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Abstract: This study compares an existing method with a novel approach for state estimation
of Max-Plus Linear systems with bounded uncertainties. Traditional stochastic filtering does
not apply to this system class, despite computable posterior probability density function (PDF)
support. Existing literature suggests a limited scalability disjunctive approach using difference-
bound matrices. To overcome this, we study an alternative method recently investigated in
Mufid et al. (2022) using Satisfiability Modulo Theory (SMT) techniques, which are known to
be NP-hard. We propose a concise method that utilizes a pseudo-polynomial time algorithm
using max-plus algebra. We evaluate its efficiency against SMT techniques through numerical
experiments involving sparse matrix multiplications for enhanced computational speed.
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1. INTRODUCTION

Max-plus algebra theory is suitable in analyzing Discrete
Event Systems (DES) with delay and synchronization.
These phenomena are found in production systems, com-
puting networks, and transportation systems (see Baccelli
et al. (1992); Heidergott et al. (2006) for an overview). This
theory employs an algebraic structure known as idempo-
tent semiring, enabling the description of these systems as
linear models. Thus, Max-Plus Linear (MPL) systems can
be defined through recursive state-space equations, where
states represent event-times (time instants) within the
system, forming a timetable trajectory. Residuation theory
(Blyth and Janowitz (1972)) further aids in addressing cru-
cial issues in control theory: controllability, observability,
stabilization, and feedback synthesis (see Hardouin et al.
(2018)).

In problems involving model parameter uncertainties, de-
terministic considerations are common, disregarding prob-
abilistic aspects. However, in filtering problems affected by
random processes influencing model parameters, address-
ing probabilistic aspects becomes crucial. Stochastic Max-
Plus Linear (sMPL) systems handle this by defining MPL
systems with matrices containing random variable entries.
State-estimation in the Bayesian approach involves com-
puting the posterior probability density function (PDF)
using available measurements. While the Kalman filter
and its extensions are practical for filtering with additive
Gaussian noise, they are unsuitable for MPL systems due
to their nonlinear discontinuities (see Mendes et al. (2019);
Winck et al. (2022c) for details). For such systems, we can
apply other stochastic filtering strategies as the Sequential
Monte-Carlo (SMC) method, also known as Particle Filter

but with numerical difficulties related to the generation of
the particles (see Candido et al. (2013); Candido et al.
(2020)). This work focuses on systems where uncertain
parameters can vary within known intervals, namely un-
certain MPL (uMPL) systems, i.e., sMPL systems with
bounded random variables.

In this work, we study an indirect computation of the sup-
port of the posterior PDF for uMPL systems. This com-
putation is referred to as set-estimation. In Candido et al.
(2018), the authors use the works of Adzkiya et al. (2015)
on difference-bound matrices, in Winck et al. (2022b) they
use max-plus polyhedra (Allamigeon et al. (2013)) and in
Winck et al. (2022a) they use residuation theory (Blyth
and Janowitz (1972)).

Contribution: we propose the concise approach using a
fixed-point algorithm (with sparse matrix operations in
max-plus algebra) and we compare it with the disjunctive
Satisfiability Modulo Theory (SMT) approach of Mufid
et al. (2022) using Z3 solver of De Moura and Bjørner
(2008) to estimate (if it is feasible) the state of uMPL
systems.

The paper is organized as follows: section 2 recalls the
the basic notions of MPL systems. Section 3 presents the
indirect computation of the set of all states that can be
reached from a previous state through the transition model
and that can lead to the measurement output through the
measurement function by using the disjunctive and concise
approaches. Section 4 presents the application: proving
the feasibility guarantee of set-estimation. Numerical sim-
ulations are performed to compare the two approaches.
Finally, section 5 concludes the work and presents some
ideas for future works.
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2. PRELIMINARIES

2.1 Max-plus algebra

A set D forms a dioid or idempotent semiring if it satisfies
certain algebraic properties. These properties include the
associativity, commutativity and idempotency of the sum
⊕, as well as the associativity and left and right distribu-
tivity of the product ⊗ w.r.t ⊕. The dioid D also includes a
null element, ε such that ∀a ∈ D, a⊕ε = a and an identity
element e, such that ∀a ∈ D, a⊗ e = e⊗ a = a. A partial
order relation

a ≽ b⇔ a = a⊕ b
is defined for elements a, b ∈ D. This order relation makes
D to be a partially ordered set such that each pair of
elements a, b admits the lowest upper bound sup{a, b}
which coincides with a⊕ b. Hence, a dioid is in particular
a sup-semilattice. Furthermore, the sum and the left and
right products preserve this relation, i.e., if a ≽ b then
a ⊕ c ≽ b ⊕ c, a ⊗ c ≽ b ⊗ c and c ⊗ a ≽ c ⊗ b. A dioid D
is complete if it is closed for infinite sums and the left and
right distributivity of the product extend to infinite sums.
In practice, for D to be complete, the top element, denoted
⊤, exists and is equal to the sum of all elements of D, i.e.,
⊤ =

⊕
a∈D a, such that ∀a ∈ D, a⊕⊤ = ⊤. This element

respects the absorbing rule, i.e., ε⊗⊤ = ε. For a complete
dioid, an inner operation representing the lower bound of
the operands, denoted, ⊕ automatically exists. The partial
order relation can be expressed as a ≽ b ⇔ a = a ⊕
b ⇔ b = a⊕b where a⊕b = inf{a, b} is the greatest lower
bound of a, b.

The max-plus algebra, denoted as Rmax, is a set that
includes R along with the elements ε = −∞, ⊤ = +∞ and
e = 0, i.e., R∪{−∞,+∞}, with the two binary operations
a ⊕ b := max{a, b} and a ⊗ b := a + b. This algebra is an
example of a complete dioid. This dioid is linearly ordered
w.r.t. ⊕ and the order ≽ in this set coincides with the usual
linear order ≥. Furthermore, in this dioid, the operation
a⊕b coincides with min{a, b}. In the sequel, the symbol ⊗
can be omitted in the absence of ambiguity.

The two binary operations in Rmax are naturally extended

to matrices. Given A,B ∈ R
n×p
max , C ∈ R

p×q
max and α ∈

Rmax, we have (A ⊕ B)ij = (aij ⊕ bij), (A ⊗ C)ij =
(
⊕p

k=1 aik ⊗ ckj) and (α ⊗ A)ij = α ⊗ aij . The partial
order relation is also applied to matrices as follows A ≥
B ⇔ A = A ⊕ B for A,B ∈ R

n×p
max , where ≥ refers to the

linear order on Rn×p.

Given k ∈ N and A ∈ R
n×n
max , A

⊗k = A ⊗ · · · ⊗ A (k-fold).
The matrix A⊗0 is the n-dimensional identity matrix
In, which is a special kind of the max-plus version of
diagonal matrices 1 diag⊕(•) with e on the main diagonal.
The absorbing matrix En×m is defined as the (n × m)-
dimensional matrix whose entries are ε. The all-e matrix
En×m follows the same idea, but with its entries equal
to e. The Kleene star of a matrix A is defined as A∗ =(⊕

k∈N A⊗k
)
.

A system of linear inequalities A⊗x ≤ y, where A ∈ R
m×n
max ,

x ∈ R
n
max and y ∈ R

m
max admits the greatest solution

1 A max-plus diagonal matrix has its entries outside the main
diagonal equal to ε

x̂ = A♯(y) given by the following residuation formula
(A♯(y))i = minmj=1 (−aji + yj) , which is equivalent to
−(AT ⊗ (−y)). Obviously, if A⊗ x = y admits a solution,
then x̂ is the greatest solution and A⊗ x̂ = y holds. This
result is also applied to find the greatest solution of the

two-sided equation A ⊗ x = B ⊗ x where A,B ∈ R
m×n
max .

The following equivalences hold

A⊗ x = B ⊗ x⇔ A⊗ x ≤ B ⊗ x and B ⊗ x ≤ A⊗ x

⇔ x ≤ A♯(B ⊗ x) and x ≤ B♯(A⊗ x)

⇔ x ≤ A♯(B ⊗ x)∧B♯(A⊗ x)

⇔ x = x∧A♯(B ⊗ x)∧B♯(A⊗ x).

Hence, the greatest fixed-point of

Π(x) = x∧A♯(B ⊗ x)∧B♯(A⊗ x)

is the greatest solution of A⊗ x = B ⊗ x. Moreover, since
A, A♯, B and B♯ are clearly isotone maps 2 then Π(x)
is also isotone. Thus, to solve this two-sided equation, it
suffices to iterate the sequence I : x[k + 1] = Π(x[k])
on an initial x[k], namely x[0], until convergence x[k +
1] = x[k] is reached for a specific k ∈ N (fixed-point
iteration). As a consequence, if a finite (non-ε entries
only) greatest solution x[k] of A ⊗ x = B ⊗ x exists,
then I is able to find it in a finite number of steps
such that x[k] ≤ x[0]. This computation is known to
have a pseudo-polynomial complexity, i.e., the convergence
rate is polynomial according to the distance between x[k]
and x[0]. Conditions are also presented in Cuninghame-
Green and Butkovic (2003) to ensure that this procedure
converges in finite time because I is likely to run infinitely
since it is possible that one or more of the entries of
x[k] decrease indefinitely to ε. Nevertheless, the algorithm
seems to be efficient (convergence with finite time and with
a low number of steps) to handle problems in this work.

2.2 Intervals over max-plus algebra

Interval analysis in the max-plus algebra was originally
presented in Litvinov and Sobolevskii (2001). A (closed)
interval [x] in max-plus algebra is a subset of Rmax of the
form [x] = [x, x] = {x ∈ Rmax | x ≤ x ≤ x} with x < x. We
denote by IRmax the set of intervals of Rmax. An interval
[x] ⊆ [y] if and only if y ≤ x ≤ x ≤ y. Similarly, [x] = [y]

if and only if x = y and x = y. A value x ∈ Rmax can be
represented by the degenerated interval [x, x]. The ⊕ and
⊗ operations exist for intervals: [x, x]⊕[y, y] = [x⊕y, x⊕y]
and [x, x]⊗ [y, y] = [x⊗ y, x⊗ y].

An interval matrix in max-plus algebra is a matrix whose
elements are intervals. The operations ⊕ and ⊗ can be
extended to interval matrices. Given the interval matrices
[A] = [A,A], [B] = [B,B] and [C] = [C,C] of dimensions
(n × p), (n × p) and (p × q), then ([A]⊕ [B])ij = [aij ] ⊕
[bij ] and ([A]⊗ [C])ij =

⊕p
k=1 ([aik]⊗ [ckj ]). Moreover,

the product of α ∈ Rmax by [A] is given by α ⊗ [A] =
[α ⊗ A,α ⊗ A] and the k-th power of [A] is given by

[A]⊗k = [A⊗k, A
⊗k

]. The Kleene star operation is also
defined for intervals matrices, mathematically for [A] we
have [A]∗ =

(⊕
k∈N[A]⊗k

)
.

2 A♯ and B♯ are isotone maps but not necessarily linear. Hence, in
general A♯(x)⊕A♯(y) ̸= A♯(x⊕ y) for x, y ∈ R

n
max.
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2. PRELIMINARIES

2.1 Max-plus algebra

A set D forms a dioid or idempotent semiring if it satisfies
certain algebraic properties. These properties include the
associativity, commutativity and idempotency of the sum
⊕, as well as the associativity and left and right distribu-
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w.r.t. ⊕ and the order ≽ in this set coincides with the usual
linear order ≥. Furthermore, in this dioid, the operation
a⊕b coincides with min{a, b}. In the sequel, the symbol ⊗
can be omitted in the absence of ambiguity.
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linear order on Rn×p.
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⊗k = A ⊗ · · · ⊗ A (k-fold).
The matrix A⊗0 is the n-dimensional identity matrix
In, which is a special kind of the max-plus version of
diagonal matrices 1 diag⊕(•) with e on the main diagonal.
The absorbing matrix En×m is defined as the (n × m)-
dimensional matrix whose entries are ε. The all-e matrix
En×m follows the same idea, but with its entries equal
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diagonal equal to ε
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A, A♯, B and B♯ are clearly isotone maps 2 then Π(x)
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since it is possible that one or more of the entries of
x[k] decrease indefinitely to ε. Nevertheless, the algorithm
seems to be efficient (convergence with finite time and with
a low number of steps) to handle problems in this work.
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if and only if x = y and x = y. A value x ∈ Rmax can be
represented by the degenerated interval [x, x]. The ⊕ and
⊗ operations exist for intervals: [x, x]⊕[y, y] = [x⊕y, x⊕y]
and [x, x]⊗ [y, y] = [x⊗ y, x⊗ y].

An interval matrix in max-plus algebra is a matrix whose
elements are intervals. The operations ⊕ and ⊗ can be
extended to interval matrices. Given the interval matrices
[A] = [A,A], [B] = [B,B] and [C] = [C,C] of dimensions
(n × p), (n × p) and (p × q), then ([A]⊕ [B])ij = [aij ] ⊕
[bij ] and ([A]⊗ [C])ij =
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the product of α ∈ Rmax by [A] is given by α ⊗ [A] =
[α ⊗ A,α ⊗ A] and the k-th power of [A] is given by
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]. The Kleene star operation is also
defined for intervals matrices, mathematically for [A] we
have [A]∗ =
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.

2 A♯ and B♯ are isotone maps but not necessarily linear. Hence, in
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2.3 Max-plus linear systems

Discrete Event Systems (DES) involve synchronization
and concurrence. Synchronization in manufacturing occurs
when multiple resources are needed simultaneously, while
concurrence involves making choices among available op-
tions within the same timeframe. The max operator is
crucial in synchronization modeling for defining temporal
alignment.

Synchronization phenomena in Discrete Event Systems
(DES) are represented using timed models, focusing on
sequences of time instants and event occurrences, whereas
logical models deal with possible event sequences and
associated conditions.

One of the existing formalisms for modeling timed systems
is to consider linear recursive state-space equations within
the algebraic framework of Rmax. This algebraic structure
is well-suited to represent the behavior of synchronization
(⊕) and timing information 3 (⊗). By employing appro-
priate algebraic manipulation and transformation, one ob-
tains the following autonomous 4 Max-Plus Linear (MPL)
systems:

S :

{
x(k) = A0x(k)⊕A1x(k − 1),
z(k) = Cx(k)

where A0, A1 ∈ R
n×n
max and C ∈ R

p×n
max . Each event is labeled

with an index i ∈ {1, . . . , n}, and xi(k) ∈ Rmax represents
the time instant of the k-th occurrence of event i. As it
can be noticed, x(k) = (x1(k), . . . , xn(k))ᵀ appears in both
sides of the above recursive equation. The transition model
and the measurement function are represented by the pair
(A0, A1) and C, respectively. The transition model admits
an alternative form, given by x(k) = Ax(k − 1) with
A = A∗

0A1 such that the orbit of trajectory of x(k) in this
form is equal to the one in S (see Baccelli et al. (1992) for
details).

In this paper, we assume the system S is uncertain, i.e.,
the matrices have some entries which are random variables
belonging to intervals. Thus, an uncertain MPL (uMPL)
system is defined as

Su :

{
x(k) = A0(k)x(k)⊕A1(k)x(k − 1),
z(k) = C(k)x(k)

(1)

where A0(k) ∈ [A0] = [A0, A0] ∈ IR
n×n
max , A1(k) ∈ [A1] =

[A1, A1] ∈ IR
n×n
max and C(k) ∈ [C] = [C,C] ∈ IR

p×n
max

are nondeterministic matrices. Similarly, the transition
model of uMPL systems also admits an alternative form
representation by considering x(k) = A(k)x(k − 1) with
A(k) = A∗

0(k)A1(k) where A0(k) ∈ [A0] and A1(k) ∈ [A1].
The ”exact” bounds of A(k) are unknown.

Remark 1. It is important to note that the equation
x(k) = A(k)x(k − 1), where A(k) ∈ [A0]∗[A1], over-
approximates the reachable space of Su concerning a given
state x(k − 1). In other words, this form is conservative
since we can compute the ”rough” bounds of A(k).
3 In manufacturing, the timing information represents the processing
time of a task (in practice, it is a delay).
4 Any nonautonomous max-plus DES can be transformed into an
augmented autonomous one (Baccelli et al., 1992, Sec. 2.5) and in
this work we consider, without loss of generality, autonomous systems
only.

2.4 Max-plus systems using disjunctive approach

In Adzkiya et al. (2015), the authors represent max-plus
systems y = M ⊗ x, with y ∈ R

q
max and x ∈ R

n
max, using

disjunctions with operations in R. If the above systems are

bounded, i.e., M⊗x ≤ y ≤M⊗x with M,M ∈ R
q×n
max then

we obtain the following inequalities for all i ∈ {1, . . . , q}:
max(mi1 + x1, . . . ,min + xn) ≤ yi ⇔
x1 ≤ yi −mi1 and . . . and xn ≤ yi −min

and

yi ≤ max(mi1 + x1, . . . ,min + xn)⇔
yi −mi1 ≤ x1 or . . . or yi −min ≤ xn.

In details, M ⊗ x ≤ y ⇔ x ≤M ♯(y), and

y ≤M ⊗ x⇔
q∧

i=1

⎛

⎝
n∨

j=1

(yi −mij ≤ xj)

⎞

⎠ ,

with ∧ and ∨ playing the role of the logic operators AND
and OR, respectively. Hence, M ⊗ x ≤ y is represented
concisely, which is not the case for y ≤ M ⊗ x since it is
represented by the combination of nq elements.

3. SUPPORT OF THE POSTERIOR PDF

In stochastic filtering, the relevant information is obtained
from the posterior PDF. In a set-guaranteed estimation,
one is interested in computing its support. Following
Candido et al. (2018), this support is the set of all
possible states x(k) that can be reached from the previous
state x(k − 1) through the transition model and are
consistent with the observed measurement z(k) through
the measurement function. Mathematically, the image of
x(k − 1) w.r.t. to A0(k) ∈ [A0] and A1(k) ∈ [A1] is given
by

Im[A0],[A1]{x(k − 1)} =

{A∗
0A1x(k − 1) ∈ R

n
max | A0 ∈ [A0], A1 ∈ [A1]}, (2)

i.e., the set of all states x(k) that can be reached from
x(k−1) through the transition model 5 . We also show how
to characterize the inverse image of z(k) w.r.t. C(k) ∈ [C],
formally

Im−1
[C]{z(k)} = {x ∈ R

n
max | ∃C ∈ [C], Cx = z(k)}, (3)

i.e., the set of all x(k) that can lead to z(k) through the
measurement function. Straightforwardly, the support of
the posterior PDF is defined as

Xk = Im[A0],[A1]{x(k − 1)} ∩ Im−1
[C]{z(k)}. (4)

In Candido et al. (2018); Candido et al. (2020) the authors
use difference-bounds matrices (see Miné (2007) for an
overview), which represent zones, to compute exactly Xk.
These disjunctive approaches lack in scalability, since it
is necessary to consider an exponential number of combi-
nations for encoding the upper bounds of the transition
model and measurement functions (see Subsection 2.4).
For further details, please refer to these works.

5 An over-approximation for Im[A0],[A1]{x(k − 1)} is simply com-

puted as [[Im[A0],[A1]{x(k−1)}]] = {Ax(k−1)R
n
max | A ∈ [A0]∗[A1]},

i.e., Im[A0],[A1]{x(k − 1)} ⊆ [[Im[A0],[A1]{x(k − 1)}]]. Please refer to
Remark 1.
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overview), which represent zones, to compute exactly Xk.
These disjunctive approaches lack in scalability, since it
is necessary to consider an exponential number of combi-
nations for encoding the upper bounds of the transition
model and measurement functions (see Subsection 2.4).
For further details, please refer to these works.

5 An over-approximation for Im[A0],[A1]{x(k − 1)} is simply com-

puted as [[Im[A0],[A1]{x(k−1)}]] = {Ax(k−1)R
n
max | A ∈ [A0]∗[A1]},

i.e., Im[A0],[A1]{x(k − 1)} ⊆ [[Im[A0],[A1]{x(k − 1)}]]. Please refer to
Remark 1.

3.1 A symbolic disjunctive approach

Formal methods have significantly benefited from advance-
ments in solving Boolean satisfiability (SAT) problems.
One notable work that exemplifies this progress is the
supervisory control of DES (Shoaei et al. (2014)). In var-
ious applications, multiple problems involve determining
the satisfiability of formulas in more expressive logics like
first-order logic w.r.t. background theories. This concept
is known as Satisfiability Modulo Theories (SMT) (see
Barrett and Tinelli (2018); Kroening and Strichman (2016)
for an overview). In SMT, one can verify, for example, if
there exist (or for all) certain symbolic variables x and y
in R that satisfy a given symbolic formula F . For instance,
F : (x ≥ 0) ∧ (y < 2) ∨ (x − y < −1), is tested for
satisfiability w.r.t. a set 6 . If a solution exists, it returns
values for x and y that make each asserted constraint true.

Remark 2. Difference-bound constraints can be repre-
sented as Boolean combinations of atoms xi − xj ≤ c,
which form difference-logic formulas. Thus, the SMT ap-
proach has the same expressiveness as the difference-bound
matrix approach in Adzkiya et al. (2015); Candido et al.
(2018).

In Mufid et al. (2020, 2022), max-plus systems have been
expressed as SMT formulas. Briefly, we have y = M ⊗ x
with mij ∈ Rmax for (i, j) ∈ {1, . . . , q} × {1, . . . , n}. It
follows from Subsection 2.4 that for each i ∈ {1, . . . , q}
there exists (at least) a gi ∈ {1, . . . , n} such that ∀j ∈
{1, . . . , n} \ {gi} yi = migi + xgi ≥ mij + xj . Hence,
the aforementioned result is equivalent to evaluate the
following SMT formula

Fi :

⎛

⎝
∧

j∈Ji

yi − mij ≥ xj

⎞

⎠ ∧

⎛

⎝
∨

j∈Ji

yi − mij = xj

⎞

⎠ ,

where yi, xj , mij are symbolic variables and Ji ⊆ {1, . . . , n}
represents the set of indices j such that mij ̸= ε. If
each mij is bounded, then it suffices to add the following
symbolic formula

Bi :

⎛

⎝
∧

j∈Ji

(mij ≥ mij) ∧ (mij ≤ mj)

⎞

⎠

to Fi, i.e., Fi ∧ Bi. Hence,
∧q

i=1 Fi ∧ Bi symbolically
represents y = M ⊗ x with M ≤M ≤M .

For systems Su of (1) let us define for each row of the
transition model the following formula:

Rowk,k−1
i : Conjk,k−1

i ∧Disjk,k−1
i ∧Bndk,k−1

i

with

Conjk,k−1
i :

(
∧

l∈Gi

x
(k)
i − x

(k)
l ≥ a0

(k)
il

)
∧

⎛

⎝
∧

j∈Fi

x
(k)
i − x

(k−1)
j ≥ a1

(k)
ij

⎞

⎠

Disjk,k−1
i :

(
∨

l∈Gi

x
(k)
i − x

(k)
j = a0

(k)
il

)
∨

⎛

⎝
∨

j∈Fi

x
(k)
i − x

(k−1)
j = a1

(k)
ij

⎞

⎠

6 The formula F has a solution if x, y ∈ R but no solution if x, y ∈ Z.

and

Bndk,k−1
i :

(
∧

l∈Gi

(a0(k)il ≥ a0il) ∧ (a0(k)il ≤ a0il)

)

∧

⎛

⎝
∧

j∈Fi

(a1(k)ij ≥ a1ij ) ∧ (a1(k)ij ≤ a1ij )

⎞

⎠

where x(k)1 , . . . , x(k)n and a1
(k)
ij , a0(k)il are symbolic variables

for each k and Fi,Gi ⊆ {1, . . . , n} are, respectively, sets of
indices of the i-th rows of A1(k), A0(k) that are different
ε (i.e., are finite). Hence, Rowk,k−1

i is used to represent
symbolically the transition model of (1) as the following
formula: Dk,k−1 :

∧n
i=1 Rowk,k−1

i . The following formula
represents symbolically the measurement function of (1):
Ok,k :

∧p
i=1 O

k,k
i with

Ok,ki :⎛

⎝
∧

j∈Hi

z
(k)
i − x

(k)
j ≥ c

(k)
ij

⎞

⎠ ∧

⎛

⎝
∨

j∈Hi

z
(k)
i − x

(k)
j = c

(k)
ij

⎞

⎠

∧

⎛

⎝
∧

j∈Hi

(c(k)ij ≥ cij) ∧ (c(k)ij ≤ cij)

⎞

⎠

where z
(k)
1 , . . . , z(k)p and c

(k)
ij are symbolic variables and

Hi ⊆ {1, . . . , n} with the same meaning as for Fi but
for C(k). Symbolically, Xk of (4) is represented by the
following formula:

Xk : Dk,k−1 ∧ Ok,k.

3.2 A concise approach

The previous approach uses the encoding of max-plus sys-
tems in standard algebra to take advantage of a powerful
method for affine systems. For this reason, we derive in the
sequel an equivalent and concise method based exclusively
on max-plus algebra.

First, let us write the transition model of (1) as

A0x(k)⊕A1x(k − 1) ≤ x(k) ≤ A0x(k)⊕A1x(k − 1),

then define x = x(k), v = A1x(k − 1) and v = A1x(k − 1)
thus {

A0x⊕ v ≤ x,
A0x⊕ v ≥ x.

Now, taking advantage of the partial order relation on
this algebraic structure, the two-sided equation below is
obtained

:=LD(v,v)︷ ︸︸ ︷(
(A0 ⊕ In) v
(A0 ⊕ In) v

)(
x
e

)
=

:=UD(v)︷ ︸︸ ︷(
In En×1

A0 v

)(
x
e

)
(5)

such that all x ∈ Im[A0],[A1]{x(k − 1)} of (2) satisfy the
above equation. For the measurement function of (1),
a similar procedure exists and was originally derived in
Winck et al. (2022b). Briefly, Cx(k) ≤ z(k) ≤ Cx(k) is
written as

:=LO︷ ︸︸ ︷(
C z
C z

)(
x
e

)
=

:=UO︷ ︸︸ ︷(
Ep×n z
C Ep×1

)(
x
e

)
(6)
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with x = x(k) and z = z(k), such that all x ∈ Im−1
[C]{z(k)}

of (3) satisfy this two-sided equation. It is evident that
all x(k) ∈ Xk, as defined in (4), satisfy both (5) and (6)
simultaneously. By vertically concatenating the associated
matrices, we obtain a single matrix equation that repre-
sents all x(k) ∈ Xk.

4. FEASIBILITY GUARANTEES FOR
SET-ESTIMATION

In a set-estimation scheme, we aim at computing a value
for x(k) within Xk of (4). Clearly (4) is useless, since
x(k− 1) is unknown. Then, an estimate x̂(k) is computed
such that

x̂(k) ∈ X̂k = Im[A0],[A1]{x̂(k − 1)} ∩ Im−1
[C]{z(k)}

where x̂(k−1) is the estimate of x(k) at k−1. Of course, the
success of this approach is related to the distance between
x(k) and x̂(k). An estimate x̂(k) ∈ Im[A0],[A1]{x̂(k − 1)}
may be not in Im−1

[C]{z(k) = C(k)x(k)} since we cannot

guarantee that x(k − 1) is equal to x̂(k − 1) and thus X̂k

may be empty. In this case, x̂(k) is said to be an unfeasible
estimation. Based on Section 3, we derive a disjunctive and
a concise tests to verify feasibility of x̂(k) at each k and,
in the affirmative case, return an estimate.

4.1 Symbolic disjunctive method

In Mufid et al. (2022), the authors presented a numeri-
cal benchmark showing the efficiency of the SMT-based
approach for reachability problems.

In a procedural way, consider the symbolic formula that

represents Xk of (4). Let us replace x(k−1)
1 , . . . , x(k−1)

n with
x̂1(k − 1), . . . , x̂n(k − 1), hence defining Xk|k as the predic-

tion formula. In the same way, we replace z
(k)
1 , . . . , z(k)p

with z1(k), . . . , zp(k), hence defining X̃k|k as the likelihood
formula. Thus

Xk|k : Xk|k−1 ∧ X̃k|k

represents the correction formula, i.e., X̂k. Using Z3 solver
of De Moura and Bjørner (2008), we are able to verify if
Xk|k is SAT and return a solution that makes each asserted
constraint true, defining then a value for x(k), i.e., an
arbitrary estimate x̂(k). As part of a filtering algorithm, a
recursion is defined, i.e., x̂(k− 1)← x̂(k) and the solver is
called once again. If the solver returns UNSAT for some k,
then x̂(k) is unfeasible and we stop the filtering procedure.

4.2 Concise fixed-point method

In a procedural way, let us consider (5) with v = A1x̂(k−1)
and v = A1x̂(k − 1), hence defining XL,k|k−1(x

ᵀ, e)ᵀ =
XU,k|k−1(x

ᵀ, e)ᵀ as the prediction equation, withXL,k|k−1 =
LD(v, v), XU,k|k−1 = UD(v). In the same way, let us

consider (6) with z = z(k), hence defining X̃L,k|k(x
ᵀ, e)ᵀ =

X̃U,k|k(x
ᵀ, e)ᵀ as the likelihood equation with X̃L,k|k =

LO, X̃U,k|k = UO. Thus,
(
XL,k|k−1

X̃L,k|k

)(
x
e

)
=

(
XU,k|k−1

X̃U,k|k

)(
x
e

)

represents the correction equation, i.e., X̂k. Furthermore,
by using the fixed-point iteration algorithm presented

in Subsection 2.1, we are able to verify if the previous
two-sided equation has solution and compute the greatest
estimate x̂(k) ∈ X̂k. As part of a filtering algorithm, a
recursion is defined, i.e., x̂(k − 1) ← x̂(k) and we repeat
the procedure. If no solution exists for some k, then x̂(k)
is unfeasible and we stop the filtering procedure.

4.3 Numerical simulations

For the numerical simulation’s comparison 7 , let us con-
sider (1) with A0(k) in strictly lower form, i.e., a0ij (k) ̸= ε
for all i ≤ j, i, j ∈ {1, . . . , n} and A1(k), C(k) be full
max-plus matrices, i.e., a1ij (k) ̸= ε for all i, j ∈ {1, . . . , n}
and cij(k) ̸= ε for all i ∈ {1, . . . , p} and j ∈ {1, . . . , n}.
Every element of these matrices are randomly chosen be-
tween the arbitrary bounds 0 and 10 at each k, i.e., the
realizations A0(k), A1(k), C(k). We suppose that x(0) =
(e, . . . , e)ᵀ and then we obtain the following sequences
{x(k) = A0(k)x(k) ⊕ A1(k)x(k − 1)}k∈N>0 and {z(k) =
C(k)x(k)}k∈N>0 . We compare in the sequel the previous
approaches to compute feasible estimate x̂(k) for x(k) at
each k. If no feasible estimate can be guaranteed, then we
stop the simulation.

Table 1 shows the minimum, average and maximum exe-
cution times for each call of the estimators for 20 experi-
ments of the disjunctive method T symb(s) and the concise
method Tmat(s) for k ∈ {1, . . . , N}, where N is the event-
horizon. We analyze simulations that are not stopped, i.e.,
experiments that do not violate the feasibility guarantee
of the set-estimation using either approach. Furthermore,
we analyze the error-estimation of both approaches. We
compute the mean-absolute-percentage-error (MAPE) be-
tween xi(k) and x̂i(k) for i ∈ {1, . . . , n}, precisely

errori(xi(k), x̂i(k)) =

100%

N

N∑

k=1

∣∣∣∣
xi(k)− x̂i(k)

xi(k)

∣∣∣∣ , i ∈ {1, . . . , n}

for all i ∈ {1, . . . , n} and then we take the average of the
resulting vector, i.e.,

erroravg =
1

n

n∑

i=1

errori(xi(k), x̂i(k)).

We show the minimum, average and maximum values of
errorsymb

avg (%), errormat
avg (%) for each experiment out of 20.

Table 1. Numerical analysis comparison.

n p N errorsymb
avg (%) errormat

avg (%) T symb(s) Tmat(s)

5 3 500 {0.40; 0.46; 0.53} {0.02; 0.03; 0.04} {0.03; 0.04; 0.116} {0.005; 0.009; 0.02}
10 5 20 {1.44; 1.62; 1.94} {0.43; 0.51; 0.57} {0.12; 0.21; 1.43} {0.02; 0.03; 0.05}
10 8 20 {1.46; 1.58; 1.85} {0.44; 0.51 0.58} {0.14; 0.24; 1.52} {0.02; 0.03; 0.05}
20 10 5 {2.27; 3.00; 3.84} {1.54; 1.80; 2.02} {0.57; 4.90; 28.20} {0.07; 0.10; 0.12}
100 50 10 {-} {0.96; 1.01; 1.05} {-} {1.99; 2.24; 2.65}

As it can be noted, the execution times of both approaches
are related to n. However, the disjunctive approach is more
affected by p because there are more symbolic constraints
to be evaluated by the SMT solver, thus increasing the
7 Running Python with C++ wrappers for Z3 SMT solver
(De Moura and Bjørner (2008)) and Armadillo (Sanderson and
Curtin (2016)) for fast (sparse) matrix operations in max-plus al-
gebra on a Dell Precision 5530 - 2.6 GHz Intel(R) Core(TM) i7
processor.
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with x = x(k) and z = z(k), such that all x ∈ Im−1
[C]{z(k)}

of (3) satisfy this two-sided equation. It is evident that
all x(k) ∈ Xk, as defined in (4), satisfy both (5) and (6)
simultaneously. By vertically concatenating the associated
matrices, we obtain a single matrix equation that repre-
sents all x(k) ∈ Xk.

4. FEASIBILITY GUARANTEES FOR
SET-ESTIMATION

In a set-estimation scheme, we aim at computing a value
for x(k) within Xk of (4). Clearly (4) is useless, since
x(k− 1) is unknown. Then, an estimate x̂(k) is computed
such that

x̂(k) ∈ X̂k = Im[A0],[A1]{x̂(k − 1)} ∩ Im−1
[C]{z(k)}

where x̂(k−1) is the estimate of x(k) at k−1. Of course, the
success of this approach is related to the distance between
x(k) and x̂(k). An estimate x̂(k) ∈ Im[A0],[A1]{x̂(k − 1)}
may be not in Im−1

[C]{z(k) = C(k)x(k)} since we cannot

guarantee that x(k − 1) is equal to x̂(k − 1) and thus X̂k

may be empty. In this case, x̂(k) is said to be an unfeasible
estimation. Based on Section 3, we derive a disjunctive and
a concise tests to verify feasibility of x̂(k) at each k and,
in the affirmative case, return an estimate.

4.1 Symbolic disjunctive method

In Mufid et al. (2022), the authors presented a numeri-
cal benchmark showing the efficiency of the SMT-based
approach for reachability problems.

In a procedural way, consider the symbolic formula that

represents Xk of (4). Let us replace x(k−1)
1 , . . . , x(k−1)

n with
x̂1(k − 1), . . . , x̂n(k − 1), hence defining Xk|k as the predic-

tion formula. In the same way, we replace z
(k)
1 , . . . , z(k)p

with z1(k), . . . , zp(k), hence defining X̃k|k as the likelihood
formula. Thus

Xk|k : Xk|k−1 ∧ X̃k|k

represents the correction formula, i.e., X̂k. Using Z3 solver
of De Moura and Bjørner (2008), we are able to verify if
Xk|k is SAT and return a solution that makes each asserted
constraint true, defining then a value for x(k), i.e., an
arbitrary estimate x̂(k). As part of a filtering algorithm, a
recursion is defined, i.e., x̂(k− 1)← x̂(k) and the solver is
called once again. If the solver returns UNSAT for some k,
then x̂(k) is unfeasible and we stop the filtering procedure.

4.2 Concise fixed-point method

In a procedural way, let us consider (5) with v = A1x̂(k−1)
and v = A1x̂(k − 1), hence defining XL,k|k−1(x

ᵀ, e)ᵀ =
XU,k|k−1(x

ᵀ, e)ᵀ as the prediction equation, withXL,k|k−1 =
LD(v, v), XU,k|k−1 = UD(v). In the same way, let us

consider (6) with z = z(k), hence defining X̃L,k|k(x
ᵀ, e)ᵀ =

X̃U,k|k(x
ᵀ, e)ᵀ as the likelihood equation with X̃L,k|k =

LO, X̃U,k|k = UO. Thus,
(
XL,k|k−1

X̃L,k|k

)(
x
e

)
=

(
XU,k|k−1

X̃U,k|k

)(
x
e

)

represents the correction equation, i.e., X̂k. Furthermore,
by using the fixed-point iteration algorithm presented

in Subsection 2.1, we are able to verify if the previous
two-sided equation has solution and compute the greatest
estimate x̂(k) ∈ X̂k. As part of a filtering algorithm, a
recursion is defined, i.e., x̂(k − 1) ← x̂(k) and we repeat
the procedure. If no solution exists for some k, then x̂(k)
is unfeasible and we stop the filtering procedure.

4.3 Numerical simulations

For the numerical simulation’s comparison 7 , let us con-
sider (1) with A0(k) in strictly lower form, i.e., a0ij (k) ̸= ε
for all i ≤ j, i, j ∈ {1, . . . , n} and A1(k), C(k) be full
max-plus matrices, i.e., a1ij (k) ̸= ε for all i, j ∈ {1, . . . , n}
and cij(k) ̸= ε for all i ∈ {1, . . . , p} and j ∈ {1, . . . , n}.
Every element of these matrices are randomly chosen be-
tween the arbitrary bounds 0 and 10 at each k, i.e., the
realizations A0(k), A1(k), C(k). We suppose that x(0) =
(e, . . . , e)ᵀ and then we obtain the following sequences
{x(k) = A0(k)x(k) ⊕ A1(k)x(k − 1)}k∈N>0 and {z(k) =
C(k)x(k)}k∈N>0 . We compare in the sequel the previous
approaches to compute feasible estimate x̂(k) for x(k) at
each k. If no feasible estimate can be guaranteed, then we
stop the simulation.

Table 1 shows the minimum, average and maximum exe-
cution times for each call of the estimators for 20 experi-
ments of the disjunctive method T symb(s) and the concise
method Tmat(s) for k ∈ {1, . . . , N}, where N is the event-
horizon. We analyze simulations that are not stopped, i.e.,
experiments that do not violate the feasibility guarantee
of the set-estimation using either approach. Furthermore,
we analyze the error-estimation of both approaches. We
compute the mean-absolute-percentage-error (MAPE) be-
tween xi(k) and x̂i(k) for i ∈ {1, . . . , n}, precisely

errori(xi(k), x̂i(k)) =

100%

N

N∑

k=1

∣∣∣∣
xi(k)− x̂i(k)

xi(k)

∣∣∣∣ , i ∈ {1, . . . , n}

for all i ∈ {1, . . . , n} and then we take the average of the
resulting vector, i.e.,

erroravg =
1

n

n∑

i=1

errori(xi(k), x̂i(k)).

We show the minimum, average and maximum values of
errorsymb

avg (%), errormat
avg (%) for each experiment out of 20.

Table 1. Numerical analysis comparison.

n p N errorsymb
avg (%) errormat

avg (%) T symb(s) Tmat(s)

5 3 500 {0.40; 0.46; 0.53} {0.02; 0.03; 0.04} {0.03; 0.04; 0.116} {0.005; 0.009; 0.02}
10 5 20 {1.44; 1.62; 1.94} {0.43; 0.51; 0.57} {0.12; 0.21; 1.43} {0.02; 0.03; 0.05}
10 8 20 {1.46; 1.58; 1.85} {0.44; 0.51 0.58} {0.14; 0.24; 1.52} {0.02; 0.03; 0.05}
20 10 5 {2.27; 3.00; 3.84} {1.54; 1.80; 2.02} {0.57; 4.90; 28.20} {0.07; 0.10; 0.12}
100 50 10 {-} {0.96; 1.01; 1.05} {-} {1.99; 2.24; 2.65}

As it can be noted, the execution times of both approaches
are related to n. However, the disjunctive approach is more
affected by p because there are more symbolic constraints
to be evaluated by the SMT solver, thus increasing the
7 Running Python with C++ wrappers for Z3 SMT solver
(De Moura and Bjørner (2008)) and Armadillo (Sanderson and
Curtin (2016)) for fast (sparse) matrix operations in max-plus al-
gebra on a Dell Precision 5530 - 2.6 GHz Intel(R) Core(TM) i7
processor.

execution time. In terms of error-estimation, these exper-
iments suggest that the concise method leads to lower
error-estimation values. For the last row of Table 1, we
evaluate an example with a large n and we only present the
results for the concise method because the running time
of the disjunctive method exceeds a predefined threshold
(timeout).

5. CONCLUSION

In this work, we have studied two approaches: one de-
veloped by the authors and another drawn from the ex-
isting literature to provide feasibility guarantees for set-
estimation of MPL systems with bounded uncertainties.
We indirectly characterize reachable sets from previous
estimations that respect the measurement output and
compute values within these sets. Firstly, we examine a
disjunctive approach utilizing SMT techniques. Secondly,
we propose a concise method based on solving two-sided
equations in max-plus algebra with pseudo-polynomial
complexity. The latter method outperforms the former
in terms of speed and accuracy. Future works involve
integrating probabilistic aspects for additional feasibility
certificates and exploring the application of the concise
method for directly characterizing the reachable sets.
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