps, we advise incorporating temporal information propaga-
tion in the designed networks. Methods with ensemble models are more desirable to eliminate false positives in 
these scenarios, but with more computational time. Furthermore, to improve model generalisation on unseen 
modality, domain adaptation techniques can be  applied12.

HoLLYS_ETRI used instance segmentation approach with five separate models trained on C1–C5 training 
data separately. It can be observed that this scheme provided better generalisation ability in most cases leading 
to the least deviation on average dice score (see Fig. 5f). Also, it is only team that obtains better results in C6 
compared to C1–C5 and very comparable result between single and sequence frames. However, reported dice 
metric values were lower than most methods, especially ensemble (MLC_SimulaMet) and cascaded (aggcmab) 
techniques targeted towards higher accuracy but are less generalisable (consistency in test inference across 
multiple data categories). This is also evident in Supplementary Fig. 4, where proportion of samples from data 
1 for top-performing teams aggcmab and MLC_SimulaMet are only ranked on the third and fourth test splits. 
Therefore, it can be concluded that pretext tasks can lead to improved generalisability. However, to boost model 
accuracy, modifications are desired that could include feature fusion blocks and other aggregation techniques.

All the top methods developed in our crowd-sourcing event surpassed widely used baseline deep learning 
methods for detection task (Table 2) and segmentation task (Table 3) by large margins. For segmentation task, 
3 out-of 5 devised methods showed significant difference ( p < 0.05 ) with the best performing current baseline 
method (Fig. 5b). However, not all guaranteed robustness and some of these “accurate” methods provided less 
than ten frames-per-second, which is 3–6 times less than the colonoscopy acquired videos. Final takeaway mes-
sage from our experimental findings is that devising a model specific to the polyps require an understanding of 
the data, robustness tests and real-time inference capability for clinical usability. The reliance and confidence 
in the technology can only be guaranteed upon thoroughly testing the developed method under actual clinical 
procedure scenarios. While method accuracy is important, the consistency of the method to perform equally 
well in different settings that are clinically required is important.

Clinical adoption of the methods requires generalizability assessment on different clinical modalities and 
multi-population datasets as conducted in this study. Our study demonstrated that no single deep-learning 
method could improve the accuracy and robustness of baseline models alongside real-time performance. Most 
methods use an ensemble of the models that provide higher accuracy but a sacrifice in speed. Model perfor-
mance gaps are eminent in current deep learning techniques. To strengthen these, more diverse datasets are 
required to be devised and trained on. Similarly, visual cues such as polyp shapes could be used to improve the 
robustness of  methods11. Video polyp segmentation techniques using transformers can be used to improve the 
model  inferences35.

Conclusion
In this work, we presented an extensive dissection of deep learning methods for polyp detection and segmentation 
devised by several top participants in the crowd-sourcing initiative. A comprehensive approach is forwarded to 
assess the usability of deep learning models in routine clinical colonoscopy. Our experimental design provided 
holistic comparisons on a diverse six centre dataset. While most methods provided an improvement over widely-
used current baseline methods, the method design of teams adversely impacted algorithmic robustness and 
real-time capability, mainly when provided unseen sequence data and different modalities. A better trade-off 
in inference time and generalisability can be the key takeaways for further development in this area. Thus, we 
demonstrated the need for generalisable methods to tackle real-world clinical challenges. Experimental-based 
hypotheses were derived after studying the strategies for developing the suggested methodology of the highly-
ranked teams, key findings can be concluded as follows: (a) methods that use anchor-free algorithms general-
ise more effectively; (b) methods proposed for sequence data can benefit from the incorporation of temporal 
information to improve the prediction; (c) model performance can be improved by techniques like multi-scale 
feature fusion, fusion blocks, and other aggregation algorithms and understanding the data; and (d) having the 
proficiency to construct real-time inferences for clinical usability is necessary for creating a model. Accordingly, 
future research towards innovating more practical strategies that can work effectively in multi-centre data and 
diverse modalities often used in clinical colonoscopy procedures. In addition, incorporating temporal relation-
ships in the network designs can be vital for improvement of both accuracy and robustness of polyp detection and 
segmentation methods in colonoscopy. In future work, we aim to develop a larger dataset with video sequences 
directly both for training and test which will be valuable for assessing deep learning methods for clinical usability.

Data availability
 To access the complete dataset, users are requested to create a Synapse account (https:// www. synap se. org/) and 
then the compiled dataset can be downloaded at (https:// www. synap se. org/# !Synap se: syn45 200214). For more 
details on the data please refer  to16.

Code availability
 To help users with the evaluate the generalizability of detection and segmentation method a code is available at: 
https:// github. com/ sharib- vision/ EndoC V2021- polyp_ det_ seg_ gen. The code also consists of inference codes 
that to assist in centre-based split analysis. Benchmark codes of the polypGen dataset with provided training 
and validation split in this paper for segmentation is also available at: https:// github. com/ sharib- vision/ Polyp 

https://www.synapse.org/
https://www.synapse.org/#%21Synapse:syn45200214
https://github.com/sharib-vision/EndoCV2021-polyp_det_seg_gen
https://github.com/sharib-vision/PolypGen-Benchmark.git
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Gen- Bench mark. git. All the method codes for detection (d1-d4) and segmentation (s1–s8) are also available at 
different GitHub repositories provided (see column Code of Table 1).
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