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Original Article 

Dosimetric analysis of hearing loss after cranial radiation therapy in 
children: A single-institution study from the French national 
registry PediaRT 

William Gehin a,*, Pascal Chastagner b, Ludovic Mansuy b, Valérie Bernier-Chastagner a 

a Institut de Cancérologie de Lorraine, Radiotherapy, Nancy, France 
b Centre Hospitalier Régional Universitaire de Nancy, Department of Pediatric Oncology, Nancy, France  

A B S T R A C T   

Purpose: To identify dosimetric predictive factors of sensorineural hearing loss (SNHL) in children after cranial radiation therapy (RT) in a single institution using 
dosimetric data from the French National Registry PediaRT. 
Methods and Materials: Complete audiological follow-up data were available for 44 children treated with cranial RT between 2014 and 2021 at our institution. The 
median age at the time of RT initiation was 9 years (range: 2–17 years). No children presented with hearing loss prior to treatment. SNHL was defined as a Chang 
ototoxicity grade ≥ 1a or higher. 
Results: Median audiometric follow-up duration was 51 months. Seven children (16 %) developed SNHL with a median time to occurrence of 33 months (range, 
18–46 months). The estimated SNHL cumulative rate at 2 years post-RT was 4,5% ± 3,1% and at 5 years was 21 % ± 7.2 %. Multiple Cox regression models showed 
that the association of the age at radiotherapy and the dosimetric values to the inner ear canal and cochlea were the most significant predictive factors of SNHL 
occurrence. No child who received less than 35 Gy on average to both cochleae (n = 26) suffered from SNHL, whereas the 5-year SNHL cumulative incidence for the 
children who received greater than or equal to 35 Gy on average to either cochlea (n = 18) was 51.8 % ± 15.1 %. 
Conclusion: Doses received by the inner ear canal and cochlea, associated with the age at RT initiation, are the main predictive factors for radiation-induced SNHL. A 
median dose to either cochlea over 35 Gy significantly increases the risk of SNHL and justify close audiometric monitoring to detect and equip hearing loss at an early 
stage.   

Introduction 

Central nervous system tumors are the most common solid malig
nancies and the second most common malignancies after leukemia in 
children. They are the leading cause of cancer-related mortality in 
childhood [1]. Survivors of childhood brain tumors have been shown to 
experience significant long-term adverse health outcomes, including 
neurocognitive decline and hearing loss, owing to the combined burden 
of treatment [2–5]. Current multimodal treatment strategies include 
early surgical resection, local cranial radiation therapy (RT), complete 
craniospinal radiation, and chemotherapeutic treatments to achieve 
maximal clinical outcomes. Such multimodal therapies have improved 
survival rates but come at the cost of long-term late effects [5] such as 
hearing loss [6]. 

Younger age at the time of treatment, higher radiation doses, and 
larger volumes of normal tissue exposed to radiation are directly 
correlated with the severity of long-term neurocognitive and sensorial 
morbidities [7–9]. Consequently, radiation sparing treatment protocols 

have been developed for young children in selected cases [10–12]. 
Hearing plays a vital role in the acquisition of speech and verbal 

language, and in the achievement of developmental milestones. Senso
rineural hearing loss (SNHL) in children has been shown to be associated 
with poor intellectual outcomes and impacts social, emotional, and 
cognitive development, resulting in lower quality of life and academic 
achievements [13–17]. Without access to sound localization via hearing, 
children show difficulties discriminating speech in noise, understanding 
speech when it is not directed toward their better-hearing ear, and 
navigating group conversations [18,19]. 

Cranial radiation therapy is associated with a high risk of SNHL 
[20,21,6], especially when combined with cisplatin [22,23]. The re
ported incidence of radiation-induced SNHL varies widely across 
studies, ranging from 0 % to 54 % [24,25]. Radiation-induced SNHL 
typically manifests several years after radiation therapy [6,20,22,26], 
preferentially affects higher frequencies [26,27,6], and can be progres
sive [22]. 

Studies on radiation-induced SNHL in pediatric patients and 
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childhood cancer survivors remain limited [28]. The objective of this 
retrospective study was to report the incidence and severity of SNHL in 
children treated at our institution and to identify risk factors and dosi
metric characteristics correlated with radiation-induced SNHL in 
children. 

Methods and materials 

Patients 

Eligible patients were children with brain tumors treated with cra
nial radiation therapy from 2014 to 2021 at our institution, with no 
prior radiation therapy. Among the 103 children we identified, 23 died 
less than two years after radiation therapy (most of them were treated 
for diffuse intrinsic pontine glioma). We excluded patients without 
sufficient audiologic data (no pre-radiation therapy evaluation and/or 
fewer than two evaluations post-treatment) and those who underwent 
one or more re-irradiations after the initial treatment (see Fig. 1). This 
retrospective study was approved by the French National Health Data 
Protection committee. 

Procedure and treatment 

All the children were treated with photons using inversely planned 
intensity-modulated radiation therapy. Helical tomotherapy or volume- 
modulated arc therapy were administered. The target volumes varied 
according to the tumor type. The gross tumor volume (GTV) included 
the brain tumor, residual tumor, and surgical bed in cases of post
operative radiation therapy. The clinical target volume (CTV) consisted 
of a 5–10 mm margin around the GTV to include subclinical microscopic 
disease and was anatomically confined. The planning target volume 
(PTV) was defined as a geometric margin of 3–5 mm around the CTV. 
Doses and fractionation varied according to tumor type and, when 
applicable, their corresponding clinical trial protocols were respected. 
Over 90 % of the treatments were delivered with a fractionation of 1.8 
Gy/day. Treatments were administered in five fractions per week. Each 
cochlea and inner ear canal were delineated within the temporal bone 
on CT images with no additional margins. During treatment planning, 
the cochleae and inner ear canals were spared at best without 

deteriorating tumor PTV coverage. 

Audiologic assessment 

Audiological assessments were performed before radiation therapy 
(baseline) and ideally annually after treatment by a certified and 
licensed audiologist. Each audiogram was assigned a grade based on the 
Chang Ototoxicity Grading Scale (Table 1). The Chang Ototoxicity 
Grading Scale is more specific and sensitive than the traditional CTCAE 
criteria for identifying clinically significant ototoxicity [29], and uses 
absolute hearing threshold levels that are correlated with indications for 
audiological interventions, such as hearing aids. SNHL was defined as a 
Chang grade ≥ 1a or higher. The worst ear was used when the child had 
asymmetric Chang grade. 

Dosimetric data 

PediaRT is a French national database for radiation therapy in chil
dren that was created in 2014. It registers the patient, tumor, and 
dosimetry characteristics for all children treated in any French pediatric 
radiation therapy center. Dosimetric data were extracted from PediaRT 
and included the size of the delineated cochleae and inner ear canals, 
and the minimal (Dmin), mean (Dmean), and maximal (Dmax, corre
sponding to D2%) doses received by each cochlea and inner ear canal. To 
aggregate different fractionation plannings, all doses were normalized 
as equivalent doses in 1.8 Gy fractions (α/β = 3) before statistical 
analysis. For each child, we only considered the ear which received the 
highest doses. 

Statistical analysis 

The Wilcoxon-Mann-Whitney test was used to identify a significant 
difference in age at radiotherapy initiation between children with SNHL 
and those with normal hearing. Spearman’s coefficient was used to 
evaluate the correlation between dosimetric values to each ear. Paired t- 
tests were used to examine the difference between ears for each dosi
metric value after validation of the normal distribution assumption of 
the differences using Shapiro tests. Univariate logistic regression was 
used to identify the significant risk factors for SNHL. Kaplan-Meier 
analysis was used to describe the time to SNHL occurrence. Univariate 
and multivariate Cox proportional hazards regressions were used to 
investigate the risk factors associated with time to SNHL occurrence. A 
significance level of 0.05 was used for all tests, without adjusting for 
multiplicity. Analyses were performed using R version 4.2.2 
(2022–10–31). 

Results 

Baseline patient, tumor, and treatment characteristics are presented 
in Table 2. There were 44 children included in this retrospective study. 
The median age at RT initiation was 9 years (range: 2–17 years). No 
children presented with hearing loss prior to treatment. The median 
audiometric follow-up period was 51 months (range: 24–123 months). 
The most common diagnosis was medulloblastomas (48 %). Other his
tological diagnoses included ependymomas (15 %), astrocytomas (14 

Fig. 1. Diagram flow.  

Table 1 
The Chang Ototoxicity Grading Scale.  

Grade Hearing threshold 

0 ≤ 20 dB at 1, 2 and 4 kHz 
1a ≥ 40 dB at 6–12 kHz 
1b > 20 and < 40 dB at 4 kHz 
2a ≥ 40 dB at ≥ 4 kHz 
2b > 20 and < 40 dB at < 4 kHz 
3 ≥ 40 dB at ≥ 2 kHz 
4 ≥ 40 dB at ≥ 1 kHz  
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%), craniopharyngiomas (12 %), and pineoblastomas (11 %). Most 
children had a CSF shunt (57 %), underwent at least one cerebral surgery 
(93 %), and did not receive cisplatin-based chemotherapy (86 %). Ra
diation therapy was delivered equally between tomotherapy and arc 
therapy. Median Dmin, median Dmean and median Dmax were respectively 

23.6 Gy (IQR, 7.5–36.5 Gy), 29.1 Gy (IQR, 15.0–39.2 Gy) and 36.3 Gy 
(IQR, 19.9–46.2 Gy) to the right inner ear canal, 26.7 Gy (IQR, 
10.5–36.8 Gy), 30.7 Gy (IQR, 16.1–39.1 Gy) and 39.2 Gy (IQR, 
22.6–46.7 Gy) to the left inner ear canal, 23.9 Gy (IQR, 9.5–36.6 Gy), 
27.6 Gy (IQR, 13.6–37.8 Gy) and 33.3 Gy (IQR, 15.4–40.2 Gy) to the 
right cochlea, and 26.7 Gy (IQR, 10.0–36.3 Gy), 29.7 Gy (IQR, 
14.9–37.5 Gy) and 33.4 Gy (IQR, 17.7–41.4 Gy) to the left cochlea. 

At the latest audiologic assessment, 7 children (16 %) presented with 
SNHL. Two (4.5 %) children had mild SNHL (Chang grades 1a and 2a) 
and five (11.5 %) had significant SNHL (Chang grade ≥ 2b requiring 
airing aids). 

Children with SNHL were younger (at radiotherapy initiation) than 
those with normal hearing (average age, 7.1 vs 9.6 years), but the dif
ference was not statistically significant (p-value = 0.22). Dosimetric 
values (Dmin, Dmean, Dmax, for both ears, and for both cochlea and inner 
ear canal) were all significantly higher for children with SNHL than 
those with normal hearing (e.g., average Dmean on right cochlea, 41.03 
vs 23.09 Gy; on left cochlea, 41.75 vs 23.22 Gy). Left and right ear 
dosimetric values were all correlated (e.g., Spearman’s correlation co
efficient between the left and right cochlea Dmean = 0.89; p-value <
0.001), with no difference between the left and right ears (e.g., paired t- 
test between the left and right cochlea Dmean p-value = 0.76). 

Univariate logistic regressions showed that a Cisplatin-based 
chemotherapy, a CSF shunt, Dmin, Dmean and Dmax to both inner ear 
canals and cochleas, were significantly associated with a higher risk of 
SNHL. 

The median time to SNHL occurrence was 33 months (range, 18–46 
months). The estimated SNHL-free survival rate at 2 years post-RT was 
95,5% ± 3,1% and at 5 years was 79 % ± 7.2 %. The Kaplan-Meier plot 
for the SNHL occurrence rate is provided in Fig. 2. 

Univariate Cox proportional-hazards analyses showed that having 
received cisplatin-based chemotherapy and all dosimetric values to both 
the inner ear canals and cochleae were significant risk factors associated 
with the time to SNHL occurrence (Table 3). Multivariate analysis did 
not yield any significant results because the number of parameters in the 
full regression model was greater than the number of events (hearing 
loss). As is usual in such a situation, we used a stepwise procedure with 
multiple Cox regression models, which tests various combinations of 
parameters in increased numbers to obtain the best partial regression 
model. This procedure showed that the association between the age at 
radiotherapy and dosimetric values was the most significant combina
tion of predictive factors for SNHL onset. 

Discussion 

We retrospectively examined the occurrence of hearing loss and its 
associated risk factors in children treated at our institution between 
2014 and 2021 with radiation therapy for brain tumors. Our series of 44 
children, with a SNHL prevalence of 16 % and a median time to onset of 
33 months, showed results that were comparable to those of previously 
published series. Indeed, Bass et al. [28] reported a prevalence of 14 % 
with a median time to SNHL onset of 3.6 years, and Hua et al. [6] re
ported a prevalence of 14 % and a median time to occurrence of 3.4 
years. As previously reported [6,30], our analysis showed that cochlear 
dose is a significant predictive factor for SNHL. 

Because of the small volume of the cochlea, a robust dose-volume 
analysis is not feasible, and only recommendations regarding the 
mean dose can be found in the literature. In children, the mean dose to 
the cochlea is recommended to be kept below 35 Gy [30,31,6]. 

In our series, no child who received less than 35 Gy on average to 
both cochleae (n = 26) suffered from SNHL, whereas the 5-year SNHL 
cumulative incidence for the children who received greater than or 
equal to 35 Gy on average to either cochlea (n = 18) was 51.8 % ± 15.1 
%. A comparison between the Kaplan-Meier plots for each subgroup is 
shown in Fig. 3. A recent meta-analysis of 457 cochleae by the Pediatric 
Normal Tissue Effects in the Clinic (PENTEC) hearing loss task force 

Table 2 
Baseline patient (N = 44), tumor and treatment characteristics.  

Characteristic No. 
(%) 

Median Range IQR 

Age at RT initiation (years)  9 Feb-17 6–12.3 
< 3 2 (5 

%) 
≥ 3–5 8 (18 

%) 
> 5 34 

(77 %) 
Gender     
Female 18 

(41 %) 
Male 26 

(59 %) 
Tumor type     
Medulloblastoma 21 

(48 %) 
Ependymoma 8 (15 

%) 
Astrocytoma 6 (14 

%) 
Craniopharyngioma 5 (12 

%) 
Pineoblastoma 4 (11 

%) 
Time from RT initiation to latest 

audiogram (months)  
51 24–123 39–82 

CSF shunt     
Yes 25 

(57 %) 
No 19 

(43 %) 
Cerebral surgery     
Yes 41 

(93 %) 
No 3 (7 

%) 
Cisplatin-based chemotherapy     
Yes 6 (14 

%) 
No 38 

(86 %) 
Radiation delivery system     
Tomotherapy 22 

(50 %) 
Arctherapy 22 

(50 %) 
Right inner ear canal     
Size (cm3) 0.6 0.1–2.0 0.4–0.6 
Minimum dose (Gy) 23.6 0.2–57.4 7.5–36.5 
Average dose (Gy) 29.1 0.2–65.2 15.0–39.2 
Maximum dose (Gy) 36.3 0.2–73.7 19.9–46.2 
Left inner ear canal     
Size (cm3) 0.5 0.1–1.9 0.4–0.7 
Minimum dose (Gy) 26.7 0.2–47.3 10.5–36.8 
Average dose (Gy) 30.7 0.2–52.7 16.1–39.1 
Maximum dose (Gy) 39.2 0.2–60.5 22.6–46.7 
Right cochlea     
Size (cm3) 0.2 0.1–1.4 0.1–0.3 
Minimum dose (Gy) 23.9 0.2–54.2 9.5–36.6 
Average dose (Gy) 27.6 0.2–57.0 13.6–37.8 
Maximum dose (Gy) 33.3 0.2–62.6 15.4–40.2 
Left cochlea     
Size (cm3) 0.2 0.1–1.0 0.1–0.3 
Minimum dose (Gy) 26.7 0.2–47.3 10.0–36.3 
Average dose (Gy) 29.7 0.2–49.3 14.9–37.5 
Maximum dose (Gy) 33.4 0.2–54.0 17.7–41.4 

IQR: interquartile range. 
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showed similar results [32], with a hearing loss risk under 5 % in cochlea 
having received a mean dose below 35 Gy, but a 30 % risk at 50 Gy. 

Sparing the cochlea is thus critical for long-term hearing protection 

in children receiving cranial radiation therapy, especially because 
hearing plays a major role in cognitive, intellectual, and social devel
opment. Consequently, contouring of the cochlea should be as meticu
lous as possible because errors in contouring will have an impact on the 
estimation of doses to the correct site of the cochlea and will prevent 
correct sparing. Unfortunately, the cochlea is not directly visible on CT 
because of its small size and its deep location within the temporal bone. 
Contouring guidelines [31] recommend that its volume be defined on CT 
images as the bony cavity where it lies using an appropriate bone win
dow/level and an image thickness of 1 mm. If available, MRI images 
should be used to aid contouring, as the structures of the inner ear are 
visible on T2 weighted MRI. 

Heterogenous practices, inaccuracy, and inter-observer variability 
from radiation oncologists in delineation of the cochlea have been well 
documented in adult patients [33,34], partly because of its small vol
ume. The emergence and recent refinement of automatic contouring 
using A.I. will hopefully assist radiation oncologists in producing more 
accurate and homogeneous delineations. 

The radiosensitivity of the cochlea and its variability in contouring 
raises the question of the use of a margin for the cochlea as a planning 
organ-at-risk volume (PRV) during dosimetry planning. Currently, there 
is no literature on the use of PRV for the cochlea for cranial radiation 
therapy in children. For head and neck tumors in adult patients, a 3-mm 
margin is usually used for cochlear sparing without compromising PTV 
dose coverage [35,36]. Further studies are needed to evaluate the use
fulness of a 3 mm PRV in children. 

In children, cerebral tumors are often located in the posterior fossa, 
close to the inner ear. Limiting Dmean to the cochlea below 35 Gy is often 
unfeasible without severely compromising PTV coverage. A Dmean to the 
cochlea higher than 35 Gy should then serve as a warning signal, 
requiring close audiometric monitoring and good information for par
ents. Hearing loss should be detected as early as possible to benefit from 
hearing aids and reduce their impact on children’s cognitive 
development. 

The main limitation of this study is the small sample size of 44 
children, mainly due to unavailable audiological follow-up data in the 
patient files. Well-documented risk factors associated with SNHL [6,28], 
such as cerebral surgery, or CSF shunt, were not significant in our 
analysis, probably because of its low statistical power. Even though the 
age at radiotherapy was not considered significant in our univariate 

Fig. 2. Kaplan-Meier plot showing the probability of not experiencing SNHL (Chang grade > 0) after radiation therapy.  

Table 3 
Univariate and multivariate Cox Proportional-Hazards analyses of risk factors 
associated with time to SNHL occurrence.   

HR and 95 % CI p-value 

Age at RT initiation 0.88 [0.73;1.06] 0.176 
Gender   
F 1  
M 1.91 [0.37;9.85] 0.441 
Tumor type   
Medulloblastoma 1  
Other NC NC 
Cerebral surgery   
No 1  
Yes NC NC 
CSF Shunt   
No 1  
Yes NC NC 
Cisplatin   
No 1  
Yes 4.70 [1.04; 21.15] 0.044* 
Right inner ear canal   
Size (cm3) 0.99 [0.14; 7.12] 0.993 
Minimum dose (Gy) 1.10 [1.03; 1.18] 0.007** 
Average dose (Gy) 1.08 [1.02; 1.14] 0.011* 
Maximum dose (Gy) 1.06 [1; 1.12] 0.048* 
Left inner ear canal   
Size (cm3) 0.44 [0.03; 7.42] 0.568 
Minimum dose (Gy) 1.20 [1.05; 1.36] 0.006** 
Average dose (Gy) 1.18 [1.05; 1.33] 0.005** 
Maximum dose (Gy) 1.11 [1.01; 1.22] 0.031* 
Right cochlea   
Size (cm3) 2.31 [0.26; 20.4] 0.451 
Minimum dose (Gy) 1.11 [1.03; 1.19] 0.008** 
Average dose (Gy) 1.10 [1.03; 1.19] 0.009** 
Maximum dose (Gy) 1.07 [1.01; 1.14] 0.023* 
Left cochlea   
Size (cm3) 1.70 [0.05; 56.9] 0.767 
Minimum dose (Gy) 1.20 [1.05; 1.36] 0.006** 
Average dose (Gy) 1.19 [1.05; 1.34] 0.005** 
Maximum dose (Gy) 1.14 [1.04; 1.26] 0.006** 

HR: hazard ratio; CI: confidence interval; NC: not computed. 
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analysis, the association of a young age with high doses to the cochlea 
was nonetheless the most significant association of parameters in our 
multiple Cox regression models procedure. Thus, even in a small sample 
setting, the fact that this association is significantly predictive of hearing 
loss is of practical interest for the pediatric radiation oncologist. The 
PENTEC meta-analysis [32] also showed that the incidence and severity 
of hearing loss from cerebral radiation therapy is related to dose and age, 
with children younger than 5 years at highest risk. Therefore, children 
who received high doses to the cochlea at a young age (under 5 years of 
age) should be closely and carefully monitored. 

Because of the small sample size, we also chose not to differentiate in 
our statistical analysis between different Chang grades, and thus did not 
examine how dosimetric values and age may influence the severity of 
SNHL. For the same reason, we did not examine how SNHL evolves over 
time but only focused on the last available Chang grade. Indeed, SNHL 
after radiation therapy and/or cisplatin-based chemotherapy has been 
shown to worsen over time [28], and we were more concerned about the 
incidence of SNHL than its severity. 

To increase the size of our study population, and to be able to analyze 
in greater detail the different grades of severity and changes over time in 
hearing impairment, we are currently working on collecting audiometric 
follow-up data from children treated in other French pediatric radio
therapy centers. We plan to publish this extended study by 2026. 

Conclusion 

Hearing loss is associated with poor intellectual, cognitive and social 
development in children. However, studies of radiation-induced SNHL 
in cancer survivors remain limited. Our single-institution experience 
showed that the doses received by the inner ear canal and cochlea, 
associated with the age at RT initiation, are the main predictive factors 
for radiation-induced SNHL. We reported that a median dose to either 
cochlea over 35 Gy is associated with a significant increase in risk. 
Sparing the cochlea is not always feasible without compromising PTV 
coverage, but exceeding that threshold should serve as a warning signal 
for the pediatric radiation therapist, requiring close audiometric 

monitoring and good information for parents. 
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