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Abstract Eruptions in basaltic volcanoes are often preceded by increasing seismicity and surface
deformation, which progressively damage and weaken the volcanic edifice. We show how damage and crack
interaction produce the inverse Omori‐Utsu law for earthquakes during pre‐eruptive periods. Rock mass
continuity, representing damage, is shown to decrease exponentially with the earthquake number; we interpret it
as a general form of the Omori‐Utsu law. Pre‐eruptive earthquake time series are shown to be controlled by
heterogeneity distribution, finite‐size effect and crack interaction, and by the feeding system characteristic time.
Magma‐edifice coupling is described by state variables that depend on the continuity and the feeding system
characteristic time. Pre‐eruptive seismicity of the 2004–2017 24 summit/proximal eruptions of Piton de la
Fournaise volcano was well modeled by an inverse Omori‐Utsu law. It allowed identifying two cases: (a) strong
crack interaction and earthquake number acceleration, when failure in strong intact rock and finite‐size effects
dominate the brittle fracture process; in that case the magma‐edifice interaction power exhibits a maximum
before the eruption; (b) weak crack interaction, generating an almost constant earthquake rate and
corresponding to a brittle fracture process at constant strain in a weak, fractured rock mass. In this latter case
eruptions occurred when the continuity reached a critical value, close to 0.25. Specific times are identified, from
the time variations of the state variables; they define estimators that provide values of the eruption time within
10% of the true value in 60%–75% of the cases studied, from the complete time series.

Plain Language Summary Eruptions in basaltic volcanoes are often preceded by increasing
seismicity and surface deformation. In this article we study the processes at work in the volcanic edifice rock
mass. A rock mass, deformed and fractured, weakens: this process is called damage. Rock elastic characteristics
decrease with damage. The way damage evolves under the effect of magma pressure contributes to determine
the time evolution of the pre‐eruptive deformation. We show that continuity, a measure of damage, is a
decreasing exponential of the cumulative number of earthquakes; this relationship is comparable to the
definition of Boltzmann entropy. A model of initially elastic edifice, damaged under the pressure of a viscous,
incompressible, magma in a reservoir has been developed. It is shown that, when fractures interact, continuity
and magma pressure strongly drops, magma flux increases and the power of the magma‐edifice interaction
reaches a maximum before the eruption. A relation between the time of this maximum and the eruption time has
been established and checked using 24 summit eruptions at Piton de la Fournaise; it provided an estimation
within 10% of the eruption time in 60%–75% of the cases. Checking this relation with very numerous eruptions
on basaltic volcanoes will allow knowing its reliability.

1. Introduction
During the pre‐eruptive phase, volcanoes often show precursory increase in deformation and seismicity, some-
times at mid/long term. This particularity could be used to anticipate or forecast the eruption. This has led to an
intense research in this domain, often devoted to forecast the eruption time (Bell, Greenhough, et al., 2011; Bell,
Naylor, et al., 2011; Bell et al., 2021; Boué et al., 2016; Chastin & Main, 2003; Collombet et al., 2003; Kil-
burn, 2018; Kilburn & Voight, 1998; Main, 1999; McGuire & Kilburn, 1997; Schmid et al., 2012; Voight, 1988;
see also Vasseur et al., 2017) from long (10–100 days) pre‐eruptive time series. In practice, attention is often paid
to the occurrence of earthquake swarms (Roman & Cashman, 2006), which often immediately precede eruptions.
Duputel et al. (2019), for example, show that volcano‐tectonic earthquake swarms at 1.5–2 km depth have most

RESEARCH ARTICLE
10.1029/2023JB027595

Special Section:
Advances in understanding
volcanic processes

Key Points:
• Rock mass continuity decreases

exponentially with earthquake number
and controls magma pressure and flow

• Pre‐eruptive earthquake time series are
controlled by heterogeneity distribu-
tion and crack interaction for quasi‐
static deformation

• When crack interact, magma‐edifice
interaction power exhibits a maximum
before the eruption, used to estimate
the eruption time at PdF

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
J.‐L. Got,
Jean-Luc.Got@univ-smb.fr

Citation:
Got, J.‐L., Peltier, A., Marsan, D.,
Ferrazzini, V., Brothelande, E., & Carrier,
A. (2024). Pre‐eruptive damage,
weakening and magma‐edifice coupling at
Piton de la Fournaise volcano. Journal of
Geophysical Research: Solid Earth, 129,
e2023JB027595. https://doi.org/10.1029/
2023JB027595

Received 10 AUG 2023
Accepted 19 FEB 2024

Author Contributions:
Conceptualization: Jean‐Luc Got
Data curation: Aline Peltier,
Valerie Ferrazzini, Elodie Brothelande
Formal analysis: Jean‐Luc Got
Funding acquisition: Jean‐Luc Got
Investigation: Jean‐Luc Got
Methodology: Jean‐Luc Got
Project administration: Jean‐Luc Got
Resources: Aline Peltier,
Valerie Ferrazzini, Elodie Brothelande
Software: Jean‐Luc Got, Aurore Carrier
Supervision: Jean‐Luc Got

© 2024. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

GOT ET AL. 1 of 29

https://orcid.org/0000-0003-2908-3295
https://orcid.org/0000-0002-0005-301X
https://orcid.org/0000-0001-7908-1429
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1525-2027.VOLCPRCS
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1525-2027.VOLCPRCS
mailto:Jean-Luc.Got@univ-smb.fr
https://doi.org/10.1029/2023JB027595
https://doi.org/10.1029/2023JB027595
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023JB027595&domain=pdf&date_stamp=2024-04-01


often preceded the aseismic dyke propagation and the eruptions by 1–5 hr, at Piton de la Fournaise volcano, from
2014 to 2018. Such earthquake swarms reveal the final step of the brittle fracture process, when the volcanic
edifice becomes locally out‐of‐equilibrium. However, similar swarms also occur without being immediately
followed by eruptions. This stresses the fact that the exact time of the final rupture and eruption is controlled by
medium heterogeneities and details of the stress field, this latter being controlled by the magma pressure and
rheology, and by the edifice weight, topography and rheology. Medium heterogeneities and details of the stress
field can be represented only by their (unknown) probability density, and rupture and rupture time can be known
only in terms of probability. Tang (1997), Tang and Kaiser (1998) and Tang and Hudson (2011) have shown the
relation between medium heterogeneity (described by a Weibull function), stress‐strain curve and acoustic
emission. Long‐term deformation and seismicity therefore contain information that may reveal when the con-
ditions for final rupture are met; such an information can be used to characterize and model the state in which the
volcano is, relative to these conditions. This mid‐term characterization may be thought to be less sensitive to
small‐scale heterogeneities, the effect of which will be found in the model residual. Such a mid‐term charac-
terization is the aim of this work.

In this frame, a volcano may be understood as a system described by state variables that evolve with time, due to
the coupling between magma pressure and edifice response. It is thus necessary to study, at the scale of the
volcano, the constitutive laws of the magma and the edifice, and to link them to geophysical observables. Pre‐
eruptive increase in volcano deformation and seismicity may be, for example, linked to the pressurization of
the magma feeding system, and to the progressive fracturing and weakening of the edifice. Our work will be first
devoted to establish firmly the relation between seismicity, deformation and weakening of the elastic properties of
the edifice, through a damage approach. In a second part, the effect of this weakening on the coupling with the
pressurized magma, especially on the state variables (pressure, magma flow) will be investigated. It is, however,
not a complete modeling of the pre‐eruptive process, since the evolution of magma properties with time or
deformation is not modeled, nor constrained by using geophysical observables in this study.

Joint inversion of seismicity and deformation data was used to infer the propagation of the 2007 Father's Day
intrusion in Kilauea volcano (Segall et al., 2013), and of the 2014 Bardarbunga dike (Heimisson & Segall, 2020),
by using Dieterich (1994) seismicity‐rate law. More recently, Bell et al. (2021) carefully studied the uplift and
seismicity driven by magmatic inflation at Sierra Negra volcano, which provided perfect pre‐eruptive time series
from 2006 ro 2018. Damage approach was used to model the propagation of a dyke pressurized by gas‐saturated
magma (Maimon et al., 2012) and allowed to distinguish two (fracture‐ and magma‐) controlled regimes. This
approach was also used to model hydraulic stimulation (see, e.g., Lyakhovsky & Shalev, 2021; Shalev & Lya-
khovsky, 2013). Carrier et al. (2015) and Got et al. (2017) modeled the February–March 2007 Piton de la
Fournaise and the 2004–2011 Grimsvötn pre‐eruptive surface deformations, by using a seismicity‐based damage
model. The 2004–2011 Grimsvötn pre‐eruptive earthquake series has been shown to follow an inverse Omori law,
what has allowed finding an analytical solution for the magma overpressure, surface displacement, magma flow
and magma‐edifice interaction power. However, pre‐eruptive earthquake time series do not generally follow a
simple inverse Omori law and this simple analytical model has to be adapted to more frequent cases.

Piton de la Fournaise volcano is characterized by a shallow pressurized magma reservoir (Peltier et al., 2007) so
that eruptions are often preceded by intense deformation and seismicity (see, e.g., Duputel et al., 2019). In this
paper, using the 2004–2017 seismicity and deformation data from Piton de la Fournaise, we have studied the
earthquake response of the edifice, especially the relation between seismicity, damage, earthquake interactions
and stress transfer that produce inverse Omori‐Utsu laws. Understanding these relations and laws is necessary to
interpret earthquake time series, and their relations with the pre‐eruptive dynamics. We also studied the changes
induced in the magma‐edifice coupling by the occurrence of earthquakes, and we evidenced three main stages in
the volcano deformation. We have identified the key parameters controlling this coupling, and expressed the state
variables (magma overpressure and flow, interaction power) as a function of these parameters; we have searched
for estimators of the eruption time. This work is not focused on eruption forecasting, where eruption time is
inferred from the knowledge of a first part only of the pre‐eruptive time series. Instead, we have used complete
pre‐eruptive deformation and earthquake time series, up to the eruption time. Results of the estimations have been
compared to the real eruption times and used to infer probability density functions for these estimators, to quantify
the modeling error.
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2. Data
The data are constituted by both the volcano‐tectonic earthquakes and surface displacements time series recorded
by the Observatoire Volcanologique du Piton de la Fournaise (OVPF) seismic and GPS networks (Figure 1 and
Figure S1 in Supporting Information S1). The earthquake time series begins in 1998 (Figures S2–S4 in Sup-
porting Information S1), and continuous GPS surface displacement records begin in 2003, so that 34 pre‐eruptive

Figure 1. (a) Map of the Piton de la Fournaise volcano showing the OVPF permanent GPS network (black diamonds) and
seismic network (blue triangles: stations operating between 2003 and 2011; red triangles: stations added to the network after
2011). Color dots represent the earthquakes recorded by the OVPF seismic network, during the pre‐eruptive periods
preceding the 24 2004–2017 eruptions used in this study. See the detailed map on Figure S1 in Supporting Information S1.
Coordinates are given in the Gauss‐Laborde La Reunion projection system. (b) Vertical cross‐section of the volume studied
in the Piton de la Fournaise volcano summit showing the earthquakes recorded during the studied pre‐eruptive periods. Color
indicates the normalized occurrence time. Black ellipse represents the magma reservoir inferred from GPS surface
displacements inversion (Peltier et al., 2007).
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earthquake times series and 27 GPS pre‐eruptive time series were available. The first complete (GPS and seis-
micity) pre‐eruptive time series was that of 2 May 2004. In order to keep the same geometrical conditions during
this study, we limited the eruption set to summit and proximal eruptions, occurring in the summit cone or at its
base after a direct vertical path generating volcano‐tectonic earthquakes in the summit volume located between
the shallow‐level reservoir and the surface, excluding distal eruptions occurring in the rift zones after a horizontal
path. Finally data from 24 summit/proximal eruptions were used, between 2004 and 2017 (Figure 2). These
summit/proximal eruptions break the same portion of the edifice; their rupture area, located between the reservoir
and the summit cone (Figure 1 and Figure S1 in Supporting Information S1), and the corresponding damage and
continuity parameters defined in the model section are thus comparable. Most (>95%) of the pre‐eruptive
earthquakes related to these eruptions and recorded by the seismic network are located (Duputel et al., 2021)
within 1 km above the sea‐level magma reservoir inferred from geodetic displacement analysis (Peltier
et al., 2007). Earthquake magnitudes are carefully computed since 2012, and completeness magnitude is 0.8 since
this time (Figure S5 in Supporting Information S1).

Earthquake counts and Global Navigation Satellite System (GNSS) time series issued from the OVPF analysis
were represented on a daily basis. GNSS solutions are processed by using the GAMIT/GLOBK (Herring
et al., 2018) postprocessing software package.

3. Model
3.1. Model Setting and Physical Justifications

The model used in this study has been inspired by the seismicity and surface displacement data recorded at Piton
de la Fournaise volcano and some other basaltic volcanoes (Figures 3 and 4; see, e.g., Bell et al., 2021; Got

Figure 2. Normalized number of earthquakes as a function of the normalized time, the unit time being the duration of the pre‐
eruptive period. Color scale indicates the time of the 24 summit/proximal eruptions studied, from the beginning of 2004 to
the end of 2017. The yellow curve represents the average of the normalized earthquake numbers; this curve corresponds to an
inverse Omori‐Utsu law, with a parameter p′ = 1.1.
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et al., 2017). These data show a progressive acceleration of the recorded earthquake number, and a simultaneous
remarkable pattern for the surface displacement, comprising a first rapid inflation stage, with a decreasing rate
with time, followed by a constant inflation rate stage, and then by a terminal stage showing an increasing inflation
rate. The first rapid inflation stage is often interpreted as due to the pressurization of an out‐of‐equilibrium
shallow‐level reservoir; during this stage the local earthquake rate is close to the background seismicity rate,
whereas it increases during the two following stages.

Displacement data recorded close to the summit of a volcano do not allow to discriminate the detailed geometry of
the magma feeding system. Increasing rates of earthquakes occurring during pre‐eruptive periods shows that the
medium is stressed above its linear elastic limit; it is fractured and therefore cannot be considered merely as linear
elastic. As a consequence, we will represent our model with the simplest possible geometry, acceptable for a
volcano, and a damage approach. This choice does not exclude that more complex geometries (see, e.g.,
Kozono, 2021; Reverso et al., 2014) may exist; these geometries are not constrained by the seismicity and
displacement data used, but they are not incompatible with damage models.

In this study we therefore use a model represented by a pressurized spherical magma reservoir fed by a cylindrical
vertical magma conduit in a damageable elastic half‐space (Figure 5; see also Carrier et al., 2015; Got et al., 2017;
Lengliné et al., 2008). Got et al. (2017) have shown that this geometry was a member of a broad class of models,
described by the same equations regardless of the precise description of their geometry, which is represented by
the characteristic time. These models are damageable Kelvin visco‐elastic models: Kelvin visco‐elastic models

Figure 3. Examples of pre‐eruptive dynamics showing the three inflation stages (see text for details). Green circles:
earthquake number as a function of time. Blue crosses: surface horizontal displacement recorded at one summit GPS station
(SNEG for Piton de la Fournaise, GFUM for Grimsvötn), as a function of time. Red vertical dashed line shows the eruption
time. (a) Eruption of 20 July 2006 at Piton de la Fournaise volcano. (b) 2004–2011 pre‐eruptive period at Grimsvötn volcano
(modified from Got et al., 2017).
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with elastic modules decreasing with fracturing. We use an effective medium approach: fracturing evolution is not
described geometrically, but using the earthquake number and the corresponding displacement data; fracturing
increases the volume of the pressurized magma reservoir by decreasing the shear and Young's modules of the
volcanic edifice, according to the earthquake and displacement data.

This model is axisymmetric, homogeneous and isothermal. Shear modulus, however, decreases with the
earthquake number and surface displacement following a damage approach described in the next sections. This
decrease accounts for the elastic potential energy consumed in fracturing. The recorded earthquake number is
an input data of the model; during the pre‐eruptive deformation process, it is controlled by both the stress field
and the medium heterogeneity. The time evolution of the model is therefore constrained by the medium het-
erogeneity, and not only by the visco‐elastic coupling of the edifice with the feeding system. The model is
constrained by earthquake and displacement data; we will see that it depends on three parameters only: the
linear elastic limit displacement uel, the characteristic time of the magma feeding system τ0 (controlled by the
magma viscosity and feeding system geometry), and the proportion δ of the total area to be ruptured, ruptured
by each earthquake, whatever this rupture is pre‐, co‐, or post‐seismic, and whatever the orientation of the
rupture plane.

The magma pressure is considered as constant at the base of the conduit. This condition is fulfilled when a large
magma chamber collects mantle magma through a sufficiently large area, in such a way the magma inflow in the
chamber through this area is equal to the magma outflow through the conduit. The magma pressure in the chamber

Figure 4. 2006–2018 pre‐eruptive period at Sierra Negra volcano (modified fromBell et al., 2021). The GPS station is located
at the center of the caldera.
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cannot drop strongly, to ensure chamber stability. The shallow‐level reservoir
is initially under‐pressurized, and the pressure gradient generates a magma
flow from the magma chamber.

The magma feeding system is initially closed by the surrounding rock mass
that is pressurized and progressively fractured in tension, by the magma
reservoir overpressure. Rock mass is damaged by fracturing; its strength
exhibits a peak, and post‐peak weakening. Eruption corresponds to the
rupture of the rock mass; this rupture is a post‐peak process (see, e.g.,
Li, 1987, Figure 9.13).

Magma is considered incompressible. At Piton de la Fournaise, viscosity of
the basaltic magma is low and the edifice exhibits heavily fractured and gas‐
permeable rift zones, so that gas content and magma compressibility are
considered low during the pre‐eruptive process. Bulk modulus of degassed
basaltic magmas is around 10 GPa (Rivalta & Segall, 2008; Spera, 2000)
(compressibility 10− 10 Pa− 1) and may be compared to the bulk and shear
moduli of fractured rock masses in volcanic areas, which are in the range 0.1–
1 GPa (see, e.g., Dzurisin, 2007, p. 281; Heap et al., 2020; Rivalta &
Segall, 2008). The incompressible‐magma approximation holds as far as the
bulk modulus of the magma is greater than the post‐peak weakening rate of
the rock mass, at the edifice scale; this is the case when the post‐peak rupture

process remains quasi‐static (Figure 6). At Piton de la Fournaise, the beginning of the dynamic process (fast
aseismic magma propagation) has been shown to take place less than 12 hr before the eruption, between 2014 and
2018 (Duputel et al., 2019), whereas the time scale of our study is 10–100 days, during which the deformation
process is quasi‐static.

Our model is a semi‐coupled model, in which the solid edifice properties evolve with deformation and damage,
whereas the magma properties remain constant. The fully coupled problem, in which the magma viscosity and
compressibility simultaneously evolve due to the coupling with the deforming and damaging edifice, remains to
be solved.

We consider that there is no leak nor addition of magma outside the conduit so that at any time the magma flow
(given by Poiseuille's law, left member of Equation 1) is equal to the rate of linear elastic volume variation of the
magma reservoir (given by, e.g., Delaney & McTigue, 1994, right member of Equation 1; see Figure 5 for the
meaning of the symbols):

πa4c
8μHc

(P − ΔP(t)) = πa3r
d
dt
(
ΔP(t)
G(t)

) (1)

ΔP(t) is the magma overpressure in the reservoir as a function of the time t and P is the overpressure when the
equilibrium is reached, that is when the volume of the reservoir no longer varies, in the linear elastic case. Note
that this equation means that the edifice loading is controlled by the strain rate (magma flow), not by the stress
rate.

In that case magma reservoir overpressure is controlled by a simple equation (see the complete derivation of the
equations in Section A in Supporting Information S1):

dΔP(t)
dt

+
1
τ(t)

ΔP(t) =
P
τ0
ψ(t) (2)

where

1
τ(t)

=
1
τ0
ψ(t) −

d
dt
ln ψ(t) (3)

Figure 5. Physical model used in this study (from Carrier et al., 2015; Got
et al., 2017; Lengliné et al., 2008). A magma reservoir (radius ar) embedded
in a homogeneous isotropic elastic half‐space (shear modulus G) is fed by
magma through a cylindrical conduit (radius ac, length Hc). Shear modulus
G is assumed to decrease homogeneously with damage (see text for details)
and therefore with time t. Pressure Ps at the base of the conduit is assumed to
be constant. The magma is characterized by its viscosity μ. In the text, the
feeding system will be represented by its characteristic time τ0 =

8μHca3r
G0a4c

,
where G0 = G(t = 0). Stars represent earthquakes.
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The characteristic time τ(t) results from both the feeding (characteristic time
τ0) and the damage process, represented by the Kachanov's continuity
ψ(t) = S(t)

S0
= E(t)

E0
= G(t)

G0
= 1 − D(t), where S(t), E(t), G(t), and D(t) are

respectively the intact area, the Young's modulus, the shear modulus and the
damage parameter at time t and S0 = S (t = 0), E0 = E (t = 0), G0 = G (t = 0),
D (t = 0) = 0 and ψ(t = 0) = 1. Magma reservoir overpressure, surface
displacement u(t) and strain ϵ(t) are related by (Got et al., 2017):

ΔP(t)
P

= ψ(t)
u(t)
uel

= ψ(t)
ϵ(t)
ϵel

(4)

(where uel and ϵel are respectively the limit displacement and limit strain
reached at the equilibriumwhen the edifice is considered linear elastic). Using
Equations 2–4 we can find that

τ0
dϵ(t)
dt

+ ψ(t)ϵ(t) = ϵel (5)

which is the strain form of the equation governing a damageable Kelvin
model (Got et al., 2017), with τ0 = η

E0
, where η is the viscosity in the Kelvin

model.

3.2. A Solution for the Time Evolution of Normalized Overpressure,
Surface Displacement, Strain, Magma Flow and Power Only Depending
on τ0 and ψ(t)

The solution of the homogeneous equation associated to Equation 2 is

ΔP(t) = Ce− ∫
dt
τ(t) (6)

that is,

ΔP(t) = Cψ(t)e−
1
τ0∫ψ(t)dt

(7)

Determining the constant C by the Euler‐Lagrange method, we find

C(t) =
P
τ0
∫

t

0
e
1
τ0
∫ψ(t)dtdt (8)

If we write

I1(t) =
1
τ0
∫ψ(t)dt (9)

the magma reservoir overpressure writes

ΔP(t)
P

=
ψ(t)
τ0

e− I1(t)∫
t

0
eI1(t)dt (10)

The displacement u(t) and strain ϵ(t) are

u(t)
uel

=
1
τ0
e− I1(t)∫

t

0
eI1(t)dt =

ϵ(t)
ϵel

(11)

Notice that Equation 11 may be rewritten, in a compact form:

Figure 6. Schematic stress‐strain representation of the rupture process (see,
e.g., Li, 1987 for a similar representation) and the magma‐edifice coupling in
a basaltic volcano, with a special attention to post‐peak processes. Pressure
in the magma reservoir loads the volcanic edifice, but decreases when the
reservoir volume increases; during a quasi‐static deformation, the stress‐
strain curves of the edifice and the magma are almost superimposed. Figure
S6 in Supporting Information S1 shows the relation with the various
deformation phases.
(a) Blue line: stress‐strain curve of a resistant, cohesive, volcanic edifice.
(a1, green line): case where the magma pressure drops more sharply with
strain than the edifice strength; the edifice is unloaded during the post‐peak
deformation, which remains a quasi‐static incremental process. The magenta
lines correspond to the visco‐elastic re‐loading of the edifice by the magma
reservoir pressure. (a2, red line): case where the magma pressure drops less
with strain than the edifice strength. An instability initiates (beginning of the
red line), which leads to the dynamic macro‐rupture of the edifice and dyke
propagation (see, e.g., Duputel et al., 2019).
(b) Black line: stress‐strain curve of a weak, fractured, volcanic edifice. In
that case the probability that magma pressure drops more sharply with strain
than the edifice strength (case b1, orange line) is high, and the post‐peak
deformation of the edifice remains quasi‐static.
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u(t)
uel

=
ϵ(t)
ϵel

= (τ0
d
dt
ln(∫

t

0
eI1(t)dt))

− 1

(12)

As quoted by Got et al. (2017), magma flow may be derived from Poiseuille's law under the form:

Q(t) = Q0(1 −
ΔP(t)
P

) (13)

so that we can define (Got et al., 2017) a normalized magma‐edifice interaction power:

Π(t)
Π0

=
ΔP(t)
P

Q(t)
Q0

=
ΔP(t)
P

(1 −
ΔP(t)
P

) (14)

where Π0 = PQ0.

Equations 9–12 constitute a general analytical solution of Equation 2. This solution allows expressing the system
state variables (ΔPP ,

Q
Q0
, ΠΠ0

) as a function of the characteristic time τ0 of the feeding system and the continuity ψ(t)
only. The linear elastic displacement uel is a scaling parameter. Notice that the characteristic time τ0 controls the
viscous component of the model and ψ the brittle or plastic component. In the following section, we will see that ψ
(t) can be computed directly from the event number N(t), so that this solution (Equations 9–12) doesn't need any
seismicity model; the model parameters τ0, δ and uel are computed by fitting u(t) to the displacement data. The
solutions (Equations 9–14) are identical to the Runge‐Kutta solution of Equation 2 (Figure S7 in Supporting
Information S1).

3.3. Expression of the Continuity ψ(t) as a Function of the Earthquake Number N(t)

Changes in the material elastic properties are contained in the damage or continuity evolution law (see, e.g.
Costin, 1987; Kachanov, 1958), and determine the reaction of the volcanic edifice. The Kachanov's definition of
the continuity in continuum damage mechanics is based on the tensile rupture of metal rods of finite, known,
section S. In this work we will use summit eruptions that break the same, finite and known, volume of the edifice,
located between the shallow‐level magma reservoir and the surface; the state of stress in this volume is tensile.
The use of these eruptions warrants the continuity, as the area to be broken, to be well‐defined.

We reproduce the progressive failure of rocks by using Amitrano and Helmstetter (2006)'s incremental elastic
damage approach, in which the intact area S(t) and the Young's modulus E(t) decrease for each earthquake: S
(t + dt) = S(t) − dS(t) = (1 − δ)S(t) where δ = dS

S is the relative incremental decrease of the intact area S, for each
earthquake; δ is taken constant as the earthquake magnitude distribution is dominated by magnitudes in a narrow
range (see also Carrier et al., 2015; Got et al., 2017). As a result S(t) = (1 − δ)N(t)S0 whereN(t) is the total number
of earthquakes that have occurred up to the time t and S0 is the initial, intact, area. The same reasoning may be
used for E(t) (Amitrano & Helmstetter, 2006). It leads to write the continuity:

ψ(t) =
S(t)
S0

= (1 − δ)N(t) ≈ e− N(t)δ (15)

if δ ≪ 1; N(t)δ is the proportion of rupture area created at the time t by N(t) earthquakes. Since δ is computed by
fitting the displacement data by Equation 9 knowing N(t), when the completeness magnitude is larger, N(t) is
smaller but δ is larger. It is always possible to find a value of δ such that N(t)δ (and the continuity ψ(t) = e− N(t)δ)
remains constant, if N(t) varies by a constant fraction during the pre‐eruptive period. Continuity is thus a robust
quantity with respect to changes in completeness magnitude.

In the incremental form, the continuity function is the solution of the damage evolution equation (by taking the
time derivative of Equation 15):

dψ(t)
dt

= − n(t)ψ(t)δ (16)
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where n(t) = dN(t)
dt is the earthquake rate; this evolution equation will be compared to the damage evolution

equations of Coleman (1956, 1958) and Kachanov (1958, 1986).

3.4. An Example of Time Variation for the Model State Variables

To illustrate the solution found in Equations 9–14 and the effect of various time distributions of earthquakes on
the continuity and the state variables of the system, we choose to represent the earthquake number as a function of
time by an inverse Omori‐Utsu law of parameter p′ (see, e.g., Schmid & Grasso, 2012):

n(t) =
n0

(1 − t
tc
)
p′

(17)

where n0 = n (t = 0), and p′ varies in the range [0 1.5] in order to represent with the same law, a constant
earthquake rate (p′ = 0) and various increasing rates.

Figure 7 shows the family of solutions, parametered by p′, which gives the time variations of the model state
variables. Equations 9–14 may therefore be used with a variety of continuity functions computed from the data
(Equation 15); these equations constitute a generalization of the results formerly obtained by Got et al. (2017).

Figure 7 shows that N(t) increases and ψ(t) decreases more or less abruptly, depending on the value of p′; the
displacement u(t) reproduces qualitatively the 3‐stage features evidenced on Figures 3 and 4, which inspired
the model. The magma overpressure drops more or less strongly, at the end of the process, according to the
value of p′. This non‐linear pressure drop is due to the non‐linear increase of the reservoir volume; volume

variation per unit time is equal to the magma flow (Equation 13 Q(t) = Q0(1 − ΔP(t)
P ) ). This increase in

volume is due to damage, which induces a decrease in shear modulus. The characteristic time given by
1
τ(t) =

1
τ0
ψ(t) − d

dtln ψ(t) =
1
τ0
e− N(t)δ + n(t)δ (Equations 3 and 15) shows the competition, in the pre‐eruptive

dynamics, between the magma feeding process (first term of 1
τ(t), which dominates at low damage level,

during the second stage) and the damage process (second term, which dominates at high damage level, during
the third stage); this competition results in a maximum for τ(t). The magma‐edifice interaction power
(Equation 14) shows that a second maximum may appear for high enough values of p′; this interaction power
increases with magma flow, but it drops with the edifice rock strength.

4. Results and Discussion
A careful analysis of the 34 1998–2017 inter‐eruptive earthquake number time series shows that they often begin
with a constant earthquake rate larger than the background seismicity rate; 22 of them (i.e., 63%) exhibit a pre‐
eruptive acceleration for at least 2 days (Figure 2 for 2004–2017, Figure S8 and Table S1 in Supporting Infor-
mation S1). However, these earthquake time series show a remarkable variability, ranging from a linear variation
to a very sudden acceleration.

Analyzing jointly earthquake and displacement time series, taking into account the proposed Kelvin damageable
visco‐elastic model (Equations 2–5), leads us to describe qualitatively the pre‐eruptive dynamics in three main
stages (Figure S9 in Supporting Information S1):

‐ primary creep stage, during which the overpressure in the shallow‐level reservoir increases close to the elastic
limit ‐ no earthquake occurs in the vicinity of the pressurized magma reservoir. During this stage the edifice
remains linear elastic, and creep refers to the visco‐elastic behavior of the system (reservoir + edifice) during
this stage. It could reach an equilibrium if the linear elastic limit was not reached.

‐ Secondary creep stage occurs when the overpressure exceeds the linear elastic limit and produces rupture area,
earthquakes and surface displacement at a constant rate.

‐ Tertiary creep stage occurs when the earthquake number and the surface displacement accelerate.

In the last two stages, creep is the brittle creep (see, e.g. Amitrano & Helmstetter, 2006; Brantut et al., 2013; Heap
et al., 2009) and refers to the effect of the progressive damage of rocks in the edifice.
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Understanding this first qualitative interpretation requires a thorough understanding of the progressive damage
process: how damage increases with earthquakes, how earthquakes interact, how stress transfers and produces an
inverse Omori‐Utsu law, how can we interpret the parameters n0 and p′ of this law, and what importance they have
for the pre‐eruptive dynamics and volcanic system state variables (Sections 4.1–4.6).

4.1. Understanding the Relation Between Earthquake Number and Continuity Function

Continuity ψ(t)= 1 − D(t) is directly related to the damage parameterD(t). It is an essential function that critically
controls the time evolution of material strength; with the characteristic time τ0, continuity controls the reservoir
overpressure and surface displacements (Equations 9–12). Its form (Equation 15) must therefore be carefully
assessed, and compared to similar quantities proposed by previous authors.

Figure 7. Model state variables as a function of the normalized time t
tc
, computed for n0 = 5 earthquakes/day, δ = 0.0001, τ0 = 0.05 tc, for various values of the Omori‐

Utsu parameter p′, from 0 to 1.5 (colors). (a) Cumulative number of earthquakes N(t). (b) Displacement u(t). (c) Continuity ψ(t). (d) Normalized characteristic time τ(t)
τ0
.

(e) Normalized overpressure ΔP(t)P . (f) Normalized power Π
Π0
p′ = 0 corresponds to n(t) = n0 = constant, that is, ψ(t) = e− n0δt, for which n(t) and ψ(t) have no characteristic

time. p′ = 1 corresponds to the inverse Omori law; it allows retrieving Got et al. (2017)'s solution.
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Weibull (1939) described the material failure during tensile test experiments as a stochastic process controlled by
the material defects and their distribution; the survival probability of the material is the product of the survival
probabilities of the defects in a given volume. The probability product accounts for the serial arrangement of
cracks loaded in tension (the weakest‐link theory), whereas the integration of survival probabilities over the
volume accounts for the parallel arrangement of cracks (see, e.g., Zok, 2017 for a short discussion, Batdorf &
Crose, 1974 who give a proof for Weibull theory in the case of tensile stress states, and Weiss et al., 2014 who
investigate compressive stress states and limitations of Weibull theory). He defined a failure function (damage
function; see also Krajcinovic & Silva, 1982) at the sample scale from the probability to reach the strength σm; its
cumulative distribution is:

F(σ) = 1 − e− ∫ nm(σ)dv (18)

where nm(σ) = ( σ
σm
)
m
, and σ is the applied stress and v the volume; m is in the range 1–20, and termed the ho-

mogeneity index (Tang, 1997; Tang & Kaiser, 1998; Weibull, 1939; Wilkins, 1980). The distribution of the
continuous parts in the material 1 − F(σ) is sometimes called the stretched exponential cumulative distribution in
materials science and can be compared to the continuity (Equation 15).

Coleman (1956, 1958) proposed a description of the material failure in terms of the progressive failure of a fiber
bundle loaded in tension (the Fiber Bundle Model, or FBM), by expressing the rate of fiber failure using the
breakdown rule (see also Krajcinovic, 1996; Nanjo, 2017; Rundle et al., 2003; Turcotte & Glasscoe, 2004;
Turcotte et al., 2003), or evolution equation

dnf (t)
dt

= − ν(σ)nf (t) (19)

where nf(t) is the number of unbroken fibers at time t, and ν(σ) the hazard rate, a function of the fiber stress σ(t).
The quantity n f (t)

n f0
where nf0 is the initial number of unbroken fibers may be considered as a discrete representation

of the material continuity in the continuum damage approach.

Equations 16 and 19 can be considered as identical if we consider that the earthquake rate is a measure of the
hazard rate. The result of the integration of Coleman's Equation 19 is directly comparable to the continuity
function 1 − F(σ) deduced fromWeibull's Equation 18 if we consider that nm(σ) represents ν(σ). Therefore we can
consider, as a first approach, the convergence of these reasonings as a validation of our expression of the con-
tinuity as a function of the earthquake number (Equation 15).

This expression has to be linked with other existing relations and approaches used, especially in volcanology. The
damage evolution or kinetic equation of Kachanov (1958, 1986) may be written

dψ(t)
dt

= − AK(
ϵel
ψ(t)

)

nK
(20)

(where ϵel is the linear elastic strain, AK and nK are positive constants), from which the Voight (1988) evolution
equation

d2Ω
dt2

= AV(
dΩ
dt
)

β

(21)

can be derived by using the change of variable ψ = dt
dΩ, with AV = AKϵelnK and β = nK + 2, positive constants.

Equation 21 is the basis of the Failure Forecast Method (FFM), used for eruption prediction. Equation 20 leads to

ψ(t) = (1 −
t
tc
)

1
1+nK

(22)

where tc = (AK (nK + 1)ϵelnK )− 1 is the rupture time. This solution for the continuity corresponds to Equation 15 ψ

(t)= e− N(t)δ when N(t) follows an inverse Omori law N(t) = − n0tc ln(1 − t
tc
) , when n0tcδ = 1

1+nK
= a. Notice that

the Kachanov‐Voight approach implies that critical size and time exist, whereas Coleman (1956) breakdown rule
and Equation 15 do not. Das and Scholz (1981) and Main and Meredith (1989) also found a result similar to
Equation 22 for crack length growth.
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As a consequence, Weibull (1939)'s and Coleman (1956)'s FBM approaches, well established for tensile stress
states, converge with Equation 15; Kachanov (1958)'s continuity (represented by Voight 1988's FFM in volca-
nology) is a specific case of Weibull and Coleman's approaches, and of Equation 15 when N(t) is the inverse
Omori law. In the following sections we will show in which mechanical conditions this latter law appears.

4.2. Linking Crack Interaction and Continuity

At this point, it is of importance to understand the effect of the interaction between cracks in the form taken by
damage and continuity (see, e.g., Amitrano et al., 1999; Costin, 1985, 1987; Dahm & Becker, 1998; Reches &
Lockner, 1994; Main 2000; Rivalta & Dahm, 2004), and in the earthquake number N(t).

Computing the effective Young's modulus E′ of a cracked elastic solid, Walsh (1965) has shown that

E′
E
=

1
1 + N v̄

v
= ψWalsh (23)

where E is the Young's modulus and v is the volume of the solid, v̄ is the volume of a spherical crack, and N the
number of cracks. N v̄

v is the crack density.

This reasoning is performed for one isolated crack then extended to N cracks by using the superposition theorem
for linear elasticity. This is actually the case when the cracks are weakly interacting, that is, when the crack
density N v̄

v≪ 1. Under this condition, one can write:

E′
E
= 1 − N

v̄
v
= ψwi (24)

where ψwi is the continuity in the weakly interacting crack case (Budiansky & O’Connell, 1976, Self‐Consistent
Method). However, this reasoning cannot be generalized to the case where N v̄

v tends toward 1, where cracks can
strongly interact.

To take into account the interaction between cracks, Bruner (1976) proposed to introduce the cracks one at a time
in an equivalent homogeneous elastic solid having the effective moduli due to the introduction of the previous
cracks. He found that, without any condition on N v̄

v:

E′
E

≈ e− N
v̄
v = ψsi (25)

where ψsi is the continuity in the strongly interacting crack case. Equation 24 appears to be a first‐order
approximation of Equation 25 (see also Cox & Meredith, 1993 for a discussion). Equation 25 is similar to
Equation 15, which may be derived from the evolution Equation 16.

Progressive damage and earthquake interaction are the physical justification of our Equation 15, which is directly
related to Bruner (1976)'s crack interaction theory, to Coleman (1956, 1958)'s FBM load transfer schemes, and
finally, to heterogeneity distribution (see, e.g., Weibull, 1939). This also shows that N(t) is the true control
parameter of the continuity, and not directly the time as in Kachanov (1958).

4.3. Consequences for the Inverse Omori‐Utsu Law

When failure occurs by progressive damage close to the limit equilibrium, the action, or applied force F is equal to
the reaction, or strength, of the solid so that we can write:

F = σ0S0 = σS (26)

where σ0 is the stress applied on the initially intact, finite area S0, and σ is the Kachanov effective stress, actually
applied on the undamaged area S. This area S decreases with the damage functionD: S= (1 − D)S0= ψS0 and the
Kachanov effective stress
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σ =
σ0
ψ

(27)

increases when S decreases: the stress initially applied on the damaged area ΔS transfers on S at each rupture,
increasing the probability of earthquakes and failure.

After Weibull (1939) in various materials, Charles (1958), Elliott (1958) and Mould and Southwick (1959) in
glass, and Cruden (1970) (which contains an extended discussion of brittle creep in rocks), Cruden (1974),
Wilkins (1980), Atkinson andMeredith (1981), Lajtai and Schmidtke (1986) and Lajtai et al. (1991) in rocks have
established a widely used static fatigue or brittle creep law in various materials linking time tf and stress σ at
rupture, that can be written (see, e.g., Anderson & Grew, 1977, and Heap et al., 2009 more recently, for a review):

t f
t f0
= (

σ
σ0
)

− α

(28)

where tf0 is the characteristic time of the failure occurring at stress σ0, and α is found to be in the range 10–100 for
intact rock samples (see, e.g., Amitrano & Helmstetter, 2006; Wilkins, 1980). This relation is sometimes referred
as Charles (1958)'s law. Gupta (1982) has shown the equivalence of Charles (1958)'s power law and Wiederhorn
and Bolz (1970)'s exponential law of slow crack growth. A parallel can also be drawn with Glen (1952)'s law for
ice, and with Herschel‐Bulkley's power law for non‐newtonian visco‐plastic fluids (see, e.g., Bonn et al., 2017;
Nanjo, 2017).

Failure time tf can be estimated as the average time between two ruptures dt
dN , which is the inverse of the earth-

quake rate or probability of occurrence n(t). In that case, Equation 28 can be written:

n(t)
n0

= (
σ
σ0
)

α

(29)

Considering that the stress inducing earthquakes is the effective stress applied on undamaged areas (Equation 27),
Equation 29 can be written:

n(t)
n0

= (
1
ψ
)

α

(30)

The earthquake rate n(t) therefore results from the adaptation of the effective stress field to the continuity (itself
controlled by the distribution of material defects, i.e., the crack density), in response to an external stress forcing.

Equation 30 can be used to derive a general earthquake production law during the damage process:

(
1
n0
dN(t)
dt

)

− 1
α

= ψ(N(t)) (31)

or

dN(t)
dt

= n0(ψ(N(t)))− α (32)

The left side of Equation 31 is controlled by the stress field time evolution, and the right side is controlled by the
actual material crack distribution and interaction.

4.3.1. Weak Crack Interaction Case: The Inverse Omori‐Utsu Law With Low p′ ( p′ < 0.5)

In the weakly interacting crack case, continuity is a simple linear function of N(t) (Equation 24) and Equation 32
may be written:

dN(t)
dt

= n0(1 −
N(t)
Nc

)

− α

(33)

which is a first‐order linear differential equation, the solution of which is:
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N(t) = Nc(1 − (1 −
t
tc
)

1
α+1

) (34)

if N (t = 0) = 0, tc = Nc
n0(α+1)

and Nc = N (t = tc). The corresponding earthquake rate n(t) =
dN(t)
dt is

n(t) = n0(1 −
t
tc
)

− α
α+1

(35)

that is, an inverse Omori‐Utsu law with a positive parameter p′ = α
α+1 < 1. As a consequence, the inverse Omori‐

Utsu law with p′ < 1 observed in the pre‐eruptive earthquake time series is the result of quasi‐static damage
(Equation 26) by weakly interacting cracks; crack interaction and finite‐size or free‐surface effect grow with p′.
This reasoning and result can be compared with those obtained by Nanjo (2017). Reaching complete failure with
weakly interacting cracks suggests subcritical crack growth, occurring at low stress threshold (the long‐term
strength) and low stress transfer with a few finite‐size effect in weak, eventually fractured volumes, the frac-
turing process as a whole being a long‐term process. This case is similar to the low‐m case in Figures 3a–3e of
Tang and Kaiser (1998) or in Figures 4.10–4.11 of Tang and Hudson (2011), to the compliant layer case in
Gudmundsson (2005), to the loose‐sand case in geomechanics (see, e.g., Nicot et al., 2023), or to the stable mode
of Lyakhovsky and Shalev (2021). The end‐member case where there is no crack interaction, that is p′ = 0,
corresponds to the failure at constant displacement or strain described, for example, in Turcotte et al. (2003) and
Gudmundsson (2012), which is possible in already fractured media; therefore n0 is the event rate without crack
interaction. Crack interaction and finite‐size effect require a minimum rock strength to appear.

From Equation 34 and p′ = α
α+1< 1, we can write that Nc =

n0tc
1− p′ and

N(t) =
n0tc
1 − p′

(1 − (1 −
t
tc
)

1− p′
) (36)

that may be written

N(t) = − n0tclnp′ (1 −
t
tc
) (37)

where lnp′ is the Tsallis q‐logarithm with q = p′ (Tsallis, 1988), or

N(t)
n0tc

= − lnp′ψ0(t) (38)

where n0tc is the event number occurring without crack interaction, and ψ0(t) = 1 − t
tc
is the continuity function in

the same hypothesis (p′ = 0); the logarithm (or exponential) function accounts for the interactions, which is
coherent with Bruner's incremental approach. Therefore, the inverse Omori‐Utsu law may be written using the
Tsallis nonadditive q‐entropy (Tsallis, 1988) Sp′ (for q = p′), if the total number of possible configurations or
energy (actually strength) states is W = 1

ψ0
, all states being equally probable:

N(t)
n0tc

= Sp′ (t) (39)

4.3.2. Strong Crack Interaction Case: The Inverse Omori‐Utsu Law With High p′ ( p′ ≥ 0.5)

When p′ tends to 1, n(t) and the interactions between cracks increase, which requires sufficient rock strength; the
characteristic length of the stress field perturbation reaches the size of the body to be ruptured. This may be
compared to the high‐m case in Figures 3a’–3e’ of Tang and Kaiser (1998) or in Figures 4.10–4.11 of Tang and
Hudson (2011), to the stiff layer case in Gudmundsson (2005), to the dense‐sand case in geomechanics (see, e.g.,
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Nicot et al., 2023), or to the runaway mode of Lyakhovsky and Shalev (2021). In the strong crack interaction case,
the continuity is expressed by Equations 15 or 25, and Equation 32 writes (see, e.g., Turcotte et al., 2003 for a
similar reasoning):

dN(t)
dt

= n0eαδN(t) (40)

which is a first‐order linear differential equation, the solution of which is:

N(t) = − n0tc ln(1 −
t
tc
) (41)

if N (t = 0) = 0 and tc = 1
n0αδ

. This corresponds to a simple (p′ = 1) inverse Omori law n(t) = n0
1− t

tc
, and may be

written

N(t)
n0tc

= − ln ψ0(t) (42)

As for p′ ≠ 1, the logarithm function accounts for the interactions; Equation 42 corresponds to Equation 38 when
p′ = 1. Notice that 1α = n0δtc = a, which means that in the inverse Omori law case, the stress field variation,
controlled by α, is exactly adapted to the distribution of defects, controlled by n0δtc. Equation 42 may be written:

N(t)δ = − ln ψOmori(t) (43)

where ψOmori(t) = (1 − t
tc
)
a
(see Got et al., 2017).

Equation 43 may be compared to the Boltzmann law for entropy (whose Tsallis nonadditive q‐entropy is a
generalization), where the continuity is the inverse of the possible number of states (combinations of elements that
are ruptured or not)W on the rupture area. Basaran and Nie (2004), Chan et al. (2012), Basaran et al. (2014) and
Tucker et al. (2014) express the damage function using a decreasing exponential of entropy (see also Bryant
et al., 2008 and a complete review in Osara & Bryant, 2019). Osara and Bryant (2019) and Idris et al. (2020) found
that the normalized entropy generation during a fatigue degradation process was well approximated by the
normalized number of loading cycles.

In Equation 28, α is a positive finite constant so that 0 < p′ < 1, and the earthquake number N(t) in Equation 34
reaches a finite value Nc. The limit case p′→ 1 implies a large α, a very small tf (Equation 28) that is a large n(t),
and a small δ to have a physical tc = 1

n0αδ
; it means that the complete, progressive, quasi‐static rupture of an intact,

finite, area occurs by means of a very large number of very small, frequent and interacting earthquakes. At each
time step, the applied stress is exactly equal to the rock mass strength (the limit equilibrium); in this case, crack
interaction is the maximum possible at equilibrium. The inverse Omori law (p′ = 1) appears to be an upper bound,
for a given n0tc, for earthquake production in strong and limited rock masses during quasi‐static crack propa-
gation. If the rupture occurs exactly at the peak rock mass strength, or if the rock mass has a plastic behavior, this
corresponds to the constant load case described in Turcotte et al. (2003) and Gudmundsson (2012). If the rock
mass weakens with strain, the maximum strength of the rock mass and the applied stress (and pressure) can
decrease while remaining equal, maintaining conditions similar to the constant stress condition.

From this analysis it appears that the case where p′ > 1 occurs when the action (magma overpressure) is larger
than the reaction (strength of the edifice), when the edifice rock mass weakens more strongly with time and strain
than magma pressure. In this case the process is no longer quasi‐static damage: the difference between action and
reaction produces a strong acceleration and drives the rupture front, and the earthquake production.

Notice also that averaging the pre‐eruptive earthquake number time series with various p′ (see, e.g., Chastin &
Main, 2003; Collombet et al., 2003; Schmid et al., 2012) reveals the persistent physical feature (the free‐surface or
finite‐size effect) and cancels the variable part due to changing rock mass strength and magma pressure.
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From this discussion, we conclude that the expression ψ(t) = e− N(t)δ (Equation 15) of the continuity function is
physically well‐grounded for rock masses loaded in tension, and may be used to model the pre‐eruptive me-
chanical weakening of volcanic edifice rock masses, in particular of their elastic moduli. The solution of the
Kachanov‐Voight evolution equation is a particular case of this Equation 15 when N(t) follows an inverse
Omori law.

4.4. Consequences for the Understanding of the Secondary and Tertiary Creep Stages During Pre‐
Eruptive Periods

From the latter analysis we can complete our qualitative description of the earthquake and surface displacement
time series in terms of creep stages or phases (Figure S9 in Supporting Information S1):

‐ Secondary (brittle) creep stage occurs when the overpressure exceeds the elastic limit and produces sub‐critical
crack propagation, earthquakes and surface displacement at a constant rate. Crack interaction is therefore
limited; no finite‐size or free‐surface effect appears.

‐ Tertiary (brittle) creep stage occurs when the earthquake number and the surface displacement accelerate, that is
when crack interaction becomes strong. Finite‐size or free‐surface effect appears, that is, condition for crack
propagation is met at the scale of the edifice; crack interaction is maximum up to the surface, stress perturbation
size and correlation length between cracks reach the edifice characteristic size, cracks can propagate rapidly up
to the surface (see, e.g., Rivalta &Dahm, 2006 and the references therein) and an eruption may occur. This stage
ends with the earthquake swarms and eruptions described in Duputel et al. (2019), who evidenced short and
intense swarms before the short (1–5 hr) rapid (0.1–0.3 m/s) aseismic propagation of the rupture and magma
immediately before the eruption.

4.5. Analysis of the Parameters of the Inverse Omori‐Utsu Law

We fitted the 24 summit/proximal pre‐eruptive earthquake time series using Equation 34, searching for n0 and p′
(Figure S8 and Table S1 in Supporting Information S1). Most (20) of the eruptions were preceded by 1,000–4,000
earthquakes so no stacking was required to reveal an inverse Omori‐Utsu law. The fits were performed by
adjusting the secondary creep phase controlling n0, and the end of the tertiary creep phase that controls p′; they
give n0 and p′ for the homogeneous distribution of cracks equivalent to the real medium.

Results may be represented by two different linear laws (Figure 8):

p′ = 1.15 − 1.15
n0tc
Nc

(44)

if p′ < 1, and

p′ = 1.75 − 5.7
n0tc
Nc

(45)

if p′ > 1. The two lines intersect at p′ ≈ 1, for n0tcNc
≈ 0.1275.

From Equation 36 we deduce that, when p′ < 1, Nc = N(t = tc) =
n0tc
1− p′ so that p′ = 1 − n0tc

Nc
= 1 − a

Ncδ
where

a = n0tcδ; in the theoretical case where Ncδ = 1 (no overlapping of earthquake sources), p′ = 1 − a; p′Ncδ
represents the fraction of the rupture area created with crack interaction, and a = n0tcδ the one without crack
interaction.

Equation 44 shows that the actual p′ is 1.15 times larger than expected from Equation 36; it results, for a given tc,
in a larger Nc (and area to be ruptured) than theoretically expected. This may be due to the overlapping of
earthquakes sources, to non‐zero residual stresses and/or to healing.

Figure 8 expresses the partition between (a) the stable crack propagation in weak, fractured, rock masses with a
low stress transfer (p′ < 0.5 and large n0), and (b) the final fast crack propagation in resistant rock masses with a
strong crack interaction and stress transfer (high p′ values). This partition is inherent to the inverse Omori‐Utsu
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law for a givenNc (Equation 36); it recalls the two regimes evidenced byMaimon et al. (2012), or by, for example,
Lyakhovsky and Shalev (2021) in hydraulic fracturing (“stable” or “runaway”).

In the Supporting Information S1 Section B we computed, for each eruption, the quantities Ncδ and a = n0tcδ. We
show that the parameter a (Figure 9) is equivalent to the Monkman‐Grant constant (Monkman & Grant, 1956)
used in materials sciences. We show (Section B in Supporting Information S1) that this approach allows
evidencing an efficient estimator for tc when the Monkman‐Grant parameter a is a constant. However our
computations show that Ncδ increased (Figure S10 in Supporting Information S1) and a decreased (Figure 9) with
time from 2004 to 2017, which limits the use of this approach in that case. After 2014 most of the earthquake
rupture area was created just before the eruption, which may be an evidence of increasing instability. The pa-
rameters a and Ncδ should be systematically computed.

4.6. Consequences for the Volcanic System State Variables

As shown in the previous sections, the stress transfer dynamics (characterized by p′) controls the seismicity and
damage/continuity evolution, and continuity controls the state variables of the volcanic system, with the char-
acteristic time of the magma transfer system τ0. Figure 7 shows that, when p′ increases, the state variables may
strongly change before the final rupture and eruption.

To investigate the possible real behaviors, system state variables have been computed for 24 summit/proximal
Piton de la Fournaise eruptions from 2003 to 2017 (Figures 10–14, Figures S12–S13 in Supporting Informa-
tion S1). The model parameters τ0, uel and δ are estimated by fitting the theoretical displacement u(t) to the
displacement data, using the earthquake number N(t). The often high‐quality of the fit of the displacement is
directly related to the form taken by the continuity function; it may be understood as an a posteriori validation of
this form.

The results of the system state variable computations (Figures 10–14 and Figures S12–S13 in Supporting In-
formation S1) may be represented using two end‐members (Sections 4.6.1 and 4.6.2).

Figure 8. Inverse Omori‐Utsu exponent p′ as a function of n0 tcNc
. Color scale represents Nc = N (t = tc). Straight lines

correspond to the models represented by Equation 44, black line, and Equation 45, red line.
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4.6.1. The Case of a Clear Acceleration of N(t)

In this case (Figures 10 and 11) p′ > 0.5, crack interaction, tertiary creep and finite size/free‐surface effect are
strong; it can be compared to the runaway faulting mode of Lyakhovsky and Shalev (2021), where the seismicity
is concentrated along the rupture area. The continuity and the overpressure strongly drop down to the rupture time
tc. The strong and eventually early drop in overpressure, and its relation with seismicity are consistent with
experimental results obtained by, for example, Vinciguerra et al. (2004), Gehne et al. (2019) or Benson
et al. (2020) and modeling (e.g., Figure 3 of Shalev & Lyakhovsky, 2013). State variables allow identifying
specific times (Figure 12; see also Got et al., 2017) to characterize the evolution of the pre‐eruptive damage/brittle
creep process and magma‐edifice coupling. Especially, the magma‐edifice interaction power Π(t) systematically
exhibits a second maximum (time t = tGI) just before the final rupture and subsequent eruption (Section C in
Supporting Information S1); this feature may be compared to the result obtained byMain andMeredith (1989) for

stress intensity factors. The characteristic time τ(t) = (
ψ(t)
τ0
+ n(t)δ)

− 1
, from Equation 3, drops below τ0 for 50% of

these cases, which means that rupture area production n(t)δ dominates over changes in the visco‐elastic response
of the edifice at this stage. After the second maximum of Π(t) the stress transfer and crack interaction is very
strong; it corresponds to the first, seismic, pre‐eruptive phase investigated by Duputel et al. (2019). The final drop
of Π(t) and τ(t) show that the reservoir volume increase and the corresponding drop in pressure, due to fracturing
(the continuity and shear modulus drop in the model), are faster than the viscous magma flow Q(t).

The time of these maxima can be related to the eruption time tc; the relative delay
tc − tGI
tc

decreases with p′ for p′ >
0.6, which can be described by a linear law (Figure 13):

tc − tGI
tc

= − 0.25p′ + 0.43 (46)

so that an estimator of tc could be:

t̂c =
tGI

0.25p′ + 0.57
(47)

Figure 9. (a) Earthquake number during secondary creep (no crack interaction) n0tc as a function of δ. Color scale represents
the time in days from 02/05/2004 (first eruption monitored using GPS measurements and the OVPF seismic network). The
red curve shows the model n0tc = C

δ (Monkman‐Grant relation), for C = 0.9. (b) Parameter a = n0tcδ as a function of time in
days from 02/05/2004 (same color scale as in panel (a)). The red vertical line figures the 30 March 2007 eruption.
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Figure 10. Model state variables as a function of time, computed for eruptions showing a moderate acceleration in the
earthquake number N(t) (0.58 < p′ < 0.7). Numbers in the legend cartoon indicates the eruption number (see Table S1 in
Supporting Information S1 for eruption parameters). (a) Cumulative number of earthquakes N(t). (b) Thin line: horizontal
displacement recorded at the summit SNEG GPS station; thick line: modeled displacement u(t). (c) Continuity ψ(t).
(d) Normalized characteristic time τ(t)

τ0
. (e) Normalized overpressure ΔP(t)

P . (f) Normalized power Π
Π0
. The continuity is

computed directly fromN(t) (Equation 15) and from δ, estimated from the fit of the computed displacement u(t) (Equation 12) to
the displacement data. For these values of p′, Π(t) reaches its second maximum and decreases before the eruption, and the
normalized overpressure decreases below 0.5. The characteristic time τ(t) may decrease below τ0.
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Estimations provided by t̂c values from the complete time series are within 10% of the true value in 75% of the
cases (Figure 13), when tGI is available (60% of the cases).

The analysis of the continuity in the vicinity of the rupture time allows us to evidence that for very strong final
crack interactions (p′ > 1.3), final rupture and eruption occur shortly after ψ(t = tψ25) ≈ 0.25 (Figure 11). For
moderate to strong acceleration of N(t) and crack interaction (0.5< p′< 1.3), final rupture occurs for larger values
of the normalized time delay tc − tψ25

tc
(Figure 15).

Figure 11. Model state variables as a function of time, computed for eruptions showing a strong acceleration in the
earthquake number N(t) (0.90 < p′ < 1.62, strong crack interaction; see Table S1 in Supporting Information S1 for eruption
parameters and caption of Figure 10 for more explanations). The continuity is a convex up, decreasing curve below 0.5, when
it drops to 0. The power Π(t) reaches a second, sharp, maximum and decreases abruptly, and the normalized overpressure
drops to 0 in a few days before the eruption. The characteristic time τ(t) decreases below τ0. Eruption number 23 (red lines)
clearly shows the relation between the summit deformation and seismicity, during a pre‐eruptive earthquake sequence
comprising three successive earthquake swarms.
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Figure 12. Model state variables as a function of time, computed for the 20 July 2006 eruption, showing the specific times
used in the discussion. See Table S1 in Supporting Information S1 for model parameters. (a) Cumulative number of
earthquakes N(t). (b) Red line: horizontal displacement recorded at the summit SNEG GPS station; blue line: modeled
displacement u(t). (c) Continuity ψ(t). The green dashed vertical line shows the tψ25 time. (d) Normalized characteristic time
τ(t)
τ0
. (e) Normalized overpressure ΔP(t)

P . The green dashed vertical line shows the tΔP50 time. (f) Normalized power
Π
Π0
. The green

dashed vertical line shows the tGI time. The definition of Π
Π0
(Equation 14) shows that tGI = tΔP50.
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4.6.2. The Case Where N(t) Is Quasi‐Linear

In this case (Figure 14) p′ < 0.5, and the progressive damage and crack growth occurs with weak crack
interaction, stress transfer and free‐surface effect. This process is not or weakly controlled by a characteristic
length and the continuity is a decreasing exponential of the time, with no critical time. The overpressure drops
slowly with time. This process recalls the stable mode of Lyakhovsky and Shalev (2021), when pressure and
seismicity propagate by diffusing slowly in a fractured volume around an injection well. Figure 3 of Shalev and
Lyakhovsky (2013) also shows how the progressive failure of the rock mass around a wellbore (due to repeated
hydraulic tests) decreases the peak pressure and the post‐peak pressure weakening. Characteristic time τ(t) and
magma‐edifice interaction power Π(t) do not exhibit drops or maxima before the final rupture and eruption.
However Π(t) shows systematic increases before the eruption that gives information on the pre‐eruptive process
dynamics.

For linearN(t), final rupture occurs for ψ(t = tψ25) ≈ 0.25. Together with the values of tc − tψ25tc
obtained for p′> 0.5,

this leads to propose a Gaussian model for the normalized time delay tc − tψ25
tc

(Figure 15):

tc − tψ25
tc

= Δtmaxe
− ((p′− p

′m
)/σp′)

2

(48)

so that another estimator of tc could be:

t̂c =
tψ25

1 − Δtmaxe
− ((p′− p

′m
)/σp′)

2 (49)

with Δtmax ≈ 0.33, p′m ≈ .9 and σp′ ≈ 0.5, which provides an approximate value of tc knowing tψ25. 60% of the
values provided by this estimator, from the complete time series, are within 10% of the true tc value (Figure 15).

This symmetric model (Equation 48) shows that the very strong final acceleration and crack interaction that occur
for p′ > 1.3 is not strongly different from the weak interaction that occurs for p′ < 0.5, from the point of view of
the rupture time. This shows that a short, strong, final seismic crisis plays a minor role in the complete rupture
process. This ψ‐based estimator (Equation 49) does not require a specific interval for p′ values, unlike the tGI‐
based model (Equation 47); it can be considered as more general. Other estimators will be discussed in further
works.

Two other marginal, but however interesting, cases exist.

Figure 13. (a) Normalized time delay tc − tGI
tc

as a function of p′ (blue crosses), and model (red line, Equation 46), for p′ > 0.6. No second maximum of Π(t) was found for
values of p′ lower than 0.6. (b) Sample probability of the relative residual of the estimation of tc from tGI (Equation 47).
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Figure 14. Model state variables as a function of time, computed for eruptions showing no or a very limited acceleration in the
earthquake number N(t) (p′ < 0.35, weak crack interaction; see Table S1 in Supporting Information S1 for eruption
parameters and caption of Figure 10 for more explanations). Continuity is a concave up, decreasing curve down to 0.25; it
does not drop strongly below. The characteristic time τ(t) is always larger than τ0. The normalized power Π(t) increases
before the eruption, but exceptionally reaches its second maximum.
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4.6.3. The Case Where N(t) Is Composed by Several Accelerations

This case corresponds to a piecewise rupture, that is, a series of rapid ruptures of resistant patches producing
earthquake swarms that are not followed by eruptions, but rather by intrusions. This behavior is due to the
hectometric‐scale heterogeneity of the medium (and the corresponding stress perturbation and finite‐size effects),
which is smaller than the edifice scale. The characteristic time of the rupture of a resistant patch being shorter than
that of the feeding system, the magma pressure drops strongly due to the rapid volume creation in the edifice;
elastic potential energy accumulated before the rupture of the resistant patch is not sufficient for the magma to
reach the surface. Magma pressure then increases again slowly. Weak heterogeneities or layers can deform and
create volume laterally at low pressure. This leads to complex/chaotic patterns for N(t), ψ(t), and Π(t) (Figure S13
in Supporting Information S1). This may be due to layering, and may favor dyke arrest (see, e.g., Gudmunds-
son, 2005); at larger scales, this process may be involved in the creation of magma reservoirs, especially when a
weak layer favors the displacement of a volcano flank. In this case tGI exists but provides a strong residual when
fitting Equation 47 with tc data and contributes to enlarge the tails of the corresponding pdf (Figure 13).

4.6.4. The Case Where N(t) Decelerates With Time

This is the case after the eruptions occurring between the 2 April 2007 eruption and 2010 (Figure S14 in Sup-
porting Information S1). In that case magma overpressure and Kachanov effective stress slowly decrease by an
internal diffusion process in an increasing volume. It may correspond to the creation of a sill structure, for
example. The stress perturbation diffuses over an increasing contact area and continuity increases until a new
equilibrium is reached. The earthquake number follows an Omori law.

5. Conclusion
In this work we have proposed a simple semi‐coupled model for magma‐edifice coupling, for low‐compressibility
magmas, which allows the computation of pre‐eruptive surface displacements, magma overpressure and flow, and
magma‐edifice interaction power as a function of the continuity of the volcanic edifice and of the characteristic
time of the feeding system. Earthquake numbers and surface displacement time series are input data of the model.
Model parameters are three: the linear elastic displacement, the characteristic time of the feeding system, and the
damage per earthquake; they are estimated by fitting the surface displacement time series. Magma overpressure
and flow, and magma‐edifice interaction power are computed from the values of these parameters.

Continuity is the intact part of the rock between defects or cracks; it controls the rock elastic parameters. Its time
evolution is dominated by the progressive damage and brittle fracture process during pre‐eruptive periods.
Convergent reasonings lead us to propose that, at least in the tensile states of stress that we have investigated,
continuity is a decreasing exponential of the earthquake number; earthquake number is therefore a logarithm of
the continuity, which may be understood as a general form of the Omori‐Utsu law similar to Boltzmann‐Tsallis

Figure 15. (a) Normalized time delay tc − tψ25
tc

between the eruption time tc and the time tψ25 for which the continuity ψ(t) is equal to 0.25, as a function of p′ (blue crosses),
and model (red line, Equation 48). (b) Sample probability of the relative residual between the eruption time tc and its estimation from tψ25 (Equation 49).
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entropy. We show how damage and crack interaction produce the inverse Omori‐Utsu law for earthquakes during
pre‐eruptive periods. This law is therefore a characteristic feature of the progressive failure of pressurized vol-
canic edifices.

The systematic analysis of 24 pre‐eruptive earthquake and surface displacement time series preceding summit/
proximal eruptions at Piton de la Fournaise volcano shows that, though it exhibits variability, pre‐eruptive
earthquake number can indeed be modeled by an inverse Omori‐Utsu law. Our study gives physical bases for
interpreting the inverse Omori‐Utsu parameters n0 (earthquakes occurring without interaction) and p′ (proportion
of interacting earthquakes) and allows identifying two cases:

‐ with weak crack interaction (p′ < 0.5). This is the case when fracturing occurs, and eventually magma
propagates in a weak, already fractured, poorly cohesive medium. This corresponds to the constant strain
boundary condition case of Turcotte et al. (2003) and Gudmundsson (2012), and the stable mode of Lyakhovsky
and Shalev (2021). Finite‐size/free‐surface effect is very limited, and earthquake rate is almost constant; the
magma‐edifice interaction power Π(t) increases before the eruption, but it never shows a decrease after reaching
a maximum. Final rupture and eruption occur when continuity is close to 0.25.

‐ with strong crack interaction (p′ ≥ 0.5), when fracturing occurs and eventually magma propagates into strong
rock with some defects, so that crack interaction and propagation dominate the progressive damage process.
This is the constant force case of Kachanov (1958), Coleman (1958), Turcotte et al. (2003) and Gudmunds-
son (2012) where the intact rock area decreases, Kachanov's effective stress increases and edifice finite‐size
effect controls the final rupture process up to the surface; this may also be related to the runaway mode of
Lyakhovsky and Shalev (2021). Magma overpressure strongly decreases before the final rupture and eruption,
and the power Π(t) reaches a second maximum before the eruption. The case p′ > 1 arises from forced crack
interaction, that is, when magma overpressure is larger than the edifice strength.

Specific times have been identified and related to the eruption time tc and the parameter p′, knowing the entire
time series. We used them to define estimators of the eruption time.We used the time for which continuity reaches
the value of 0.25, which provided an estimator of tc for which 60% of the estimations are within 10% of the true
value of tc. We also used the time for which the magma‐edifice interaction power reaches its second maximum;
when available (60% of the cases), this time provided estimations of tcwithin 10% of the true eruption time in 75%
of the cases. Variability in the damage process induces deviation from the mean value; the result of this study is a
probability for tc, knowing the entire time series, for a given value of specific times (tψ25 or tGI).

The Monkman‐Grant parameter a = n0δtc is the fraction of the total area to be ruptured, ruptured without crack
interaction; it may be used to characterize the damage state of the edifice; its time evolution shows that damage
and weakening increased from 2003 to 2017 at the summit of Piton de la Fournaise volcano.

We propose to continue this investigation to check the model extensively on other basaltic volcanoes. The
approach is easy to implement as a monitoring module; it will be performed in the WebObs‐IPGP environment.
Laboratory experimental studies should be used to investigate this model, especially the control of rock het-
erogeneity distribution on the seismicity and fluid overpressure decrease. We propose to call this approach
“DAMAGE.”

Data Availability Statement
Data used for this study were acquired by the Observatoire Volcanologique du Piton de la Fournaise—Institut de
Physique du Globe de Paris (Institut de Physique du Globe de Paris, 2021). Data from the permanent seismic and
Global Navigation Satellite System (GNSS) monitoring network can be downloaded from the IPGP Data Center
(http://volobsis.ipgp.fr/).

• Data used in this study can be downloaded at https://doi.org/10.5281/zenodo.8207390 (Got et al., 2023).
• Software used in this study can be downloaded at https://doi.org/10.5281/zenodo.8207390 (Got et al., 2023).
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