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RESUME. Nous essayons de maximiser I'autoconsommation d’'une communauté énergétique dotée de pan-
neaux solaires. Nous étendons le pipeline de recommandations introduit dans (Ling et al., 2024). Le pipeline
commence par prévoir les périodes avec du surplus de production, puis indique ces périodes de maniere
sélective aux membres de la communauté, pour les encourager a consommer de I'énergie pendant celles-ci.
La logique de notification est gouvernée par un module “coordinateur”. Dans (Ling et al., 2024), le coordinateur
estime la flexibilité au niveau des logements entiers. Dans notre travail, nous le faisons au niveau des appareils
électriques individuels, ce qui offre un niveau de contréle plus fin. Lefficacité de notre approche est évaluée par
des simulations numériques utilisant des données semi-réelles dérivées de jeux de données de consommation
publics. Les résultats indiquent que notre coordinateur (au niveau des appareils) surpasse la stratégie naive qui
notifie tous les membres a propos de toutes les périodes propices a la consommation. Il surpasse également
le coordinateur opérant au niveau des logements lorsque un nombre arbitraire de notifications peut étre
envoyé a chaque logement. Cependant, ce n’est plus le cas lorsque les notifications sont limitées en nombre.
Nos résultats suggerent que, pour tirer avantage du coordinateur travaillant au niveau des appareils indi-
viduels, ceux-ci devraient étre dotés de dispositifs domotiques capables de les activer a la réception d’un signal.

MOTS-CLES. communauté d’énergie renouvelable, nudges, coordination, optimisation du systéeme énergétique,
system autoconsommation

ABSTRACT. We try to maximise the self-consumption of an energy community endowed with solar panels.
We extend the nudging pipeline introduced in (Ling et al., 2024). The pipeline first forecasts periods of
available excess production, then selectively notifies the households of the community about these periods, to
encourage them to consume energy during these periods. The notification logic is performed by a coordinator
module. In (Ling et al., 2024), the coordinator estimates flexibility at household level. In our work, we do it
at appliance level, which offers a finer level of control. The efficiency of our approach is assessed through
numerical simulations using semi-real data derived from public consumption datasets. Results indicate that our
appliance-level coordinator outperforms the naive strategy which notifies all members about all consumption
favourable periods. It also outperforms the corresponding household-level coordinator when any number of
notifications may be sent. However, this is no longer the case when the notifications are restricted in numbers.
Our results suggest that, to take advantage of the coordinator working at appliance level, appliances should be
endowed with automated devices able to activate them upon reception of a signal.

KEYWORDS. renewable energy community, nudges, coordination, energy system optimization, energy self-
consumption

1. INTRODUCTION

Improving the energy consumption of buildings is important, both from an economical stand-
point, and from an ecological one. Indeed, buildings are estimated to represent as much as 38%
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of green house gases emissions (United Nations Environment Programme, 2020). One possibi-
lity in this regard is endowing the building with solar panels, using for instance available space
on the roof. This way, some part of the energy consumption may be drawn from the panels,
rather than from the regular network, which energy may derive from less ecologically friendly
sources.

In addition to individual buildings having solar panels for their own consumption, and ever
increasing trope is now for several buildings to gather into an energy community, and share the
energy produced by the panels. This is made possible by legislation (European Commission,
2019). In France, this type of energy communities is called an “autoconsommation collective”
(collective self-consumption) (Légifrance, 2023).

Now, to truly benefit from the panels, one may overcome two issues. The first is the in-
termittence of production (as the panels will only produce under daylight). The second is the
necessity to coordinate with other members of the community. Indeed, if everybody consumes
energy at the same time, the capacity of the panels may be outgrown, and the excess demand
will be atoned for by the regular network.

In (Ling et al., 2024), the authors introduced a nudging system which aimed at helping mem-
bers of a collective self-consumption operation consume energy at appropriate moments. The
system first predicted periods where users should be encouraged to consume (so called “green
periods”). These periods were then selectively notified to the users in the form of nudges,
through a coordinator module, which in particular aimed at avoiding having everybody consume
during the same periods.

This coordinator module was based on a household level estimation of the flexibility avai-
lable, that is the sum of the power of the appliances the members of the household are willing
to use at different times than they first intended. However, this estimation of the flexibility was
quite coarse. Here, we present a finer coordinator, which works at appliance level, and esti-
mates flexibility on an appliance basis. It notifies households about which shiftable appliance
it suggests to use during which green period. Through the finer coordination it offers, it en-
ables a more precise allocation of solar power and enhances further the efficiency of energy
consumption across the network.

We first discuss related works (Section 2. ), before presenting our model (Section 3. ). Then
we present our experimental results (Section 4. ). Finally, we conclude, and discuss our results
(Section 5. ).

2. RELATED WORKS

Power systems are evolving with an increased integration of renewable energy sources (Tang
et al., 2022). This brings challenges related to the variability of power supply. To address these,
(Nosair and Bouffard, 2015) emphasize the importance of assessing the potential for opera-
tional flexibility of individual power system assets. To take full advantage of energy system
flexibility, some works focus on single buildings. (Azizi et al., 2021) present a novel unsuper-
vised non-intrusive load monitoring (NILM ') method to characterize the energy flexibility of
a single building by extracting the consumption pattern of shiftable appliances via analyzing
the active and reactive power. (Aslam et al., 2020) develop an effective energy management

1. Non-Intrusive Load Monitoring (NILM) is a technique used to disaggregate a building’s total energy
consumption into individual appliance usage without the need for installing dedicated meters for each appliance,
allowing for detailed energy analysis and efficiency improvements through a single monitoring point.
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strategy using Mixed Integer Linear Programming (MILP?). This strategy is designed to op-
timally schedule smart appliances and the charging/discharging of electric vehicles (EVs) to
reduce energy costs. It also incorporates an energy storage system (ESS) to enhance energy uti-
lization efficiency. Other works apply directly to energy communities. (Contreras-Ocana et al.,
2021) assess the financial viability of an energy community inspired by the French collective
self-consumption setting. (Zuazo et al., 2021) emphasize the need for quality load forecasting
of building consumption, in order to enable load management, with the eventual aim of maxi-
mising collective self-consumption. (Ling et al., 2024) introduce a coordination strategy within
a nudging pipeline to select which household within the collective self-consumption should
consume when there is excess production. The coordination strategy showed a maximum of
18% improvement in the self-consumption rate in a simulation environment, utilizing semi-real
data supplemented by available real-world information.

Achieving high user engagement is crucial for the successful adoption and active participa-
tion in renewable energy initiatives and collective consumption efforts. Effective engagement
methods are essential for the success of collective energy projects, promoting energy justice
and democracy (Shortall et al., 2022), yet challenges such as administrative complexity and
time constraints can hinder user involvement (Aydin et al., 2018). Nudging, the technique of
encouraging behavior change in a non-mandatory way (Thaler and Sunstein, 2008), is consi-
dered promising for increasing user engagement in energy conservation. It has been shown to
boost solar energy adoption (Neumann et al., 2023) and help reduce consumption during peak
demand times (Salman Shadid et al., 2020).

3. MODEL

We use the same framework introduced in (Ling et al., 2024), in which we introduce a new
coordinator. This coordinator works at appliance level, while that in (Ling et al., 2024) works
at household level. We start by briefly presenting our model in Section 3.1For more detailed
and comprehensive insights, we refer readers to (Ling et al., 2024). Then, we introduce the
appliance level coordinator in Section 3.2.

3.1. NUDGING PIPELINE

On Figure 1, we give an overview of our nudging pipeline. Our collective self-consumption
framework integrates multiple households, several of which may possess solar panels. Each
household has a smart meter, allowing for the collection of energy consumption and produc-
tion data. There is no battery, thus making it impossible to store electricity for later use. Each
household possesses several electrical appliances, which are categorized into shiftable and non-
shiftable categories. Shiftable appliances refer to those which usage times the users are willing
to adjust upon receiving a recommendations. Every shiftable appliance has a maximum shif-
table delay : for instance, a washing-machine usage cannot be shifted to a time slot more than 9
hours (Table 1) from the original desired time slot.

This system obtains accurate weather forecasts via APIs, which inform the operation of two
key control modules. The “Green Period Finder” module utilizes a statistical energy forecasting
algorithm, as introduced by (Ling et al., 2023), to identify optimal usage times, called “green

2. Mixed Integer Linear Programming (MILP) is a mathematical optimization or decision-making method
used in operations research. It involves finding the best solution from a set of possible solutions, based on given
constraints. Several variables are integer, which makes it more complex to solve than standard linear programming
approaches.
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Figure 1 : Nudging pipeline

periods” (Ling et al., 2023), for electrical appliances, based on available data. The coordina-
tor module then distributes these green periods among households according to rules aimed at
maximizing environmental and efficiency benefits (maximizing the operation self-consumption
rate). Finally, households adjust their shiftable energy usage in response to these nudges, opti-
mizing consumption and contributing to the collective goal of sustainable energy use.

Tableau 1 : Shiftable appliances maximum shift delays (Lucas et al., 2019)

Shiftable appliance Maximum shift delay
Washing machine and clothes dryer 540 min
Dish washer 540 min
Water heater for domestic hot water 600 min
Electric vehicle 336 min

3.2. COORDINATOR

Once we have identified green periods, we need to notify them to the households of the col-
lecive self-consumption operation. We call coordinator the module responsible for constructing
the notifications : it decides which household it notifies about which green periods. The easiest
type of coordinator is one that shares the best green periods with every household the same way.
We call this the “uniform coordinator,” as in (Ling et al., 2024).

For each household 4 and for each appliance k, write o* the maximum power of appliance
k within household h. Write f* the weekly usage frequency of appliance k in household h. If
appliance k is activated every day of the week, then f* = 7/7 = 1, and if it is not used at all
during the week, then f"* = 0/7 = (. We evaluate the maximum shiftable available power of
appliance k of household A, 1*, by weighting the maximum power by the frequency at which

the appliance is used during the week. Therefore, we have
itk = ok ik

Estimating 7/** relies on gathering data which is acquired through engaging with the mem-
bers of the operation by conducting surveys, for instance. While collecting detailed information
presents more challenges than acquiring basic data, our numerical simulations demonstrate that
this approach can significantly enhance the coordination outcomes.

4
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Then, in each green period, we match the forecast excess of the period with a combination
of appliances which total shiftable power is as close as possible to this excess, in order to fully
use the excess power available during it. The goal is to match the power of shiftable appliances
as closely as possible to the excess power available. For instance, assume a green period is
predicted to have 2000 Watts available during it. We could suggest to shift a single appliance
requiring the full 2000 Watts or two appliances from the same or different households shifting
1000 Watts each, aiming for the most efficient use of flexibility across all households. The
allocation of periods to the households, with information about the appliances concerned, is
computed by the appliance frequency coordinator at appliance level, which we now define.

Definition 1 (Appliance Frequency Coordinator at Appliance Level) Foreachdayd, letey, . ..
be the forecast excess for the green periods of that day. For each day, let x}, 1, equal 1 if green
period e, is sent to household h for shifting appliance k, and 0 otherwise. The xy, 1, ,,’s solve the
minimization problem :

) epd,max

( . Pd,max hmax Kmax 4
argmlnx:{zh,k#’d}hk? pa=1 Ek ! m xh kb epd ’
kspg
d=1,....7,
Pd,max
pa=1 xhk,pd§17 1§h§hmax> 1§k§kmaxy dzlv'--777

d=7 Pd,max Kmax
\Zdzl pa=1 Zk: 1 Thipy S 4.

This differs from the appliance frequency coordinator in (Ling et al., 2024) in that the allocation
variables also depend on the appliances (through the & index), while in (Ling et al., 2024), the
allocation variables only depended on the households (and the green periods), leading to coarser
information sent to the members of the operation. The shiftable power was estimated globally
for each house, while we estimate it appliance by appliance.

A household may receive multiple green periods in one day, and several households can share
the same green period. However, an appliance within a household is limited to one green period
per day( first set of inequalities), and households are restricted to a maximum of four green
period notifications each week to prevent user fatigue (second set of inequalities). If multiple
appliances in a household are assigned the same green period, it counts as a single allocation.
Solutions to assigning green periods may vary ; in cases of identical outcomes, priority is given
to solutions that spread green periods across a wider range of households. If a single solution
still isn’t achieved, a random selection is made from the remaining options.

4. NUMERICAL EXPERIMENTS

We first give a brief presentation for the simulation set-up (Section 4.1.). Then, we present
the simulation results (Section 4.2.)

4.1. SET-UP

The simulation set-up is similar to the one in (Ling et al., 2024), and we only give some brief
explanations here. We start by describing the datasets, real and synthetic, we use. Each dataset
is used to model one collective self-consumption operation.

Consumption and production datasets preparation. For the consumption simulation, we
use the same datasets as in (Ling et al., 2024) : the Iris dataset which was collected as part
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of the REMODECE (Residential Monitoring to Decrease Energy Consumption) project (Ene,
2008), the IDEAL dataset (Pullinger et al., 2021), and a synthetic dataset, named Syn, which
we generated based on some real consumption. For the Iris dataset, we selected the 10 houses
with the most shiftable appliances (defined in Table 1). Then, we added an electric vehicle
charging profile with random activation frequencies during the evening hours to enhance the
flexibility potential. Likewise, for the IDEAL dataset, we selected the 12 households with the
highest number of shiftable appliances. Additionally, we incorporated a water heater profile,
programmed to activate in the evening at random frequencies. For the synthetic dataset, we
used a non-shiftable base consumption pattern sourced from the Iris dataset. This pattern was
then replicated across 13 households, with the addition of realistic shiftable appliances usage,
randomly distributed to each household’s, and thus constituting varied morning and evening
routines, to reflex varied energy consumption behaviors.

For the production simulation, we employ the same Markov chain model used in the works
(Ling et al., 2023) and (Ling et al., 2024). This model generates a synthetic production profile
by considering the time of day, month of the year, and a random amount of cloud coverage.

Simulation. The simulations are performed on G2ELAB’s computation server, which fea-
tures 48 cores at 2.4GHz / 96 logical processors (threads), 256 GB of memory, and an Nvidia
RTX6000 GPU with 24 GB of memory. The simulations are carried out by selecting data for a
one-month period from the dataset. We make 50 runs for each simulation set-up, to adequately
account for the stochastic nature of production generation, and average the results.

The input of the simulations includes essential parameters extracted from the datasets, such
as maximum power and the frequency of appliances usages. These are additional information
required by coordinators. To compute the green periods, we also need the historical consump-
tion and production data for the houses, as well as future weather forecasts. The output of these
simulations is the average self-consumption rate for the collective self-consumption operation,
which depends on the coordinator used. We compare the self-consumption rate achieved by the
appliance-level coordinator to the reference scenario, where there are no nudges (no shifts in
consumption patterns), and also to the household-level coordinator from (Ling et al., 2024).

4.2. RESULTS

4.2.1. The Appliance Level Coordinator is Better than the Naive Household-Level Coordinator
(Uniform Coordinator)

We start by conducting a basic sanity-check. We compare the performance of the appliance-
level coordinator against both the reference case (no nudges) and the naive household-level
coordinator, which sends the same best green periods to all households. We show the results in
Table 2.

Tableau 2 : Average self consumption rate, efficiency of coordinators

Coordinator Level Syn Mean(%) Iris Mean(%) IDEAL Mean(%)

No No 64.19 67.05 69.41
Uniform Household 72.65 73.88 77.84
App Frequency Appliance 74.5 82.9 86.83

Our results show the following.
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— Both the household level uniform coordinator and the appliance-level coordinator im-
prove the self-consumption rate compared to the reference case. Specifically, for the
IDEAL dataset, the self-consumption rate increases from 69.41% to 77.84% with the
Uniform Coordinator, and further to 86.83% with the Appliance Frequency Coordinator.

— The appliance-level coordinator consistently achieves superior enhancements in self-
consumption rates across all datasets. Notably, there is an approximate 9% improvement
in self-consumption when using the Appliance Frequency Coordinator at the appliance
level compared to the Uniform Coordinator case for the IDEAL dataset. Across all da-
tasets, the average self-consumption rate achieved by the Appliance Frequency Coordi-
nator surpasses that of the Uniform Coordinator. The Appliance Frequency Coordinator
utilizes more detailed information, while the Uniform Coordinator operates without any
supplementary information. This indicates that the inclusion of precise, additional infor-
mation significantly enhances the effectiveness of coordinators.

4.2.2. Optimal Performance of the Appliance-Level Coordinator Compared to the Household-
Level One when Ignoring Human Comfort

We now compare the appliance frequency coordinator at appliance level to the appliance
frequency coordinator at household level introduced in (Ling et al., 2024). Moreover, we eli-
minate the constraints on the number of the weekly notifications of green periods (see next
section for results when the constraints are on). Note that sending too many notifications may
lead to user fatigue. Table 3 presents the self-consumption rates achieved under this scenario.
We see that, on both the Syn and the IDEAL datasets, the coordinator at the appliance level
outperforms its analogue at the household level. However, this is not the case on the Iris da-
taset. Theoretically, we expect coordinators functioning at the appliance level to provide finer
control than those at the household level, leading to improved self-consumption rates compared
to household-level coordinators. However, this should be qualified by the uncertainty about ap-
pliance usages (we only have imperfect information about those). Coordinating at the appliance
level amplifies regulation complexity, and when combined with uncertainty, it may reduce the
accuracy of adjustments. However, considering the overall simulation results, the performance
of appliance-level coordinators, without restrictions on the number of notifications, exceeds that
of household-level coordinators, showing the interest of the approach.

Tableau 3 : Average self consumption rate, Appliance-Level Coordinators vs Household-Level Coordi-
nators When Ignoring Human Comfort

Coordinator Level Syn Mean(%) Iris Mean(%) IDEAL Mean(%)
Appliance 78.85 84.62 89.46
Household 717.74 84.93 88.1

App Frequency

4.2.3. Suboptimal Performance of Appliance-Level Coordinators Compared to Household-Level
when Considering Human Comfort

We now turn back on the constraint limiting the number of notifications an household can
receive each week, so as to prevent user fatigue. We show the results in Table 4. We see that
the coordinator operating at the household level outperforms the one operating at the appliance
level. At the household level, when a household receives a nudge, it will shift all shiftable ap-
pliances to the green periods indicated in the nudge. However, for the appliance-level coordina-
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tor, a green period notification may be sent for only one appliance. Therefore, finer coordination
at the appliance level may require a greater number of green period notifications within a single
nudge to achieve the same quantity of shiftable power as household-level coordination. This
suggests that the effectiveness of appliance-level coordination is inherently limited by the res-
triction on the number of green period notifications that can be issued, hindering its potential
to enhance self-consumption rates effectively. On the other hand, one could resort to automated
piloting of their appliances, so as to fully benefit from the finer control of the appliance level
coordinator, while avoiding the user fatigue issue. We expand on this in the discussion.

Tableau 4 : Average self consumption rate, Appliance-Level Coordinators vs Household-Level Coordi-
nators when Considering Human Comfort

Coordinator Level Syn Mean(%) Iris Mean(%) IDEAL Mean(%)
Appliance 74.5 82.9 86.83
Household 75.73 84.78 87.17

App Frequency

5. CONCLUSION, DISCUSSION

In this study, we assessed the efficiency of our appliance-level coordinator, and in particular
compared it to the analogue household-level coordinator from (Ling et al., 2024). We considered
situations with constrained or not number of notifications sent to the user. We used semi-real
data supplemented by available real-world information. Our results show the appliance level
coordinator is superior to the household level naive strategy. They also show that, in scenarios
where any number of notifications may be sent, the appliance level coordinator is in general
better than the household-level one. However, in scenarios where human comfort is taken in to
account through a limitation of the number of notifications that can be sent to households, the
appliance level coordination strategy proves inferior to the household level one.

Therefore, our results suggest that, to fully benefit from the finer control allowed by the ap-
pliance level coordinator, one should equip their shiftable appliances with suitable devices, such
as home automation technologies like domotics, able to activate the appliances upon reception
of notifications from our pipeline. This automated approach, however, necessitates additional
installations, like smart plugs or meters. While offering improved energy efficiency and conve-
nience, this shift to automation involves higher initial costs for purchasing and installing these
devices. Moreover, not every consumer might welcome the need for such technological up-
grades, due to concerns over costs, complexity, ecology and privacy. To show the worth of
the upfront investment required, and overcome additional consumer reluctance, a detailed cost-
benefits analysis should be conducted, which is an interesting direction of future research.

Our aim is to deploy our solution in real-world settings. We identify two main challenges in
that respect, one linked with actual customer behaviour, and the second linked with load forecas-
ting. First, human behaviour is complex, and prone to unpredictability. While our simulations
assume idealized compliance with suggested nudges, real-life conditions often reveal wide va-
riances in individuals’ responses. Additionally, the effectiveness of our models can be compro-
mised when individuals adjust the settings of their shiftable appliances without notification (for
instance, replacing their washing-machine with a new one, with different consumption profile,
or adding a new equipement). Therefore, future research should estimate the “compliance” rate
of users to nudges, and assess their overall willingness to cooperate efficiently with the scheme,
accepting the (mainly time) costs entailed in order to best benefit from it. Second, our model re-
lies on accurate forecasting of production, and consumer consumption. Despite the availability
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of various models in the literature (Yang et al., 2016; Pappas et al., 2008; Fan et al., 2019), the
accuracy of weather forecasts, especially over longer periods, remains a challenge. Prediction
errors could misidentify green periods, resulting in suboptimal consumption shifts and possibly
deterring consumers from further participating in the scheme. Using ensemble models, which
combine multiple forecasts for a more reliable aggregated prediction, could address this concern
(A.Lahouarab, 2015).

In our study, we have only focused on the self-consumption rate. However, several other
aspects of the collective self-consumption system, including its economic, environmental, and
integration (into existing power networks) challenges, should be assessed to get a full picture of
the advantages, and drawbacks, entailed. While studying these aspects is beyond the scope of
our work, let us point the interested reader to relevant literature. First, let us start with economic
and environmental questions. (Canova et al., 2022) discuss the evaluation of energy, economic,
and environmental impacts of a renewable energy-based collective self-consumption model for
multi-family residential buildings in Italy, revealing cost savings of up to 32%, and potential
carbon emissions reduction of 60%. (Reis et al., 2022) detail how collective self-consumption
initiatives, utilizing metering systems and optimization strategies, can be implemented in multi-
family buildings to improve energy management. Their study, based on a case in Coimbra,
Portugal, using fixed-size photovoltaic and storage units, shows that even without integrating
heat pumps, energy costs could be reduced by approximately 17%. As far as integration within
the existing power networks is concerned, (Brouwer et al., 2014) outline the anticipated shift in
the Organisation for Economic Co-operation and Development(OECD)(oec, ) countries towards
low-carbon electricity systems, focusing on the integration of Intermittent Renewable Energy
Sources (IRES) such as wind and solar, along with thermal generators ; it discusses the need for
increased flexibility in power systems to accommodate this shift, the impact of IRES on system
stability and thermal generator efficiency, and the direct costs associated with reserve increases
due to IRES integration. It highlighs the need for a comprehensive power system model that in-
cludes novel flexibility technologies. (Kaushik et al., 2022) discuss the challenges that variable
renewable energy (VRE) presents to power system operations, particularly as VRE penetration
exceeds 80%. The authors highlight the need for long-term energy storage and flexibility, and
conduct a detailed uncertainty analysis to ensure the stable functioning of power system net-
works with a high share of VRE. Finally, (Erdiwansyah et al., 2021) give a critical review about
the challenges and potential solutions related to the IRES into power systems, emphasizing the
importance of developing a matrix to categorize technological solutions, which could facilitate
the reduction of challenges and enhance cost-effective energy integration.
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