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Abstract. Over the years, developers have become increasingly reliant
on web technologies to build their applications, raising concerns about
side-channel attacks, especially on cryptographic libraries. Despite the
efforts of researchers to ensure constant-time security by proposing tools
and methods to find vulnerabilities, challenges remain due to inadequate
tools and integration issues in development processes.
We tackle the main limitations of state-of-the-art detection tools. While
Microwalk is the first and, to the best of our knowledge, only tool to find
side-channel vulnerabilities in JavaScript libraries, the instrumentation
framework it relies on does not support modern JavaScript features.
Moreover, and common to most state-of-the-art detection tools not aimed
at JavaScript, writing tests is a tedious process due to the complexity of
libraries, the lack of information about test coverage, and the rudimentary
interpretability of the report. Furthermore, recent studies show that
developers do not use these tools due to compatibility issues, poor usability,
and a lack of integration into workflows.
We extend Microwalk in several directions. First, we design a generic
AST-level tracing technique that is tailored to source-based dynamic
side-channel leakage analysis, providing support for the latest language
features. Second, we bring semi-automation to Microwalk analysis tem-
plates, considerably reducing the manual effort necessary to integrate
side-channel analyses into development workflows. Third, we are the first
to combine leakage reporting with coverage visualization. We evaluate
the new toolchain on a set of cryptographic libraries and show that it can
quickly and comprehensively uncover more vulnerabilities while writing
tests with half as many lines of code as the previous Microwalk version. By
open sourcing our new tracer and analysis template, we hope to increase
the adoption of automated side-channel leakage analyses in cryptographic
library development.
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1 Introduction

Many developers are turning to web technologies to build their applications
[4,5,6]. The security of web applications is of great concern, even more so when
cryptographic libraries are involved. Side-channel attacks are a popular approach
to attack such libraries, potentially rendering every application that uses the
library vulnerable. One way to ensure that cryptographic libraries are secure
against side-channel attacks is to make them constant-time (i.e., with no depen-
dencies on branches and no memory accesses or allocations). However, ensuring
that a library is constant-time can be a challenging and time-consuming task. For
this reason, the research community has proposed numerous methods and tools
[9,13,15,17,33] to check their programs. Nevertheless, according to Jancar et al.
[22], cryptographic library developers do not seem to use these tools because
they have poor usability, are not well documented, have compatibility problems,
and are not integrated into development processes. More recently, Fourné et al.
[16] conducted a user study that revealed that the majority of these tools have
similar usability issues that prevent their effective use.

Microwalk-CI [34], proposed in 2022 as an extension of Microwalk [33], is a
tool that automates side-channel analyses during Continuous Integration (CI).
Microwalk-CI or, for short, Microwalk, combines dynamic analysis with statistical
methods to locate and quantify side-channel leaks. It can be used on binary code
like many other tools, but is the first to also support JavaScript. Developers
must write at least one target file and associated test case files, each using one or
more cryptographic primitives from the analyzed library, and the secret data of
those primitives. When developers run Microwalk with these test files, the tool
generates a radix tree from the execution traces by adding each execution trace
to the tree, where each branch represents a divergence that could potentially
be exploited by a side-channel attack. Finally, it returns a report in JSON that
shows the type, the location, and a score for each leak.

Challenges. We have identified several issues with the current Microwalk tool,
which are common to most other state-of-the-art detection tools [16,22]. We
present and address them as follows:

1. Some modern JavaScript libraries cannot be analyzed because of framework
incompatibilities. Indeed, the Jalangi2 framework [31], which Microwalk cur-
rently relies on, does not support post-2015 versions of ECMAScript. This
means that Microwalk has a compatibility problem as it is unable to parse
libraries that use modern JavaScript features such as scoped variables or asyn-
chronous programming. We designed and implemented a new trace generator
for JavaScript source code tailored to side-channel analysis, thus improving
the compatibility of Microwalk.

2. Writing tests is tedious and error-prone. If the library to be analyzed is large
and complex, the process of writing tests can become tedious due to their
quantity and sophistication. This can encourage copy-pasting, which can lead
to errors within the tests and can be a problem if the library is modified. We
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introduce a novel semi-automated leakage analysis template that minimizes
the number of lines a developer has to write in order to test their library.

3. Developers cannot know whether their tests are sufficient to uncover all
vulnerabilities. The use of Microwalk’s JSON report requires some effort and
time from the user, since it provides only limited information about the
location and quantification of each leak per file. Indeed, due to the source
code not being included in the report, users must navigate between their
code and the report to understand which statements in their program are
not constant-time, which goes against the recommendations by Fourné et al.
[16] for output generation. Furthermore, it can be tedious to identify all the
leaks in a library if the tests do not cover the entire source code. We design
a new output that improves the interpretability of the report by integrating
the vulnerability reports with the code, and adding test coverage. This helps
developers choose which tests to perform.

Contributions.

– We design a generic AST-level tracing technique for source-based dynamic
side-channel leakage analysis, which can be easily adjusted to support new
language features (Section 4);

– We extend the Microwalk analysis template with support for subtargets and
test case generation, bringing semi-automation to the process (Section 5);

– We are the first, to the best of our knowledge, to combine leakage reporting
with coverage visualization in a user-friendly way (Section 6);

– We use the new toolchain to comprehensively analyze a number of JavaScript
cryptographic libraries. We demonstrate its efficiency and show that it can
uncover vulnerabilities in modern ECMAScript code (Section 7).

While we chose to extend Microwalk rather than to build yet-another-
tool, most of our contributions are generic and can be applied to other tools.
The source code of our work is available in anonymous repositories: https:
//github.com/EasyWalk-CI-project/EasyWalk (trace generation); https://
github.com/EasyWalk-CI-project/EasyWalk-Evaluation (new template and
evaluation). Our work will gradually be added to the Microwalk main branch.

2 Background

2.1 Side-Channel Leakage

Microarchitectural side-channel attacks are based on observable information
from microarchitectural components, which an attacker can measure and compare,
resulting in the disclosure of secrets. Vulnerabilities to these attacks are located
on the boundary between hardware and software. At the hardware level, opti-
mizations and shared resources allow the attacker to interfere with their victim.
For example, caches greatly speed up accessing frequently used memory. However,
if the attacker resides on the same core (or processor), they can purposefully
evict the victim’s data to learn when it is accessed [30]. In recent years, many

https://github.com/EasyWalk-CI-project/EasyWalk
https://github.com/EasyWalk-CI-project/EasyWalk
https://github.com/EasyWalk-CI-project/EasyWalk-Evaluation
https://github.com/EasyWalk-CI-project/EasyWalk-Evaluation
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such attacks have been published, ranging from coarse-grained attacks via the
translation look-aside buffer [19] to subtle intra cache line leakages [28].

All these attacks exploit the secret-dependent runtime behavior of an applica-
tion, which are varying memory access patterns or control flow. If, for example,
the victim’s application does a table lookup with a key-dependent index, the
attacker can evict the table from the cache and subsequently measure which part
of the table is immediately fetched back into the cache. This way, they learn
which part of the table was accessed by the victim, and can correlate many such
observations to extract the secret input.

The primary solution to prevent such attacks is to write a program without
secret-dependent control flow and memory accesses, such that the program always
exhibits a runtime behavior (statistically) independent from the secret. This
approach is called constant-time programming.

2.2 Instrumentation

Instrumentation is the automated modification of an existing program in
a transparent manner. Applications are tracing (i.e., gathering information
about a program’s behavior), and modification (i.e., injecting changes during
execution). There are two main flavors of instrumentation: static instrumentation
changes the program permanently so the injected code gadgets are executed
every time the program is invoked; and dynamic instrumentation, which extends
the program at runtime, usually by executing the program through a special
dynamic instrumentation engine that takes ownership of the control flow and
uses just-in-time compiling techniques to inject the requested code gadgets.

A common characteristic of any instrumentation framework is the deployment
of a callback-based API, which allows the user to provide arbitrary code that
is executed in a specific situation (e.g., a library is loaded, or on a memory
access). For JavaScript, there are a few instrumentation frameworks. Aran [23]
and Jalangi2 [31] both directly rewrite the JavaScript source code, as it is
an interpreted language with no native binary representation. They load user-
provided plugins for each event. However, neither support all features of modern
JavaScript, with Jalangi2 not having received notable updates since 2017. Another
noteworthy mention is OpenTelemetry[3], which supports various programming
languages but is tailored to high-level tracing like function calls or web APIs.

2.3 Microwalk

Microwalk [33] is a micro-architectural leakage detection framework that
combines a dynamic analysis approach with statistical methods to quickly locate
and quantify side-channel leaks. It can be used on binary software and JavaScript
libraries, and can be run in a Continuous Integration (CI) workflow [34].

The Microwalk framework [25] requires four steps for a developer to analyze a
cryptographic library. (i) The developer chooses an analysis template, which are
currently provided for C and JavaScript libraries on GitLab, GitHub, and locally.
They copy the template into the root of their library repository and merge or
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adjust the CI configuration and package files. (ii) The developer provides at
least one target, that calls a library function (i.e., a cryptographic primitive)
to analyze. (iii) They manually create a number of test case files, i.e., secret
inputs, which are read by the associated target. These test cases need to be
as random as possible to ensure a good analysis by Microwalk. The number of
required test cases depends on the analyzed primitive, however, Wichelmann
et al. [34] recommend 16 test cases as a good compromise between performance
and the number of vulnerabilities found. (iv) The developer pushes a new commit
(triggering the CI workflow) or runs the Microwalk analysis script locally.

The analysis script traverses all of the targets and their associated test cases,
generates execution traces, and merges those into a radix tree, where each function
call and trace entry forms the nodes, and where subsequent function calls and
trace divergences form the branches. Those trace divergences are potential leaks
that can be exploited by side-channel attacks, as this means that the attacker
can learn something about the test case (a secret) by looking at the trace. After
inserting the traces, the tree gets traversed to evaluate, for each statement in
each call stack, whether it caused a leak. To quantify leakage severity, numerous
metrics are computed, like the minimal conditional guessing entropy [34], which
measures the smallest number of guesses needed for an attacker to map a given
trace from the tree to a secret input. At the end of the analysis, the tool produces
three artifacts: a control flow leakage analysis report, a code quality report for
each target test, as well as a merged code quality report that can be displayed
by GitLab and GitHub.

3 Overview

We first give an overview of the limitations of the state-of-the-art for efficiently
finding side-channel vulnerabilities in cryptographic libraries and we outline our
goals to address those limitations. Finally, we describe the improved development
and leakage analysis workflow.

3.1 Goals

We identified three issues that specifically hinder the adoption of Microwalk
for JavaScript analysis, but that also need to be addressed by side-channel leakage
analysis tools in general. We address those limitations with the following three
goals: (1) compatibility of the trace generator, (2) semi-automation for (sub)target
and test case generation, and (3) interpretability of the vulnerability report by
the developer.

Compatibility. JavaScript is actively developed. Every few years a new version
of the ECMAScript (ES) specification is released, offering new features and
improvements. However, the Jalangi2 framework [31] that Microwalk currently
relies on does not support ES2015 (also called ES6) and beyond, which includes
essential functionality like scoped variables or asynchronous programming. As
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there are no comparable instrumentation frameworks, Microwalk is not able to
analyze libraries that use modern JavaScript features. Additionally, the evaluation
in [34] showed that trace generation takes the bulk of the leakage analysis time. A
large part of this overhead is caused by numerous unused callbacks in Jalangi2. To
address these issues, we build an AST-based tracing engine that does not need an
external instrumentation framework, and thus can be easily adjusted to support
new language features. In addition, we can directly extract the information
needed for leakage analysis, reducing trace size and avoiding an error-prone trace
preprocessing steps.

Semi-automation. The process of analyzing a library with a dynamic leakage
analysis tool usually has some mandatory requirements: the developer needs to
implement a wrapper for invoking the respective functionality (called target),
and specify a set of secret inputs for testing (called test cases). However, complex
libraries that offer a lot of primitives and flexibility require writing a large
amount of targets, leading to extensive implementation and maintenance efforts.
We noticed that this resulted in a lot of duplicate code, which is prone to
copy/paste errors. The developer also has to generate lots of static test cases,
which increase the size of the code repository. While the need to implement
targets cannot be fully averted, we extend the template in a way that minimizes
the amount of code to write by providing native support for subtargets, which
combine several flavors of a given primitive type in a single target implementation.
In addition, we move away from statically provided test cases to target-specific
automated test case generation based on fixed seeds. This way, test cases are
generated deterministically and on-the-fly during leakage analysis.

Report interpretability. In the free version of GitLab, developers do not get
the pipeline details view of the code quality report, but rather a JSON report,
forcing them to navigate between the report and their code. As a result, it
can be cumbersome to match a vulnerability with the corresponding line of
code. To address this, we create an alternative report that integrates each
reported vulnerability in the library code, so that developers know exactly where
a vulnerability has been found. Additionally, dynamic analysis tools may, by
design, not cover all the lines of a program, especially as cryptographic libraries are
increasingly complex. To address this, the report provides coverage information,
highlighting which lines were not covered by the tests. Overall, this increases the
interpretability of the report for developers who can subsequently take concrete
actions to fix their libraries.

3.2 Workflow

Given our goals, we pursue the following development workflow (see Figure 1).
The library developer starts by copying the analysis template into their repository
and configures it to integrate into their CI workflow. They then implement a
set of targets and associated test case generators. Each target relates to a
certain primitive (e.g., AES) and consists of several subtargets, which invoke
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Microwalk Container

Fix Reported Leakage;
Improve Coverage

New Commit

Test Case Generators

Report Generator

Trace Analysis(Sub)Targets

Project Repository

Trace Generator

Fig. 1. Development workflow overview. The developer’s tasks are blue, automated
tasks are red. The developer implements (sub)targets and corresponding test case
generators for analyzing the library. On each commit, the CI generates and analyzes
execution traces, and produces a report that outlines leakages and code coverage. The
developer uses the report to modify the code to fix leakages or to add more test cases
to increase coverage.

the respective parts of the library. The subtargets share the same test case
generator, but may tweak it through custom attributes (e.g., key length). After
the setup, each commit triggers the CI workflow, starting a Microwalk container
that executes every subtarget and analyzes the resulting execution traces. The
vulnerability and code coverage analysis produce a human-readable report. The
developer can verify if their commit introduced new leakages and whether the
analysis missed parts of the library. To improve coverage, they may subsequently
increase the number of test cases or introduce further subtargets.

4 AST-based Trace Generation for Leakage Analysis

To address our compatibility goal, we designed a new trace generator for
JavaScript source code that is tailored to side-channel vulnerability analysis.
This section has three parts. First, we assess the runtime information that
needs to be collected to enable leakage analysis. Then, we specify the technical
capabilities the new tracer should have. Finally, we describe how we implemented
an instrumentation engine that satisfies these requirements by inserting trace
generation logic into JavaScript source code.

4.1 Collected Information

The Microwalk trace format was originally designed for binary analysis [33].
However, as shown in [34], it can be adapted to source-based analysis by running
the raw execution traces through a corresponding preprocessor. The generic
traces that Microwalk processes contain three groups of entries: branches, memory
accesses, and heap (de-)allocations.

To discover secret-dependent control flows, all branches must be collected.
This translates to tracking whether if statements execute their body, which case
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in a switch statement is hit (including fallthroughs) and whether a loop body
executes or is terminated early. Calls and returns must be tracked in order to allow
call-stack sensitive leakage analysis. ES2015 comes with additional complexity in
form of deferred execution with yield and asynchronous code with async/await.

To find secret-dependent memory accesses, the target addresses of all memory
accesses are needed. In source-based tracing, we do not have actual memory
addresses, only arrays and objects. For the former, we record the accessed indexes;
for the latter, the accessed keys. The trace preprocessor then generates artificial
and unique memory addresses for each index and key.

JavaScript does not have explicit heap allocations. Arrays and objects are
constructed when initialized and garbage collected when out-of-scope. Our traces
assign each object a unique ID, and include that ID in all logged memory accesses.
If an ID appears for the first time, the preprocessor generates an artificial heap
allocation entry. As these IDs are never shared, we do not have to generate
corresponding heap frees.

4.2 Technical Capabilities

The new tracer should be capable of handling modern JavaScript, which means
supporting the most currently available standard (ES2023 at the time of writing),
but also be backwards compatible to handle many package dependencies that
are written in older versions of JavaScript and are no longer maintained. Modern
JavaScript includes features like ES modules (ESM), asynchronous programming,
deferred execution, and classes. Neither of these are supported by Jalangi2 or
comparable instrumentation tools (e.g., Aran [23]). In addition, the execution
traces should not only cover the analyzed library itself, but also its dependencies.
Node.js packages are notorious for their deep dependency trees [24], so leakages
in seemingly innocuous utility functions from external sources should be found
as well. This requires recursive scanning of all module imports.

4.3 Implementation

As there is currently no general-purpose instrumentation framework for
JavaScript that satisfies our requirements, we skip the abstraction and directly
insert the trace calls into the library’s code itself. For that, we use Babel [10].
Babel was originally conceived as a transpiler that converts post-ES2015 code
to older JavaScript versions, allowing code written with modern syntax to be
executed with older interpreters. The framework is well-maintained and supports
all current language versions. It is also well suited for our application as it offers a
rich API for parsing, modifying and emitting JavaScript code. At its core, Babel
represents a JavaScript program as an abstract syntax tree (AST). We built a
custom plugin for Babel that transforms the AST and enriches it with tracing
code. The trace generation pipeline is illustrated in Figure 2.

In principle, we take a similar approach as Jalangi2. The instrumentation
engine expects a single argument, the main target file. The file is parsed into its
AST, which is traversed with a number of node visitors. Each visitor is dedicated
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Runtime Library

Instrumentation
Engine

Target

Module #1

Module #N
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Module #N
<instrumented>

"Execute Target"

Raw
Traces

Trace
Preprocessor MW

Traces

"Preprocess Traces"

Fig. 2. Trace generation pipeline. The red arrows denote execution flow. When the
instrumentation engine is invoked on a target, it recursively traverses imported modules
and produces instrumented copies. After instrumentation is done, execution is handed
over to the translated target. Every relevant location of the instrumented code contains
calls to the runtime library, which emits corresponding raw execution traces. These raw
execution traces are preprocessed into the Microwalk trace format.

to a specific node type and applies necessary transformations and inserts calls
to the runtime library. Contrary to Jalangi2, which wraps every operation into
callbacks, we directly insert logging calls into relevant operations. These are, for
example, call and return statements in order to catch function entry and exit,
the bodies of block statements to detect branches, and accesses to arrays and
objects to trace memory accesses. To handle complex expressions, like nested
or chained calls and accesses (e.g., a().b(c()).d().e[4]), we split them and
store intermediate results in temporary variables. This way we avoid accidentally
executing a function twice, which would make our instrumentation incorrect.

Jalangi2 has no understanding of control flow statements and loops, but
instead only emits expressions (e.g., for i++) and conditions (e.g., for i < 5).
This simplifies the instrumentation, as the framework does not deal with many
special cases, like else if or switch, but complicates collecting the branch
information necessary for side-channel analysis. Control flow tracking has to be
fully implemented in the analysis callbacks and the old preprocessor, which used
complex heuristics to determine when a branch trace entry should be emitted. The
new tracer directly emits branch entries at the begin of control flow statements.

A notable ES2015 feature with impact on trace generation is deferred execution
with yield (also called generators). It dilutes the otherwise clear concept of
call/return, as execution jumps right back into a function after briefly leaving it.
Since the Microwalk analysis modules expect clean call trees, we emit return/call
trace entries when handling yield statements. While we could use Babel’s
transpilation capabilities to replace those post-ES2015 features with older syntax,
this would break the mapping between the leakage report and the source code.
Thus, we handle each feature manually.

Another issue are dependencies. ES2015 introduces a new dependency system
that relies on asynchronous import statements, replacing the synchronous Com-
monJS require() functionality. These are incompatible, i.e., a CommonJS-based
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library cannot load an ES module. To support both, we implement all runtime
components as synchronous CommonJS modules, which is unfortunate as using
synchronous I/O slows down trace generation. We will revisit this decision in the
future when adoption of ES modules has increased. We recursively instrument
all static dependencies that are known at instrumentation time, and install a
handler for on-the-fly instrumentation of dynamic imports. Each instrumented
module is cached so we only process them once.

To keep the instrumentation simple, we moved all trace writing code into a
separate runtime module that is loaded by all instrumented modules. Similar to
Jalangi2, the runtime contains callbacks for every type of trace entry. However,
the callbacks are very thin and just emit the trace entries, as the domain-specific
instrumentation already yields all necessary information.

5 A Semi-Automated Leakage Analysis Template

Contrary to other leakage analysis tools which are used mostly manually and
ad-hoc, Microwalk aims for a high level of automation. However, the current
infrastructure still requires lots of manual work and risks mistakes and increased
maintenance effort. We thus analyzed what is the minimal amount of manual
work a developer has to invest when integrating side-channel analysis into their
workflow, and designed a new generic analysis template supporting that. The
template only needs few adjustments to fit a new library. Our core improvements
to the template are twofold: we introduce the concept of subtargets, and we fully
automate test case generation. With these, in the best case, supporting a new
variation of a cryptographic algorithm (e.g., key length) boils down to adding a
single configuration value. While we implemented the new template for JavaScript
analysis, it can be easily translated to other programming languages and works
for both source- and binary-level analysis.

5.1 Subtargets

When the developer wants to analyze a primitive with Microwalk, they have
to implement a target file, which consists of a test case processing function.
While simple in principle, they need to create such a file for every variation
of a primitive that is analyzed (e.g., AES-128-ECB, AES-256-ECB, AES-128-
GCM), which either leads to a high amount of code duplication or to simply
skipping these variations. To reuse code while staying compatible to Microwalk’s
existing workflows, we introduce subtargets. Subtargets are defined through a
configuration object in the target file, which specifies the number of requested
test cases, pointers to test case generation and execution functions, and other
custom parameters.

When a target is selected for analysis, the controller script first queries its
subtargets. For each subtarget, the script checks for a test case generation function
and invokes it (see Section 5.2). Finally, to start the trace generation pipeline,
the subtarget’s test case execution function is called through the instrumentation



Semi-Automated and Easily Interpretable Side-Channel Analysis 11

engine. We pass the current subtarget’s configuration object to each of the
functions. This way, the developer can check which subtarget is executed and
potentially extract additional custom parameters. Figure 3 shows an excerpt
from the aes-js target we used for the evaluation. To analyze a new variation
of an existing primitive like AES-CBC, we would only need to add three lines of
code, which is the corresponding case in the switch statement and the subtarget
definition in targetInfo. Adding a primitive that has no similarity to existing
ones is less efficient and generally indicates that a new target file is warranted to
keep the code readable. Nevertheless, for illustration, we defined the aes-js hex
conversion subtarget utilHex in the same target file anyway.

5.2 Test Case Generation

Microwalk offers two avenues for providing test cases: the first is to manually
generate a set of static test cases, which are included in the repository. However,
test cases are often binary files, which may not belong in a code repository and
would bloat its size. Second, the Microwalk configuration format allows specifying
a shell command for generating test cases. However, this was designed for the
Pin-based tracer and is incompatible to JavaScript analysis, as the Microwalk
analysis pipeline only runs after trace generation has completed. Additionally, it is
highly inflexible, as the developer would need to write a configuration file for every
target. In fact, the library that is analyzed most likely already provides avenues
to generate suitable inputs, so it would make sense to enable the developer to
use those for dynamic test case generation.

We move the entire test case generation logic into the analysis target template,
extending our subtarget configuration described earlier, and avoid static test
cases altogether. Besides the test case execution function, the configuration object
now also specifies a test case generation callback and optional parameters. As
a result, the developer may now either specify their own test case generation
function or reference a standard test case generation function provided by the
template. The analysis controller script calls the selected test case generator
before executing each subtarget. This way, the test case generation is automated
as much as possible. To ensure that the analysis results are reproducible, the test
case generator is provided with a deterministic seed, so it can yield the same test
cases on each execution.

6 Leakage Report with Coverage Information

To achieve our report interpretability goal, we have devised an HTML report
generator that combines the leakage analysis results with the code coverage,
given by c8 coverage reports, and embeds this information directly in the source
code of the libraries where vulnerabilities were found. This feature increases the
usefulness of the leakage report and helps developers find defects in the test suite.
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import * as microwalk from ’./ microwalk.mjs’;
import aesjs from ’aes -js’;

function processCipherTestcase(testcaseBuffer , subtarget) {
const message = new Uint8Array (32);
const iv = new Uint8Array (16);
const key = new Uint8Array(testcaseBuffer );
let aes;
switch(subtarget) {

case targetInfo.subtargets.ecb:
aes = new aesjs.ModeOfOperation.ecb(key); break;

//case targetInfo.subtargets.cbc:
// aes = new aesjs.ModeOfOperation.cbc(key , iv); break;
default: throw new Error(‘Unknown subtarget ${subtarget}‘);

}
let encryptedBytes = aes.encrypt(message );

}

function processUtilTestcase(testcaseBuffer , subtarget) {
const inputStr = testcaseBuffer.toString("utf -8");
const data = aesjs.utils.hex.toBytes(inputStr );
const newStr = aesjs.utils.hex.fromBytes(data);

}

export const targetInfo = {
generate: microwalk.generateRandomBytes , // default generator callback
generateOptions: { length: 16 }, // default options
process: processCipherTestcase , // default execution callback
subtargets: {

ecb: { testcaseCount: 16 },
//cbc: { testcaseCount: 16 },
utilHex: {

testcaseCount: 16,
process: processUtilTestcase ,
generate: (... args) => microwalk.generateRandomBytes (... args)

.toString("hex"), // custom generator
generateOptions: { length: 64 }

}
}

};

Fig. 3. Excerpt from the aes-js analysis target. The developer only needs to supply
short wrappers for calling the library. The targetInfo object is parsed by the analysis
controller and holds all necessary information for test case generation and execution.

6.1 Report Generation

To improve the existing JSON report which summarizes all the leakages found
in the library so far, we combine the leakage information with the library’s code,
and the code coverage of the test suite, to generate a new report in a format that
displays more information appropriately.

In the new report, in HTML format, we highlight where leakages are detected
and we include an information box describing the leak. The box includes the type
of leak (i.e., secret-dependent branch, secret-dependent memory access) and the
severity of the leak (i.e., minor, major, critical). Due to the absence of memory
allocation commands, there are no memory allocation leaks in JavaScript, so there
are only two possible leakages types. This report also shows the code coverage of
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the targeted test, highlighting code that was not executed. We explain how we
compute coverage in Section 6.2.

The header summarizes the most important details of the leakages and the
code coverage report, such as the total number of leaks found in all files, the
percentage of characters covered, the percentage of lines covered, as well as the
number and percentage of critical leaks and memory access leaks in the current
file. We chose to display information only on the memory access leaks because if
the percentage of the memory access type of leaks is known, the percentage of
branch type of leaks is deducible.

Microwalk may detect several leaks for the same line of code, which happens
if a line of code appears in multiple contexts during the analysis. This is due
to the call tree-based analysis algorithm, where the same divergences can occur
in different parts of the radix tree, each with its own leakage score. Thus, some
leaking lines of code are counted multiple times in the “total leakages”. The
“unique leakages” score counts the number of unique leaking code lines, regardless
of how many times they appear in the report. With this in mind, if a line contains
the same leak many times, sometimes with different associated leakage scores,
the report displays only the details of the leak with the highest leakage score.

6.2 Computing Coverage

To compute code coverage, we use the c8 library [11] and modify the analysis
controller script to execute the code coverage JSON report generator alongside
the leakage analysis. Then, we build the HTML report combining the library
source code, detected vulnerabilities and measured code coverage. To properly
display the code coverage on the source code, our program first sorts the coverage
per file then compares the uncovered character intervals for each file and target
test. We use four counters for the comparison, one for the first character of
the line, one for the length of the line, and two for the start and end of each
uncovered character interval. These intervals can occur in four possible positions
within a line: (i) The entire line is uncovered. (ii) Only the beginning of the line
is uncovered. (iii) Only the end of the line is uncovered. (iv) Both the beginning
and the end of the line are covered, but a part in the middle of the line is not.
However, if a line has more than one interval, looping over multiple intervals is
sufficient to identify which parts of the line are covered. Once we’ve identified all
of the intervals in the file that are not covered, the HTML report highlights all of
the characters that fit into those intervals and marks the line numbers associated
with them. Appendix A shows a screenshot from part of an HTML report.

7 Evaluation

We evaluate our enhancements by showing how they allow a developer to fully
analyze four selected cryptographic libraries with minimal effort. The results of
our evaluation are summarized in Table 1 and Table 2.
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7.1 Experimental setup

To show the capabilities of the new tracer and template, we perform a
comprehensive analysis of a few popular Node.js cryptographic libraries. We
chose aes-js [8] and node-forge [2] as these libraries are known to leak and
we can compare our results to existing work [34]. Additionally, we analyze
@noble/curves [26] and @noble/ciphers [27], two libraries written in modern
JavaScript that provide clean implementations of common cryptographic primi-
tives, with a clear focus on security. The @noble libraries are incompatible with
Jalangi2 and thus could not be analyzed by Microwalk until now.

We wrote an analysis target for each library, using subtargets to call the
respective primitives. For the old Microwalk workflow, we implemented equivalent
targets per library and generated static test cases. The analysis repositories are
hosted on a local GitLab instance, and automatically invoke the preconfigured CI
pipeline when a new commit is pushed. The server the CI jobs are executed on
has a Intel Xeon Gold 6438Y+ CPU and 500 GB memory. However, we restrict
the jobs to 4 processor cores and 64 GB memory.

Metrics. We consider several metrics. To understand the performance of the new
tracer, we look at the time and memory needed for generating and preprocessing
the execution traces. In addition, we check its correctness by comparing the
detected leakages to the results from [34]. The same code line may show up in
multiple contexts, e.g., a leaking utility function. This is due to the call tree-based
analysis algorithm, where callees may occur in different subtrees, each with their
own leakage score. Thus, some leaking code lines are counted multiple times. The
“# Unique” column counts the number of unique leaking code lines, ignoring
how often they appear in the leakage report. To assess the efficiency of the new
analysis template, we count and compare the files and lines of code needed to be
written by the developer to achieve full analysis of their library.

7.2 Results

Performance. To understand the performance characteristics of our new Java-
Script tracer, we measure the CPU time of trace generation, and the CPU time
and memory consumption of trace preprocessing. We observe that our instrumen-
tation is slower than Jalangi2’s, but the performance of the instrumented code is
better, despite collecting larger traces. As instrumentation is only done once for
the entire library, its impact on the overall analysis duration diminishes when
adding more targets. In addition, our tracer is a work-in-progress that, unlike
Jalangi2 which is mature, has not been optimized.

Memory consumption never exceeds 2 GB, in most cases staying even well
below 1 GB, which is well within the limits of common CI runners. We also
measured the memory consumption of the tracer and the analysis module, but
those were always below that of the preprocessor. The total analysis duration
of the four libraries with the new pipeline was 9 minutes and 7 seconds, which
is arguably acceptable for use in everyday programming. The reasons for the
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Table 1. Comparison between Microwalk V3.2.0 and Microwalk using the enhanced
analysis toolchain on aes-js [8] and node-forge [2] libraries. Results are averaged over
10 runs. Bold numbers are the results from the enhanced Microwalk tool in case they
change. # F represents the number of files created for tests and test cases.

Subtarget Trace CPU Prep. CPU Prep. RAM # Leakages # Unique

aes-js [8], v3.1.2, statement coverage: 80%
(instrument 2/2 sec)
aes-128-ecb 2/<1 sec < 1 sec 208/209 MB 24/32 24/29
aes-192-ecb 2/<1 sec <1 sec 207/213 MB 24/32 24/29
aes-256-ecb 2/<1 sec <1 sec 213/215 MB 28/36 28/33
aes-128-ctr 2/<1 sec <1 sec 208/216 MB 24/31 16/20
aes-128-cbc 2/<1 sec <1 sec 210/212 MB 24/30 24/28
aes-128-cfb 2/<1 sec <1 sec 211/210 MB 24/29 16/19
aes-128-ofb 2/<1 sec <1 sec 207/212 MB 24/29 16/19
hex-convert 2/<1 sec <1 sec 166/192 MB 0/1 0/1

all tests 16/8 sec 8 sec | Target size: 288/95 lines | # F: 136/1

node-forge [2], v1.3.1, statement coverage: 45%
(instrument 1/54 sec)
aes-128-ecb 5/<1 sec < 1 sec 201/205 MB 36 36
aes-192-gcm 8/2 sec 3/4 sec 246/245 MB 126/113 52/43
decode 6/<1 sec <1 sec 189/197 MB 4 4
encode 5/<1 sec <1 sec 185/199 MB 0 0
ed25519-sign 95/60 sec 43/41 sec 664/1,282 MB 0 0

all tests 119/65 sec 49/48 sec | Target size: 176/111 lines | # F: 85/1

improved runtime performance are twofold. First, our instrumentation is tailored
to the use case (i.e., we only trace events which are relevant for leakage analysis).
Second, we inline as much as possible. Jalangi2’s plugin approach allows for
greater flexibility but comes with the cost of more layers of indirection and
unnecessary callbacks. We directly log branches, so the preprocessor does not
need to reconstruct them from logged expressions, which considerably reduces
the size of the raw traces and thus the footprint of the preprocessor itself. These
reductions in turn allow us to trace more information relevant to leakage analysis
without negatively affecting performance. In summary, our new tracer performs
better than the legacy Jalangi2 backend in most aspects, while supporting modern
post-ES2015 JavaScript.

Development effort and coverage. We wrote a single target for each library,
aiming for conciseness and maintainability, while maximizing coverage of the
respective library. As outlined in Section 5, we implemented simple wrapper
functions for calling each primitive, and defined a configuration object that points
to the respective wrapper function and an associated test case generator. In
total, the target files have 491 lines. The targets for aes-js and node-forge are
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Table 2. Results of using the enhanced analysis toolchain with two modern Java-
Script cryptographic libraries: @noble/ciphers [27] and @noble/curves [26]. Results
are averaged over 10 runs.

Subtarget Trace CPU Prep. CPU Prep. RAM # Leakages # Unique

@noble/ciphers [27], v0.5.1, target size: 119 lines, statement coverage: 93%
(instrument 7 sec)
chacha20-poly1305 8 sec 3 sec 450 MB 0 0
xchacha20-poly1305 8 sec 3 sec 455 MB 0 0
xsalsa20-poly1305 7 sec 3 sec 490 MB 0 0
aes-256-ecb 7 sec 3 sec 475 MB 61 25
aes-256-ctr 8 sec 3 sec 465 MB 72 12
aes-256-cbc 8 sec 3 sec 460 MB 61 25
aes-256-siv 9 sec 3 sec 471 MB 147 15
aes-256-gcm 8 sec 3 sec 492 MB 208 14
hex-convert 7 sec 3 sec 447 MB 1 1

@noble/curves [26], v1.3.0, target size: 166 lines, statement coverage: 72%
(instrument 9 sec)
secp256k1 37 sec 6 sec 595 MB 169 29
secp256r1 43 sec 7 sec 659 MB 85 27
secp384r1 56 sec 11 sec 817 MB 85 27
ecdh 29 sec 6 sec 507 MB 73 28
schnorr 44 sec 8 sec 607 MB 371 56
ed25519 17 sec 6 sec 632 MB 101 25
x25519 9 sec 4 sec 480 MB 10 2
ed448 13 sec 8 sec 577 MB 83 25
x448 10 sec 4 sec 489 MB 10 2

considerable shorter for the new semi-automated template with 206 vs. 464 lines,
while the new template also includes test case generation.

Even with these comparably small target files, we managed to achieve a state-
ment coverage of 55.6% (84.5% when excluding node-forge). The remaining code
mostly concerns primitives from node-forge and, for the other libraries, utility
functions (e.g., UTF-8 conversion) that are unlikely to be used with sensitive
data, basic input validation, and error checking code. Thus, the single target file
with several subtargets streamlines test case generation and maintenance while
allowing us to substantially increase coverage.

Vulnerabilities. We validate the findings from [34], who found table lookup
leakages in aes-js. However, we increased coverage significantly, allowing us
to find additional leakages in that library, for example, in the hexadecimal
conversion utility function. Our results also highlight that it is worth analyzing
all variations of a given primitive, as we found that the key expansion for AES-
256 takes a slightly different execution path and was thus missed by earlier
analyses. Coverage helps identifying such missed code paths. The new toolchain
does not report several false positives that are reported by the old workflow
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in node-forge/aes-192-gcm; we are still investigating the root cause for this
behavior. We verified that the new toolchain reports the same (or more) true
positives in all cases. In @noble/ciphers, our toolchain detects secret-dependent
lookup table accesses in the AES and GHASH/POLYVAL implementations.
For the elliptic curve implementations in @noble/curves, the analysis reports
many leakages. However, we found that all curve implementations use blinding,
so it is not straightforward to distinguish false-positives that are caused by
varying behavior from independent randomness. This is a known shortcoming of
Microwalk, which we leave to future work. We have relayed our new findings to
the library authors.

8 Discussion and Future Work

Source-based vs. binary analysis. Our improved workflow follows Microwalk’s
approach in analyzing JavaScript at the source code level. However, JavaScript is
a scripting language that is just-in-time compiled into machine code. The JIT
compiler may insert numerous optimizations and new leakages, which we would
not catch in our model. This does not mean that our approach is unsuitable
– leakages that are visible at source code level are very likely to also surface
after compilation. In fact, we argue that this is the only guarantee a JavaScript
developer can possibly get regarding the side-channel security of their application:
the JIT compilers are constantly changing, and the code transformations and
optimizations depend heavily on the respective workload and even program
runtime. Thus, a leakage-free program for a number of tests is not applicable to
other systems and use-cases. A potential future research direction to mitigate
this issue is the development of a JIT mode that is guaranteed to not insert
new side-channels, e.g., by disabling certain optimizations for selected functions.
Similar functionality is already available for preventing Spectre attacks [7].

Accessibility of coverage information. Currently, the combined coverage/leak-
age reports are accessible through the HTML reports provided in the job artifacts,
but could be further integrated into developer workflows. For example, GitLab
offers built-in support for visualizing coverage in the merge request diff view [18],
and many IDEs allow loading and displaying coverage information. Another
benefit of integrating with existing tools is that developers could be provided
with a comparison to prior coverage and leakage analysis results, actively alerting
them when new commits introduce uncovered or leaking code.

Randomized implementations. A remaining weakness of Microwalk are im-
plementations that generate internal randomness (e.g., the ephemeral key of
ECDSA) or temporarily mask (i.e., blind) sensitive values during computations.
Both lead to variations in the traces, making the analysis module report many
leakages. It is tempting to dismiss such findings as false positives, but there may
be partial leakage despite the randomization, which would then be missed. As a
solution, leakage analysis tools should provide a randomization-capable analysis
module, as proposed by DATA [32] or CacheQL [35].
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Other programming languages. While we implemented our new tracer for
JavaScript, the approach is not tied to that language and can be applied to other
programming languages. Most modern programming languages have frameworks
for converting between source code and the corresponding AST, so the tracing
logic can be readily adapted to those languages. The trace format is also very
generic and can, alongside the preprocessor, likely be reused without changes.

9 Related Work

9.1 Leakage Analysis

For the past 15 years, developers have witnessed the emergence of numerous
analysis strategies and tools to detect side-channel vulnerabilities [17]. These
tools fall into two categories: static and dynamic.

Static tools focus more on program verification. Their goal is to infer security
properties from the program without executing it. To this end, they have many
different approaches. First, the logical reduction approach consists of transforming
a program so that verifying its security against side-channel attacks is equivalent
to proving the security of the original program. Second, the type systems approach
is to verify the type safety of a program. In this case, developers simply need
to type the secret values with annotations into their program. The type system
then propagates these types throughout the program, as compared to static taint
analysis. Third, the abstract interpretation approach addresses the difficulty
of formally verifying non-trivial properties due to program semantics. This
approach over-approximates its set of reachable states. As a consequence, if the
approximation is safe, then the program is safe. CacheAudit [14] exemplifies
this approach well, as it performs a binary-level analysis and quantifies the
amount of leakage depending on the cache policy by finding the size of the
range of a side-channel function. This side-channel function is computed through
abstract interpretation, and the size of its range is determined with counting
techniques. Finally, the symbolic execution approach verifies the properties of a
program by executing it with symbolic inputs instead of concrete ones. Then,
logical formulas are built from the conjunction of all conditionals leading to
each explored execution path, and a solver is used to check whether a set of
concrete values satisfies the generated formulas. For example, the Binsec/Rel [12]
framework completes a bounded exploration of reachable states and displays
counterexamples for the identified vulnerabilities.

Dynamic tools focus more on finding bugs. Their approaches are based on the
security guarantees provided by execution traces of targeted programs. There are
two groups of dynamic tools: those that analyze a single trace, and those that
compare multiple traces. The first group tends to sacrifice coverage for scalability
but can be easy to deploy, as it is for ctgrind [1], which checks for CT by defining
a secret as undefined memory and applying the taint analysis of Valgrind. Two
main approaches are possible when comparing multiple traces. First, statistical
tests can be used to check whether different secrets induce statistically significant
differences in the traces. For example, Microwalk [25] uses Mutual information
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(MI), which gives a score analogous to a leakage estimation by quantifying the
information shared between secret values and recorded traces. On the other
hand, CacheQL [35] does not assume a uniform distribution of the secret, nor
reformulates deterministic execution traces. To that aim, CacheQL turns MI into
conditional probabilities. Second, fuzzing techniques can be used to maximize
coverage and side-channel leakage.

9.2 Fuzzing and regression testing

Fuzz testing or fuzzing techniques aim to throw exceptions (e.g., crashes,
memory leaks, or failed built-in code assertions) by automatically providing the
code with invalid, unexpected, or random data as program input. Some tools
use fuzzing as a means to cover more code and thus find more side-channel leaks
with less testing, such as DiffFuzz [29] and ct-fuzz [21]. The former uses fuzzing
to find side-channel vulnerabilities based on the number of instructions, memory
usage, and response size in Java programs. The latter extends this method to
binary executables and cache leakage.

Regression testing techniques provide a set of tests performed on a previously
tested program to determine whether a bug or malfunction has been added or
found in unmodified parts of the software after the program has been modified.
In particular, the Triggerflow [20] tool proposes tracking execution paths that
dynamically analyze the binary through the debugger using source annotations.

In addition, Jancar et al. [22] made suggestions for developers of tools, com-
pilers, cryptographic libraries, and standardization to make their cryptographic
code resistant to timing attacks. Our tool responds to most of their suggestions
while offering alternatives or equivalents to the techniques presented above to
keep execution time efficient and find a fair number of vulnerabilities.

10 Conclusion

In this paper, we have shown how the usability of side-channel leakage
analysis tools can be further improved in order to aid their practical adoption.
To support recent JavaScript language features, we have implemented a new
trace generation pipeline that injects tracing logic directly into the program’s
AST. We have developed a new analysis template for JavaScript libraries that
aims for conciseness and maintainability, greatly reducing the effort developers
need to spend for integrating side-channel analysis into their workflows. Our new
report generator combines vulnerability information with detailed coverage data,
allowing developers to easily spot untested code paths and suitably adjust the
test case set. In our evaluation, we have shown that our new toolchain is capable
of comprehensively analyzing modern JavaScript cryptographic libraries, and we
have seen that the tracer outperforms the previous Jalangi2-based implementation.
The combination of fast analysis with detailed coverage reporting enabled us
to uncover new vulnerabilities. In summary, our toolchain helps developers find
more vulnerabilities with less effort.
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A The HTML report

Fig. 4. Extract of the HTML report after analyzing the @noble/ciphers [27] library.
The report shows the header, a critical secret-dependent memory access leak (line 24),
and, highlighted in light red, instructions that were not covered (lines 4, 5 and 13).
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