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Abstract

Background: PepT1, an intestinal epithelial apical di/tripeptide transporter, is normally expressed in the small intestine and
induced in colon during chronic inflammation. This study aimed at investigating PepT1 regulation by butyrate, a short-chain
fatty acid produced by commensal bacteria and accumulated inside inflamed colonocyte.

Results: We found that butyrate treatment of human intestinal epithelial Caco2-BBE cells increased human PepT1 (hPepT1)
promoter activity in a dose- and time-dependent manner, with maximal activity observed in cells treated with 5 mM
butyrate for 24 h. Under this condition, hPepT1 promoter activity, mRNA and protein expression levels were increased as
assessed by luciferase assay, real-time RT-PCR and Western blot, respectively. hPepT1 transport activity was accordingly
increased by ,2.5-fold. Butyrate did not alter hPepT1 mRNA half-life indicating that butyrate acts at the transcriptional level.
Molecular analyses revealed that Cdx2 is the most important transcription factor for butyrate-induced increase of hPepT1
expression and activity in Caco2-BBE cells. Butyrate-activated Cdx2 binding to hPepT1 promoter was confirmed by gel shift
and chromatin immunoprecipitation. Moreover, Caco2-BBE cells overexpressing Cdx2 exhibited greater hPepT1 expression
level than wild-type cells. Finally, treatment of mice with 5 mM butyrate added to drinking water for 24 h increased colonic
PepT1 mRNA and protein expression levels, as well as enhanced PepT1 transport activity in colonic apical membranes
vesicles.

Conclusions: Collectively, our results demonstrate that butyrate increases PepT1 expression and activity in colonic epithelial
cells, which provides a new understanding of PepT1 regulation during chronic inflammation.
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Introduction

Butyrate is a short-chain fatty acid (SCFA) produced in the

colonic lumen by bacterial fermentation of carbohydrates and

dietary fibers [1]. In normal mammals, the colonic lumen contains

100–150 mM total SCFAs [2,3]. The molar ratio of three major

SCFAs acetate, propionate and butyrate (which constitute

approximately 90% of total SCFAs in the lumen varies due to

several factors but is generally about 60:20:20 for acetate:propio-

nate:butyrate [3,4]. In mammals, 95–99% of SCFAs produced in

the colonic lumen are absorbed [4,5]. The pH of colonic lumen is

about 6.2, suggesting that at least 90% of all SCFAs exist under

ionized forms. SCFAs uptake by epithelial cells occurs by simple

diffusion of the unionized forms across cell membranes, whereas

uptake of the ionized form is mediated by apical membrane

monocarboxylic transporter (MCT)-1 [6]. SCFAs are rapidly

metabolized by colonocytes and are the main respiratory fuels in

the intestine; indeed, oxidation of SCFAs supplies 60–70% of the

energy need in isolated colonocytes [7]. Of the three major

SCFAs, butyrate is the main intestinal fuel even in the presence of

competing substrates such as glucose and glutamine [8]. In

addition to its function as the dominant energy source for

colonocytes, butyrate also affects cellular proliferation, differenti-

ation and apoptosis [9,10,11].

Intestinal epithelial cells absorb small dietary peptides by the

action of apical membrane peptide transporters. A cDNA

encoding an apical membrane protein possessing this peptide

transport capability has been cloned from humans and designated

hPepT1 [12,13,14]. PepT1 is primarily expressed in brush border

membranes of enterocytes in the small intestine, in the proximal

tubular cells of the S1 segment of the kidney, and in bile duct

epithelial cells [15,16,17]. Within the small intestine, PepT1 has a

differential pattern of expression. Along the vertical axis, PepT1 is

most abundant at the villous tip and expression decreases towards

the crypt [18]. Along the longitudinal axis, the density of PepT1

increases from duodenum to ileum [19]. PepT1 is also expressed

in immune cells as recently reported [20,21]. PepT1 is generally

not expressed in the esophagus, stomach or normal colon [16,22];

however, hPepT1 expression has been observed in inflamed colon

from patients with inflammatory bowel disease (IBD) [22]
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suggesting a link between hPepT1 expression and inflammatory

pathways. Furthermore, hPepT1 expression was found to be

upregulated in the colonic mucosa of patients with short-bowel

syndrome after surgical resection of the proximal small intestine,

which also indicates that hPepT1 expression is induced in colonic

epithelial cells under pathological conditions [23]. In epithelial

cells, butyrate is a potent stimulator of the transcription of

membrane transporters such as the rat Na+/H+ exchanger

(NHE3) [24,25] and the human c-epithelial sodium channel [26].

In the present study, we investigated the possibility that butyrate

could induce colonic PepT1 expression and the underlying

molecular mechanisms.

Results

Butyrate is a potent enhancer of hPepT1 promoter
activity

To test the response of the hPepT1 promoter to SCFAs, human

intestinal epithelial Caco2-BBE cells were transfected with a

reporter construct encoding the putative proximal promoter

region of hPepT1 gene (722 bp) previously cloned in our

laboratory ([27]; GeneBankTM accession number DQ370174).

The transfected cells were treated or not with 5 mM of each

SCFA: acetate, propionate, butyrate, valerate, capronate or

isobutyrate, for 24 h. Luciferase activity relative to hPepT1

promoter activity was then assessed. Our results revealed that of

the six examined SCFAs, butyrate was the most potent enhancer

of hPepT1 promoter activity (Figure 1A). Furthermore, butyrate

increased hPepT1 promoter activity in a dose- and time-

dependent manner, with a maximal increase of ,21-fold observed

after 24 h exposure of cells with 5 mM butyrate (Figure 1B and C).

Treatment with 5 mM butyrate for 24 h was therefore used for

subsequent in vitro studies.

Butyrate increases hPepT1 mRNA and protein expression
We then investigated the effect of butyrate on hPepT1 mRNA

and protein expression levels in Caco2-BBE cells. As examined by

RT-PCR, treatment of cells with 5 mM butyrate for 24 h strongly

increased hPepT1 mRNA level (Figure 2A). In support of this

result, real-time RT-PCR data showed that butyrate induces a

Figure 1. Butyrate increases hPepT1 promoter activity in Caco2-BBE cells. Caco2-BBE cells were transfected with full-length hPepT1
promoter construct and treated with A) 5 mM of the indicated short chain fatty acids for 24 h, B) the indicated concentrations of butyrate for 24 h, or
C) 5 mM of butyrate for the indicated times. Luciferase activity related to hPepT1 promoter activity was measured. Data were normalized by Renilla
activity and expressed as fold increases compared with untreated cells (control). Values represent means6S.E. of three determinations. *P,0.05;
**P,0.005; ***P,0.001 vs control.
doi:10.1371/journal.pone.0002476.g001
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significant increase of hPepT1 mRNA level by ,3-fold compared

to control cells (Figure 2B). We then examined whether the

increase of hPepT1 mRNA level in butyrate-treated cells is due to

changes in hPepT1 mRNA stability. hPepT1 mRNA expression

levels in Caco2-BBE monolayers treated or not with 5 mM

butyrate for 24 h in the presence or absence of 5 mg/ml

actinomycin D (AcD), a potent transcription inhibitor, were

analyzed by Northern blot. As shown in Figure 2C, the ,2.2-kb

band representing the hPepT1 mRNA was significantly increased

in butyrate-treated cells compared with untreated cells (lane 3 vs

lane 1). However, in the presence of AcD, hPepT1 mRNA was

strongly reduced (lane 2) and the butyrate-induced increase of

hPepT1 mRNA was suppressed (lane 4 vs lane 3). In agreement

with this result, we found by real-time RT-PCR that hPepT1

mRNA levels in AcD-treated cells and AcD+ butyrate-treated cells

were the same (Figure 2D). Together, these results showed that

butyrate did not affect hPepT1 mRNA stability, demonstrating

that it up-regulates hPepT1 at the transcriptional level.

Furthermore, butyrate-treated Caco2-BBE monolayers exhibit-

ed greater hPepT1 protein expression level than untreated cells as

examined by Western blot (Figure 3A). Densitometric analysis of

hPepT1 band intensity revealed that both membrane and cytosol

hPepT1 amounts were significantly increased by ,2.5 fold upon

butyrate treatment (Figure 3B).

Collectively, these data showed that butyrate transcriptionally

up-regulates hPepT1 mRNA expression, resulting in the increase

of hPepT1 protein level.

Butyrate increases hPepT1-mediated dipeptide uptake in
Caco2-BBE monolayers

Since butyrate induces an increase of hPepT1 expression, we

next examined the effect of butyrate on hPepT1 transport activity.

hPepT1-mediated Glycine-Sarcosine uptake was measured in

Caco2-BBE monolayers pre-treated with 5 mM of butyrate for 4,

8, 12 and 24 h. As shown in Figure 4A, addition of butyrate to the

apical compartment significantly increased hPepT1-mediated

Glycine-Sarcosine uptake in a time-dependent manner. The

increase of hPepT1 activity reached a maximal level of ,2.5 fold

compare to the basal level after 24 h treatment. To examine

whether butyrate might affect the peptide transport by modifying

the intrinsic activity of hPepT1, the kinetics of peptide transport in

Caco2-BBE cells were examined in the presence or absence of

butyrate (Figure 4B). The tripeptide KPV (Lys-Pro-Val) was used

for its unique high affinity to PepT1 as previously demonstrated

[21]. Kinetic analysis of the data indicated that butyrate

significantly increased the maximal velocity Vmax (4.2 nmol/

filter/h vs 2.2 nmol/filter/h; P,0.05), but did not modify the

Michaelis-Menten constant Km (408 mM vs 383 mM; non

Figure 2. Butyrate transcriptionally up-regulates hPepT1 expression in Caco2-BBE cells. Caco2-BBE cells were treated with 5 mM butyrate
for 24 h and hPepT1 mRNA levels were assessed by A) semi-quantitative RT-PCR and B) real-time RT-PCR. Values represent means6S.E. of three
determinations. **P,0.005 vs control. To examine butyrate effect on the stability of hPepT1 mRNA, cells were pre-incubated with 5 mg/ml
Actinomycin D (AcD) for 30 min and then treated with butyrate for 24 h. C) Total RNA was analyzed by Northern blot using a probe specific to the
hPepT1 transcript. RNA loading controls were shown as bottom panel. D) hPepT1 mRNA levels were quantified using real-time RT-PCR. Values
expressed as normalized cycling threshold values relative to untreated (0 h) cells represent means6S.E. of three determinations.
doi:10.1371/journal.pone.0002476.g002
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significant, P.0.05). These data exclude changes in the affinity of

hPepT1 for peptides upon butyrate treatment.

It was previously shown that protein kinase A (PKA) plays a

permissive role in leptin-mediated stimulation of hPepT1 promot-

er activity [27] as well as in NHE3 promoter activation by butyrate

[25]. We therefore investigated if PKA is also involved in butyrate-

mediated up-regulation of hPepT1 promoter and transport

activities. Cells were pre-incubated for 1 h with H89, a specific

PKA inhibitor and then treated or not with butyrate. We found

that 100 mM of H89 almost completely inhibited hPepT1

promoter activity (Figure 5A) and significantly reduced ,85% of

hPepT1 transport activity in butyrate-stimulated Caco2-BBE cells

(Figure 5B). In contrast, H89 did not affect the basal levels of

hPepT1 promoter and transport activities (Figures 5A and B).

Together, these results show that butyrate enhanced hPepT1-

mediated transport events and intracellular signaling pathways like

PKA may be involved.

Butyrate treatment does not modify histone H4
acetylation

Butyrate is a potent histone deacetylase inhibitor and its

suppression of histone deacetylation has been shown to lead to

accumulation of multiacetylated forms of histone especially histone

H4 [28]. Histone acetylation alters the compaction of chromatin,

preventing DNA high order folding and modifying gene

expression. In order to investigate if the acetylation of histone

H4 affects hPepT1 promoter activity, we performed a chromatin

immunoprecipitation analysis (ChiP). Protein-DNA complexes

from butyrate-stimulated or un-stimulated Caco2-BBE cells were

cross-linked and immunoprecipitated with anti-acetyl histone H4

antibody. The precipitates were then PCR-amplified with primers

specific to each of the Cdx2 binding sites (2579, 2262) and the

CREB binding site (+7). As shown in Figure 6, butyrate did not

induce any significant modification of histone H4 acetylation at

hPepT1 promoter regions screened.

Transcription factors Cdx2 and CREB are crucial for
butyrate-induced hPepT1 promoter activity

Since it is known that PKA activates the transcription factor

CREB [29] and we found here that PKA is involved in the

stimulation of hPepT1 promoter activity by butyrate (Figure 5A),

the role of CREB in butyrate-mediated activation of hPepT1

promoter was examined. Figure 7 showed that mutation at

CREB+7 binding site reduced butyrate-induced activation of

hPepT1 promoter by ,30%, confirming the involvement of PKA.

We have previously shown that the transcription factor Cdx2 plays

an important role in leptin-mediated hPepT1 promoter activation

[27] and Cdx2 is known to be activated by butyrate [30]. Here, we

tested whether Cdx2 binding is required for butyrate-stimulated

hPepT1 promoter activity. Site-directed mutation of individual

Cdx2 binding sites were constructed and transfected into Caco2-

BBE cells. As shown in Figure 7, mutations of Cdx2 binding sites

Figure 3. Butyrate increases hPepT1 protein expression in Caco2-BBE monolayers. A) Caco2-BBE cells grown on filters were treated with
5 mM butyrate for 24 h and membrane and cytosol hPepT1 protein expression was analyzed by Western blot. Expressions of Na+/K+ ATPase and
GAPDH were used as loading controls. B) Bar graphs represent the densitometric quantification of hPepT1 blots shown in (A). Values represent
means6S.E. of four blots from independent experiments. **P,0.005.
doi:10.1371/journal.pone.0002476.g003
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located at 2579 or 2262 prevented butyrate-induced increase of

hPepT1 promoter activity, whereas mutation at 2564 had no

effect. To confirm the importance of Cdx2 sites located at 2579 or

2262, experiment was repeated using 3 different clones and the

same results were obtained. It is known that the transcription

factor Sp1 has important roles in butyrate-induced activation of

several genes [26] and may be also involved in hPepT1 regulation

[31,32]. hPepT1 promoter contains four Sp1 binding sites located

at 25, 233, 259 and 2199. Point mutations of the Sp1 binding

sites at 259 and 2199 significantly reduced butyrate-induced

increase of hPepT1 promoter activity by ,10% and 5%,

respectively, whereas mutations at 25 and 233 did not affect

Figure 4. Butyrate increases hPepT1-mediated peptides uptake in Caco2-BBE monolayers. Caco2-BBE cells were grown on filters and
apically treated with 5 mM butyrate for the indicated times. Uptake experiments were performed with 20 mM [14C]Glycine-Sarcosine620 mM
Glycine-Leucine at an apical pH of 6.2 and basolateral pH of 7.4 for 15 min at room temperature, and radioactivity was then measured. Values,
expressed as fold increases compared with untreated cells, represent means6S.E. of three determinations. *P,0.05; **P,0.005 vs untreated cells. B)
Caco2-BBE cells were grown on filters and apically treated with (#) or without (N) 5 mM butyrate for 24 h. Uptake experiments were performed using
20 nM, 120 nM, 10 mM, 100 mm, 400 mm and 1 mM of [3H]KPV. Results represent means6S.E. of three determinations.
doi:10.1371/journal.pone.0002476.g004

Figure 5. Protein kinase A (PKA) is crucial for butyrate-induced increase of hPepT1 promoter activity in Caco2-BBE cells. A) Caco2-
BBE cells transfected with the full-length hPepT1 promoter construct were pre-treated for 1 h with 40 or 100 mM H89, a specific PKA inhibitor, and
stimulated with 5 mM butyrate for 24 h. Luciferase activity relative to hPepT1 promoter activity was measured. Data were normalized by Renilla
activity and expressed as fold increases compared with control cells. B) Caco2-BBE cells pre-treated or untreated with 100 mM H89 for 1 h were
stimulated with 5 mM butyrate for 24 h. hPepT1-mediated [14C]Glycine-Sarcosine specific uptake was assessed as described in the Materials and
Methods. Values represent means6S.E. of three determinations. *P,0.05; **P,0.005; ***P,0.001.
doi:10.1371/journal.pone.0002476.g005

PepT1 Expression and Activity

PLoS ONE | www.plosone.org 5 June 2008 | Volume 3 | Issue 6 | e2476



the stimulation of hPepT1 promoter activity by butyrate (Figure 7).

Butyrate was previously implicated in the activation of the

transcription factor AP1 in human colon cancer cells [33]. We

then investigated the role of AP1 in hPepT1 promoter activation

by butyrate. As shown in Figure 7, point mutation at the AP12216

binding site did not affect hPepT1 promoter activation by

butyrate.

Together, these results demonstrate that the transcription

factors Cdx2 and CREB have crucial roles in the activation of

hPepT1 promoter by butyrate. Sp1 might also be involved, albeit

to a lesser extent.

Butyrate increases binding of Cdx2 to hPepT1 promoter
To further confirm the importance of Cdx2 in the activation of

hPepT1 promoter, we used electrophoretic mobility shift assays

(EMSA) to characterize their binding to hPepT1 promoter at

Cdx22579 (Figure 8A) and Cdx22262 (Figure 8B) binding sites.

EMSA were carried out using untreated or butyrate-stimulated

Caco2-BBE cell extracts, together with biotin-labeled double-

stranded oligonucleotides containing the respective consensus

Cdx2 binding sites present in hPepT1 promoter or point-mutated

binding sites. Butyrate increased the binding of Cdx2 transcription

factors to hPepT1 promoter (Figure 8A and B, Lane 2 vs Lane 1).

However, the retardation complexes were not detected in the

presence of labeled oligonucleotides containing point mutations at

Cdx22579 and Cdx2 2262 binding sites (Lane 3) or of a 200-fold

molar excess of an unlabeled oligonucleotide competitor (Lane 4),

indicating that the DNA binding of Cdx2 was sequence-specific.

Furthermore, we performed Cdx2 supershift to confirm the

binding of Cdx2 to hPepT1 promoter. As shown in Figure 8C, the

DNA-protein binding complexes were indeed shifted in the

presence of Cdx2 antibody, indicating that Cdx2 bound to

hPepT1 promoter.

Collectively, these results confirm the binding of Cdx2 to

hPepT1 promoter upon butyrate stimulation.

In vivo analysis of the putative Cdx22579 and Cdx22262

binding sites in untreated and butyrate-treated Caco2-
BBE cells

Since Cdx2 plays a critical role in butyrate-induced hPepT1

expression, we performed a chromatin immunoprecipitation

analysis (ChiP) to confirm that Cdx2 binds to hPepT1 promoter.

Protein-DNA complexes from butyrate-stimulated or un-stimulat-

ed Caco2-BBE cells were cross-linked and immunoprecipitated

with anti-Cdx2 antibodies. The precipitates were then PCR-

amplified with primers specific to each of the Cdx2 binding sites

(2579, 2262). Our results showed that Cdx2 binds to its putative

sites (2579, 2262) in butyrate-stimulated cells but not in un-

stimulated cells (Figure 8D).

These results indicate that Cdx2 may have an in vivo role in

butyrate induction of hPepT1 promoter activity.

The transcription factor Cdx2 regulates hPepT1 protein
expression in Caco2-BBE cells

To confirm the importance of Cdx2 in hPepT1 regulation, we

generated a Caco2-BBE cell line over-expressing V5-tagged Cdx2

(Caco2-BBE/Cdx2) and investigated hPepT1 protein expression

in this cell line. Immunoblot analysis using an anti-V5 antibody

showed a ,42 kDa band representing Cdx2 in Caco2-BBE/

Cdx2, indicating that these cells over-express this transcription

factor (Figure 9A). Under the resting state as well as upon 5 mM

butyrate treatment, Caco2-BBE/Cdx2 have higher hPepT1

protein expression levels than wild-type cells (Caco2-BBE) or cells

transfected with the empty vector (Caco2-BBE/Vector)

(Figure 9B). Caco2-BBE cells were then transiently transfected

with a Cdx2 siRNA (Figure 9C). We found a decrease of hPepT1

expression in cells transfected with Cdx2 siRNA but not in cells

transfected with scramble RNA (Figure 9D, E). This was observed

under both resting state (Figure 9D) and butyrate stimulation

(Figure 9E).

Together, these results indicate that Cdx2 is important to

hPepT1 expression under butyrate stimulation as well as at basal

level.

Butyrate increases hPepT1-mediated inflammation in
Caco2-BBE cells

We previously showed that hPepT1 transports pro-inflamma-

tory bacterial peptides such as fMLP (N-formyl-methionyl-leucyl-

phenylalanine) [34,35]. As we found that butyrate increased

hPepT1 expression and transport activity, we next address if

butyrate may play a role in the increased of hPepT1-mediated

inflammation. Cells pre-treated or not with 5 mM butyrate were

incubated with 1 mM fMLP and degradation of IkB-a was

assessed by Western blot. Figure 10 showed a stronger and faster

Figure 6. Butyrate does not modify histone H4 acetylation in hPepT1 promoter. Soluble chromatin was prepared from Caco2-BBE cells
treated with 5 mM butyrate (+) or vehicle (2) for 24 h. Protein-bound DNA complexes were immunoprecipitated with antibodies against acetyl-
histone H4. After cross-link reversal, the purified DNA was amplified with primers specific for Cdx22579, Cdx22262 and CREB+7 binding sites.
doi:10.1371/journal.pone.0002476.g006
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IkB-a degradation in butyrate-treated cells compared to non-

treated cells, suggesting the effect of butyrate on hPepT1-mediated

inflammation.

Butyrate increases PepT1 expression and transport
activity in mouse colon

To investigate the in vivo effect of butyrate on PepT1 expression,

mice were treated for 24 h with 5 mM butyrate added to the

drinking water and PepT1 expression level in the colonic mucosa

was examined. It has previously shown that the presence of

butyrate in the drinking water did not significantly modify the

volume of water ingested by animals [36,37]. Using real-time RT-

PCR, we found that butyrate treatment induced a significant

increase of PepT1 mRNA expression by ,2-fold compared with

untreated mice (Figure 11A). To confirm this result, PepT1

protein expression level was assessed by Western-blot. PepT1

protein was barely detected in scrapped colonic mucosa from

untreated mice but clearly detected in colonic mucosa from mice

treated with butyrate (Figure 11B). We next examined the effect of

butyrate on PepT1 expression and transport activity in mouse

colonic apical membrane vesicles. The membrane vesicles were

prepared as described in Materials and Methods and analysed by

Western blot for PepT1 expression. We found that butyrate

significantly increased PepT1 expression (Figure 11C). In

agreement, the specific PepT1-mediated transport of [14C]Gly-

cine-Sarcosine in colonic apical membrane vesicles from butyrate-

treated mice was significantly increased by ,2 times compared

with untreated mice (Figure 11D). These results indicate that

butyrate enhances PepT1 expression and function in mouse colon.

These confirm our in vitro findings showing that butyrate is a

potent PepT1 expression inducer.

Discussion

The human di/tripeptide transporter hPepT1 is not expressed

[22] or barely detected [23] in normal colon. However, its

expression can be induced in inflamed colon as we have previously

shown [22]. Other studies also showed the expression of hPepT1

in colonic epithelial cells from patients with short gut syndrome

[23]. These observations indicate that inflammatory signaling

pathways may regulate the expression of colonic hPepT1.

Here we showed that treatment of human intestinal epithelial

Caco2-BBE cells for 24 h with 5 mM butyrate, an end product in

the breakdown of carbohydrates by anaerobic bacteria, increased

Figure 7. Transcription factors Cdx2 and CREB are crucial for butyrate-induced hPepT1 promoter activity in Caco2-BBE cells. Caco2-
BBE cells were transfected with different constructs of hPepT1 promoter that are point mutated at CREB, Sp1, Cdx2, or AP1 sites. Cells were then
treated with 5 mM butyrate for 24 h and luciferase activity relative to hPepT1 promoter activity was measured. Data were normalized by Renilla
activity and expressed as fold increase in response to butyrate. Values represent means6S.E. of three determinations. *P,0.05; ***P,0.001.
doi:10.1371/journal.pone.0002476.g007
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mRNA and protein expressions as well as the activity of this

transporter. However, in normal colon, hPepT1 expression is not

detected although butyrate concentration in the lumen is 10–

15 mM [1,3]. The expression of hPepT1 induced in inflammation

could be explained by a dysfunction of butyrate metabolism in

colonocytes. Indeed, butyrate oxidation in colonocytes from IBD

patients is significantly decreased [38,39]. A decrease of butyrate

oxidation up to 80% was also found in DSS-induced colitis in mice

[40]. This oxidation default can induce an intracellular accumu-

lation of butyrate in colonocytes, which may be responsible for

PepT1 expression. The monocarboxylic transporter (MCT)-1

expressed at the apical membrane of colonic epithelial cells may

also play a major role in butyrate uptake [6]. Therefore, MCT-1

expression level limits the intracellular accumulation of butyrate

[41]. This has previously been confirmed by suppressing the

expression of MCT-1 in vitro, resulting in a marked inhibition of

the ability of butyrate to regulate the expression of several target

genes [41]. It is possible that MCT-1 expression/activity varies

between inflamed and non-inflamed colonocytes, differentially

regulating colonic intracellular concentrations of butyrate, thereby

modulating gene expression.

In the present study, we demonstrated that the transcription

factors Cdx2 and CREB are crucial for the butyrate-induced

increase of hPepT1 expression in Caco2-BBE cells. In adult

mammals, the expression of Cdx2 is largely restricted to the

epithelia throughout the small and large intestines [42]. Cdx2

appears to play critical roles in gut differentiation, proliferation

and neoplasia [43], and it was recently demonstrated that the

gastric mucosa of transgenic Cdx2-overexpressing mice are

morphologically changed to intestinal metaplastic mucosa includ-

ing microvilli and PepT1 expression [43,44]. In agreement with

our finding, it has recently been demonstrated that the intestine-

specific transcription factor Cdx2 is stimulated by butyrate [30].

hPepT1 promoter contains three potential Cdx2 binding sites [27]

and here we showed that two of these located at 2579 and 2262

are crucial for the activation of hPepT1 promoter by butyrate.

These results are in agreement with previous studies that have

reported the crucial role of Cdx2 in hPepT1 basal or leptin-

stimulated activity [27,31]. We have also demonstrated the

importance of the transcription factor CREB in butyrate-mediated

up-regulation of hPepT1 expression. Several studies have shown

the importance of CREB in butyrate-induced gene expression. For

example, short-chain fatty acids regulate tyrosine hydroxylase gene

expression through a cAMP-dependent signaling pathway [45]. In

another report, additional evidence has been provided to show

that exposure to butyrate rapidly activates the MAP kinase

pathway, which is associated with increased CREB phosphoryla-

tion [46]. The phosphorylation of CREB is likely to play a role in

hPepT1 expression since we found that the PKA inhibitor H89

abolished butyrate-mediated increase of hPepT1 transport activ-

ity. However, knocking-out CREB binding site results in a ,30%

decrease of promoter activity. This indicates that PKA can

regulate transcription factors involved in hPepT1 regulation other

than CREB. PKA has been also found to be important for

Figure 8. Butyrate induces Cdx2 binding to hPepT1 promoter in Caco2-BBE cells. A, B, C) Caco2-BBE cells were stimulated or not with
5 mM butyrate for 24 h and EMSA were performed using A) Cdx22579 or B) Cdx22262 specific probe. Specificity of complexes was assessed using
mutated probe or a 200-fold excess of unlabelled probe. C) Supershift experiments using Cdx2 antibody. D) Soluble chromatin was prepared from
Caco2-BBE cells treated with 5 mM butyrate (+) or vehicle (2) for 24 h. Protein-bound DNA complexes were immunoprecipitated with antibodies
against Cdx2. After cross-link reversal, the purified DNA was amplified with primers specific for Cdx22579 and Cdx22262 binding sites.
doi:10.1371/journal.pone.0002476.g008
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butyrate-mediated regulation of NHE3 expression [25]. This

indicates that butyrate stimulates a PKA-dependent functional

transcriptional regulation of hPepT1 and NHE3 in epithelial cells.

However, it seems that Cdx2 does not play a role in the regulation

NHE3 or the human c-epithelial sodium channel expression

[24,25,26] suggesting the specific role of Cdx2 in regulating

hPepT1 expression/function.

It has been known that butyrate induces an accumulation of

multiacetylated forms of histones [28]. Histone acetylation alters

the chromatin structure at the nucleosomal level, facilitating

changes in DNA transcription. In this study, we were not able to

detect any change in histone H4 acetylation. However we cannot

exclude the possibility that other histones may be hyperacetylated

or histone H4 may be acetylated upstream or downstream of the

areas tested.

Our data demonstrated that butyrate, both in vivo and in vitro,

induced PepT1 expression/activity. It has been reported that

PepT1 transports pro-inflammatory bacterial peptides, such as

muramyl dipeptide (MDP) [47] or N-formyl-methionyl-leucyl-

phenylalanine (fMLP) [20,34,35], which participate in intestinal

inflammation. Butyrate has been shown to exert anti-inflamma-

tory effects in several cell types as well as intestinal biopsy

specimens [48,49]. Here we suggest that intracellular accumula-

tion of butyrate in colonocytes may be involved in intestinal

inflammation via hPepT1 expression and pro-inflammatory

peptide transport. This speculation is supported by i) our results

showing that intestinal epithelial cells pre-treated with butyrate

were more sensitive than un-treated cells to fMLP induces IkB-a
degradation and by ii) publications demonstrating that in vivo

perfusion of fMLP induces PepT1-mediated colonic inflammation

in a short bowel model where PepT1 is expressed in colonic

epithelial cells [50,51]. These findings provide important new

insights to understand the regulation of hPepT1 expression in

intestinal inflammation.

Figure 9. The transcription factor Cdx2 regulates hPepT1 protein expression in Caco2-BBE cells. A) Lysates from wild-type Caco2-BBE
cells, cells overexpressing V5-tagged Cdx2 (Caco2-BBE/Cdx2), or cells transfected with vector alone (Caco2-BBE/Vector) were analyzed by SDS-PAGE
and immunoblot using anti-V5 antibody. B) Wild-type Caco2-BBE cells, Caco2-BBE/Cdx2 or Caco2-BBE/Vector were treated with 5 mM butyrate (+) or
vehicle (2) for 24 h. Membrane proteins were extracted and hPepT1 expression was assessed by immunoblot. C, D) Caco2-BBE cells were transfected
for 48 h with Cdx2 siRNA and Cdx2 (C) or hPepT1 (D) expression was assessed by immunoblot. E) 24 h after Cdx2 siRNA transfection, Caco2-BBE cells
were treated with 5 mM butyrate for 24 h and hPepT1 expression was assessed by immunoblot. Bar graphs represent blot densitometric
quantification. Values represent means6S.E. of four blots from independent experiments. **P,0.005; ***P,0.001.
doi:10.1371/journal.pone.0002476.g009
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Materials and Methods

Cell culture and transfection
Caco2-BBE cells were grown in DMEM supplemented with

14 mM NaHCO3, 10% FBS, and penicillin/streptomycin (In-

vitrogen, Grand Island, NY). Caco2-BBE cells stably transfected

with Cdx2-pcDNA3 plasmid [27] were maintained in culture

medium containing 1.2 mg/ml G418 (Invitrogen). Cells were kept

at 37uC in a 5% CO2 atmosphere and 90% humidity, and the

medium was changed each 2 days. Cells were grown on 6-well

plastic plates or on permeable supports (area = 1 cm2; pore size,

0.4 mm; Transwell-Clear polyester membranes from Costar

VWR, Suwanee, GA).

Reagents
SCFAs, Actinomycin D and fMLP were obtained from Sigma-

Aldrich (St. Louis, MO). H89 was purchased from Biosource

(Camarillo, CA).

Animals
Female C57BL/6 mice (8 weeks, 18–22 g, Jackson Laborato-

ries, Bar Harbor, ME) used for this study were group-housed

under a controlled temperature (25uC) and photoperiod (12:12-

hours light-dark cycle), and allowed unrestricted access to standard

diet and tap water. All animal procedures were approved by the

Animal Care Committee of Emory University and were conducted

in accordance to the Guide for the Care of Use of Laboratory Animals

from the US Public Health Service.

Preparation of the reporter constructs
Analysis with the TFSEARCH prediction program (www.cbrc.

jp/) revealed that the cloned promoter region contained multiple

putative biding sites for transcription factors. Site directed

mutations at the putative CREB+7, Cdx22579,2564,2262, AP12216

and Sp12199,259,233,25 binding sites of the 2634/+89 hPepT1

construct were introduced using the Quick Change XL Site

Directed Mutagenesis Kit (Stratagene, La Jolla, CA) with the

following primers: hPepT1 promoter with mutated CREB+7, sense

59-CAA CGG GGC CGG GCC TGG AAT TCA GGT CGG

AGG AGT AG-39 and antisense 59-CTA CTC CTC CGA CCT

GAA TTC CAG GCC CGG CCC CGT TG-39; hPepT1

promoter with the first Cdx22579 site mutated, sense 59-GAA

ATG TAG AAT CCC CCA GAG ATG CTT TCA AAG GTT-

39 and antisense 59-AAC CTT TGA AAG CAT CTC TGG

GGG ATT CTA CAT TTC-39; hPepT1 promoter with the

second Cdx22564 site mutated, sense 59-GGT TGA ATC TCA

AAA TGA AGC CAC ACA CAC ACT CT-59 and antisense 59-

AGA GTG TGT GTG TGG CTT CAT TTT GAG ATT CAA

CC-39; hPepT1 promoter with the third Cdx22262 site mutated,

sense 59- AAC CTC CCC TTA GAC TTC TTC GAA ATG

CAC ATT CTG G 39 and antisense 59-CCA GAA TGT GCA

TTT CGA AGA AGT CTA AGG GGA GGT T-39; hPepT1

promoter with the AP12216 site mutated, sense 59-AGC CCC

GAC CTC CTG AGT CTG CTG GCC GGG GGG TGG-39

and antisense 59-CCA CCC CCC GGC CAG CAG ACT CAG

GAG GTC GGG GCT-39; hPepT1 promoter with the first

Sp12199 site mutated, sense 59-CAG CTG GCC GGG GGG

TTG GGC CTG GGA ATC CGC GTT-39 and antisense 59-

AAC GCG GAT TCC CAG GCC CCA CCC CCC GGC CAG

CTG-39; hPepT1 promoter with the second Sp1259 site mutated,

sense 59-CTC TGC TCC CCG CAG CAC CGT CCC CCG

GGT GGA GCC-39 and antisense 59-GGC TCC ACC CGG

GGG ACG GTG CTG CGG GGA GCA GAG-39; hPepT1

promoter with the third Sp1233 site mutated, sense 59-TGG AGC

CGG CGG CCC CTC CTC GCA GAG CTG GGG CTG-39

and antisense 59-CAG CCC CAG CTC TGC GAG GAG GGG

CCG CCG GCT CCA-39; hPepT1 promoter with the fourth

Sp125 site mutated, 59-GTA CCT GGG GCA ACG GGG ACG

GGC CTG GAC GTC AGG-39 and antisense 59-CCT GAC

GTC CAG GCC CGT CCC CGT TGC CCC AGG TAC-39.

Figure 10. Butyrate increases hPepT1-mediated inflammation in Caco2-BBE cells. Caco2-BBE cells were treated or not (vehicle) with 5 mM
butyrate for 24 h. Cells were then washed, incubated in serum-free medium overnight and stimulated with 1 mM fMLP for the indicated times. Cell
lysates were analyzed by Western blot using IkB-a antibody. Bar graphs represent the densitometric quantification of IkB-a blots. Values represent
means6S.E. of four blots from independent experiments. **P,0.005.
doi:10.1371/journal.pone.0002476.g010
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The PCR conditions consisted of 95uC for 30 sec, followed by 12

cycles of 95uC for 30 sec, 55uC for 2 min and 68uC for 10 min. All

mutants were confirmed by DNA sequencing.

siRNA study
Cdx2 siRNA (59-GCC AUA GAC CUA CAG ACC Utt-39) was

purchased from Ambion (Austin, TX) and transfected into Caco2-

BBE cells using the siPORT NeoFX transfection reagent

(Ambion). 48 hours after transfection, cells were treated with

5 mM butyrate for 24 h, harvested and analyzed by Western blot.

Dual-luciferase reporter assay
Caco2-BBE cells were transfected with 5 ng of a construct

encoding Renilla luciferase (Promega, Madison, WI) and 2 mg of

the relevant hPepT1 promoter construct using 10 mg/ml lipofectin

(Invitrogen). After stimulation, the resulting luminescence was

measured for 10 s in a luminometer (Luminoskan, Thermal

Labsystems, MA). Each luciferase activity was normalized based on

the control Renilla luciferase activity. Extracts were analyzed in

triplicate, and each experiment was performed for at least three times.

Generation of polyclonal antibodies to PepT1
Based on a computerized predictive model for antigenicity and

uniqueness, we designed two synthetic peptides (H2N-

FRHRSKAYPKREHWC-COOH) and H2N-RLEKSNPYFMS-

GANSQKQN), corresponding to residues 248–261 and 689–708

of the deduced hPepT1 protein. The peptides were coupled to

keyhole limpet haemocyanin, and used to raise two antibodies:

(anti-PepT1248–261; anti-PepT1689–708) in rabbits via a standard

80-day immunization protocol. The reactivity of the resulting

Figure 11. Butyrate increases PepT1 expression and transport activity in vivo. C57BL/6 mice were given regular water (H2O) or water
containing 5 mM butyrate (H2O+Butyrate) for 24 h. Mice were then sacrificed and colons were removed. A) PepT1 mRNA level was assessed by real-
time RT-PCR (n = 10/condition). B) PepT1 expression in colonic mucosa was analyzed by immunoblot (n = 10/condition) and representative PepT1
blots from different mice are shown. Expression of villin was shown as loading control. Bar graphs represent densitometric quantification of PepT1
bands. Values represent means6S.E. of four blots from independent experiments. C) Colonic apical membrane vesicles were prepared from H2O2 or
H2O+butyrate-treated mice (n = 25/condition) and analyzed for PepT1 expression by Western blot. D) PepT1-mediated specific uptake of [14C]Glycine-
Sarcosine was measured in the colonic apical membrane vesicles (n = 25/condition). Values represent means6S.E. of three determinations.
**P,0.005.
doi:10.1371/journal.pone.0002476.g011
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antisera against the appropriate peptide was tested by enzyme-

linked immunosorbent assay (ELISA), and the antibodies were

affinity purified against the synthetic peptide. Anti PepT1689–708 is

specifically directed to human PepT1 and anti-PepT1 248–261 is

directed to mouse and human PepT1 [20,22].

Protein extraction and Western blot analysis
Total and membrane proteins were extracted as previously

described [27]. Proteins were resolved on 10% polyacrylamide gels

and transferred to PVDF membranes (Bio-Rad, Hercules, CA).

Membranes were probed overnight at 4uC with anti-villin, anti-

GAPDH, anti-IkB-a (Santa Cruz Biotechnology, Inc; Santa Cruz,

CA), anti-V5 (Invitrogen), anti-sodium potassium ATPase (Abcam

Inc; Cambridge, MA) or the appropriate anti-PepT1. After

washing, membranes were further incubated for 1 h at room

temperature with appropriate HRP-conjugated secondary anti-

bodies (Amersham Biosciences, Buckinghamshire, England).

Immunoreactive proteins were detected with the enhanced

chemiluminescence detection system (Amersham Biosciences).

RNA extraction and RT-PCR
Total RNA was extracted using TRIzol reagent (Invitrogen) and

reverse transcribed using ThermoscriptTM RTPCR System

(Invitrogen). The PCR was carried out in a final volume of

50 ml using 2 ml of RT first-strand cDNA product, 1 mM of each

forward and reverse primer, and PCR SuperMix (Invitrogen). The

primers used were: hPepT1 sense 59-CGC CAT GGG AAT GTC

CAA ATC ACA CAG T-39 antisense 59-CAT CTG TTT CTG

TGA ATT GGC CCC-39; b-actin sense 59-GTC ACC CAC

ACT GTG CCC ATC-39 antisense 59-ACG GAG TAC TTG

CGC TCA GGA-39.

Real-time RT-PCR
Real-time PCR with iCycler sequence detection system (Bio-

Rad) was used to assess PepT1 transcripts. Briefly, 50 ng of

reverse-transcribed cDNA was amplified followed by 40 cycles of

95uC for 15 s and 60uC for 1 min, using 10 mM of gene-specific

primers and the iQ SYBR Green Supermix (Biorad). The

GAPDH or 36B4 expression levels were used as house-

keeping genes, and fold-induction was calculated using the Ct

method as follows: DDCT = (CtTarget2Cthousekeeping)treatment2

(CtTarget2Cthousekeeping)nontreatment, and the final data were

derived from 22DDCT. The primers used were as follows: hPepT1

sense 59-CGT GCA CGT AGC ACT GTC CAT-39 hPepT1

antisense 59-GGC TTG ATT CCT CCT GTA CCA-39;

hGAPDH sense 59-GTC GGA GTC AAC GGA TTT GG-39

hGAPDH antisense 59-AAG CTT CCC GTT CTC AGC CT-39;

mousePepT1 sense 59-CGT GCA AGT AGCACTGTC CAT-39;

mousePepT1 antisense 59-GGC TTG ATT CCT CCT GTA

CCA-39; mouse36B4 sense 59-TCC AGG CTT TGG GCA TCA-

39 mouse36B4 antisense 59-CTT TAT CAG CTG CAC ATC

ACT CAG A-39.

Electrophoretic mobility shift assay (EMSA)
Cdx2 or CREB-DNA binding activities were analyzed in cellular

extracts prepared in totex buffer (20 mM HEPES/pH7.9, 350 mM

NaCl, 20% glycerol, 1% NP-40, 1 mM MgCl2, 0.5 mM EDTA,

0.1 mM EGTA, protease inhibitors). Samples (5 mg) were incubat-

ed for 15 min at room temperature with a biotin-labeled double-

stranded oligonucleotide (Pierce Rockford, IL) containing

Cdx22579, Cdx22262 or CREB+7 binding site. Complexes were

resolved by electrophoresis on 5% TBE gels in 0.56TBE buffer.

Gels were transferred to Biodyne B Pre-cut Modified Nylon

Membranes (Pierce) and complexes were visualized using the

Chemiluminescent Nucleic Acid Detection System (Pierce). The

specificity of the complexes was analyzed by incubation with a 200-

fold excess of unlabeled oligonucleotides as well as a mutated probe.

Supershift assay was performed using 2 mg of Cdx2 antibody

(Zymed Laboratories Inc. laboratories, San Francisco, CA).

hPepT1 mRNA stability assay and Northern blot
For mRNA decay experiments, Caco2-BBE cells pretreated

with 5 mg/ml actinomycin D (AcD) for 1 h to arrest transcription

were incubated with 5 mM butyrate for indicated times. The

hPepT1 mRNA was quantified by real-time RT-PCR as described

above. Northern blot analysis was performed using the North2-

South Complete Biotin Random Prime Labeling and Detection

Kit (Pierce, Rockford, IL) with 20 mg of template total RNAs and

probe generated by RT-PCR with primers as followed: hPepT1-

sense 59-GGA GCC CTG GGA GCC GCC GCC ATG-39 and

hPepT1 antisense 59-TTG TTG CCT GCA GTG TCC ACC

TGG-39.

Chromatin immunoprecipitation assay
Acetyl-histone H4 and Cdx2 chromatin immunoprecipitation

assay (ChIP) was performed using the ChIP assay kit (Upstate Cell

Signaling Solutions, Lake Placid, NY). Briefly, after stimulation cells

were fixed with 1% formaldehyde for 10 min at 37uC (protein to

DNA cross-linking), resuspended in SDS lysis buffer for 10 min on

ice. Cells were then sonicated to shear the DNA into 200–1000 bp

fragments and centrifuged. The supernatant was diluted in ChIP

dilution buffer and pre-cleared with protein A-agarose/salmon

sperm DNA to reduce the nonspecific background. The samples

were then immunoprecipitated with anti-acetyl-histone H4 or anti-

Cdx2 antibodies overnight at 4uC. The complexes were collected in

protein A-agarose/salmon sperm DNA slurry 1 h a 4uC, and then

washed once each with the provided low salt, high salt, and LiCl

wash buffers, and twice in TE buffer (10 mM Tris-HCl, pH 8,

1 mM EDTA). The immunoprecipitated chromatin was eluted

from the protein A using freshly prepared elution buffer (10 mM

NaHCO3, 1% SDS) and the protein-DNA cross-links were reversed

by treatment with 200 mM NaCl at 65uC for 4 h. The DNA was

purified by incubation with proteinase K at 45uC for 1 h, followed

by phenol/chloroform extraction and ethanol precipitation. The

Cdx2 promoter elements in the immunoprecipitates were detected

by PCR using specific primers (Cdx2579 sense 59-TCT TAA AGA

AAG GAA ATG TAG AAT CC-39 Cdx2579 antisense 59-TGT

GTG TGT GAA TGA GGA TTG A-39; Cdx2262 sense 59-CCC

ACA GTG GTT TCC AAA GT-39 Cdx2262 antisense 59-AGC

CAG TCT AAA CGC GGA TT-39). The CREB+7 promoter

elements were detected using specific primers: CREB+7 sense 59-

CTC GGG AGC ACG GAC CTC T-39 CREB+7 antisense 59-

CCT GGC AGG TGC TAC TCC TC-39.

Uptake experiments
Caco2-BBE cells grown on filters for 15 days were treated with

butyrate, washed and incubated with HBSS+-10 mM HEPES

(pH 7.4) in the basolateral compartment and with HBSS+-10 mM

MES (pH 6.2) in the apical compartment for 15 min at 37uC.

Apical and basolateral compartments were then incubated for

15 min at room temperature with HBSS+-10 mM MES (pH 6.2)

containing 20 mM [14C]Gly-Sar620 mM Gly-Leu and HBSS+-

10 mM MES (pH 7.2), respectively. Cells were washed twice in

ice-cold PBS, filters were cut, and cell-associated radioactivity was

determined using a b-counter. The results, expressed as specific

uptake of [14C]Gly-Sar mediated by hPepT1, are calculated as

PepT1 Expression and Activity

PLoS ONE | www.plosone.org 12 June 2008 | Volume 3 | Issue 6 | e2476



follows: (Uptake of [14C]Gly-Sar)2(Uptake of [14C]Gly-Sar + Gly-

Leu).

The kinetic parameters of peptide transport in Caco2-BBE

monolayers were examined using different doses of [3H]KPV and

the hPepT1-mediated specific uptakes of [3H]KPV were per-

formed as described above.

Preparation of mouse colonic apical membrane vesicles
and in vivo uptake experiment

Colonic apical membranes were prepared from mucosal

scraping (n = 25 mice/condition) as previously described [52,53].

Briefly, the mucosa was homogenized in a buffer containing

60 mM mannitol, 12 mM Tris-HCl pH 7.4, 10 mM EGTA, and

protease inhibitors. The homogenate was centrifuged at 3,000 g

for 15 min (Step1). The supernatant was incubated with ice-cold

10 mM MgCl2 for 15 min and centrifuged at 27,000 g for 30 min

(Step2). The pellet was resuspended in the homogenization buffer.

Steps 1 and 2 were repeated. The pellet was homogenized in ice-

cold preloading buffer (100 mM KCl, 100 mM mannitol, 20 mM

HEPES/Tris-HCl pH 7.4, protease inhibitors) and centrifuged at

27,000 g for 30 min. The purified colonic apical membrane

vesicles were resuspended in the preloading buffer. In vivo uptake

experiments were performed using a rapid filtration technique

with Millipore filters (HAWP type, 0.45 mm). Uptake of [14C]Gly-

Sar was performed for 10 s at room temperature using transport

buffer (HBSS+-10 mM MES pH 6.2, 100 mM mannitol) contain-

ing 300 mg of colonic apical membranes and 20 mM [14C]Gly-

Sar620 mM Gly-Leu, following by addition of ice-cold stop

solution (2 mM HEPES/Tris pH 7.4, 210 mM KCl) and

filtration. The filters were then washed twice with stop solution

and the radioactivity was determined using a b-counter.

Statistical analysis
All evaluations were performed using SigmaPlot (SPSS,

Chicago, IL) and InStat v3.06 (GraphPad, San Diego, CA)

softwares, with data reported as means6S.E. Multiple groups were

compared by ANOVA, using Tukey’s post-hoc test. P,0.05 was

considered significant.
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