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1 Introduction 

Fisheries management is based on estimations of fish abundances derived from 

commercial catches. Models used to produce these estimates are, most of the time, 

tuned with indices of abundances estimated from scientific surveys. In the Barents 

Sea used for application in this paper, the surveys consist in deploying a net every 

twenty nautical miles (n.mi.). With the objective to compensate for this large dis-

tance between catches, acoustic measurements are also collected all along the ves-

sel track when the vessel is shipping from one station to the next. This additional 

measure of fish concentration does not actually capture fish but estimate their 

number through their echoes (echoes of all the fish present in the insonified cone 

beneath the boat). Acoustic echoes are generally integrated over regular distance 

bins (say one nautical mile) and provide a spatially very dense sampling of fish 

distribution but different in nature from the spare tows. The purpose of the study is 

to take as much as possible advantage of this additional information for estimation 

and mapping purposes.  

Here, we consider a partially heterotopic sampling where the target variable is 

observed on a subset of the auxiliary variable samples. Theoretically cokriging al-

lows performing estimates in such heterotopic configurations. However it can be-

come difficult when the number of samples is high or/and when spatial structures 

are difficult to model. In such cases, simplifications either assumed or data con-

trolled, are welcome. For instance, for two variables, a Markov-type model, also 

called model with orthogonal residual, is a well-known simplification (Rivoirard, 

2001) as one of the two variables is self-krigeable. Two kinds of Markov-type 

models are mentioned in literature (Schmaryan and Journel 1999): when the cross 

structure is proportional to the structure of the auxiliary variable or when it is pro-

portional to the structure of the target variable. Here, we consider the first case, 

The trawl variable is decomposed into an acoustic and a residual components, 

these two components being spatially uncorrelated, but not independent.  In this 

model, the trawl variable is subordinated to the acoustic, which is the master vari-

able. 
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After a quick presentation of the data and of the notations, this paper presents 

the problems of the practical implementation of such a model in the particular case 

of strong heterotopy (hypothesis testing, structural tools, skew distributions).  

2 Data and Notations 

Six scientific Norwegian winter surveys (1997-2002) in Barents Sea are used. The 

sampling scheme (i.e. the tow locations) is targeting a regular grid with a haul eve-

ry 20 n.mi (Figure 1-a). Sampling size is quite large as surveys get between 200 

and 300 hauls. The mean towed distance is 1 n.mi. The acoustic data turned into 

Nautical Area Scattering Coefficient (NASC) and expressed in m2∙n.mi-2 

(MacLennan et al. 2002) are collected continuously along the vessel track during 

and between trawl hauls (Figure 1-b). In this study, acoustic echoes are integrated 

vertically over the first 40 meters above the bottom (this was found to provide the 

larger correlation between the two variables) and horizontally over fixed distance 

bins of 1 n.mi. Given this latter parameter, between 5000 and 7000 acoustic rec-

ords are available in each survey. 

To get variables with comparable units, the fish catches are turned into an 

equivalent acoustic energy, i.e. the acoustic energy that the fish caught in the trawl 

hould have generated. Because fish characteristics influence this transformation, 

two groups of fish have been used: demersal (bottom) fish and pelagic (mid water) 

fish. For each group of fish, the equivalent NASC of the corresponding fish in the 

net is provided. The trawl variable will refer alternatively to the demersal or the 

pelagic equivalent NASC depending on which of these two variables happen to 

get larger correlation with the acoustic variable. 

We get then two measurements of fish abundance (trawl and acoustic) available 

at equivalent supports (1 n.m.), expressed in the same similar units but sampled 

differently. They are modelled by two random functions: ( )T x the trawl and/or the 

target variable available at the sampling locations,  x stations   and ( )A x the 

acoustic and/or the auxiliary variable available at the sampling locations 

 x stations underways   . 

When sampling skew distributions, the experimental variance varies considera-

bly with the number of samples, especially when this number is low (for a given 

number of samples, the sampling fluctuations of the variance are all the more im-

portant that the variance is large). We observe (Table 1) that the ratio 
2k between 

the variance of the underway acoustic observations (few thousands data) and that 

of on station observations (few hundreds data) diverges from 1. This problem is 

referred to hereafter as “the variance discrepancy problem”. Proportional effects 

are examples of this problem. 
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Fig. 1. (a) Locations of underway recordings (left) and of stations (right). Survey 

1998. X-axes unit is in degrees of longitude and Y-axes unit is in degrees of lati-

tude (b) Representation of a N-S section of the vessel track. The vertical dotted 

lines represent the stations locations. The fluctuant slight curve is the acoustic un-

derway, the slight line joins the acoustic on-stations values and the bold line joins 

the demersal NASC-equivalent values collected on-stations. Distances are in de-

grees of latitude.  

Table 1 Ratio between the variance of the underway acoustic observations and the 

variance of the on station acoustic observations 

Year 
 

 

2 var ( ),

var ( ),

A x underway

A x station

k 











  

1997 1.33 

1998 1.83 

1999 2.23 

2000 1.35 

2001 3.55 

2002 2.65 

 

 

Let us consider the entire line followed by the vessel during a survey. This line 

is made of N underway acoustic values located at the centre of their segment of 1 

n.mi. each. Let us also consider a subset of the n segments, to be considered as the 

stations following a regular sampling with random origin (given the sampling de-
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sign N = 20.n). In that case, the additive relation of the dispersion variances ap-

plies: 
2 2 2( ) ( ) ( )D segment line D segment stations D stations line    (1) 

The term of the left-hand side is the average variance of underway data while the 

first term on the right-hand side corresponds to the average variance of station da-

ta. In case of pure nugget effect, the third term equals  1 1
nugget

n N
  and is neg-

ligible with regards to the other terms. In this study, we have assumed that the spa-

tial structure is short enough to neglect the dispersion variance of the stations in 

the line. This amounts to assume that the variances of the underway data and of 

the on station data are similar on average. Actual differences are then explained by 

the sole statistical fluctuations and are corrected for by a multiplicative term 
2k (see part 4.1 variance rescaling). 

3 Methods 

3.1 Model and estimation 

One can show (e.g. Rivoirard, 2001) that if the acoustic is autokrigeable, its cross 

covariance with the trawl variable is proportional to its covariance: 

 
,

( )   ( )
A T A

C h C h  (2) 

and the trawl variable is linearly related to the acoustic up to an additive spatially 

orthogonal residual R(x): 

 ( ) . ( ) ( ) T x A x R x     (3) 

 
,

( ) 0   
A R

C h h   (4) 

The target variable is then subordinated to the auxiliary but master. This model 

has a “Markov-type” property as, in Gaussian case with known means, A(x+h) and 

T(x) are independent when A(x) is given (conditional independence, Chilès and 

Delfiner, 1999). More generally the screen effect makes the cokriging weight of 

A(x+h) equal to zero when A(x) is known, whatever the histogram of the data.  

The model is factorized with the two factors A(x) and R(x), and the cokriging of 

the target variable reduces to the sum of two krigings as the acoustic variable is 

known at any location where the trawl variable is known: 
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0 0 0

0

0

( ) ( ) ( )

( ) ( )

where  

( ) ( )

CK K K

K

stations

underways

neighbourhood

K

stations

neighbourhood

A

R

T x A x R x

A x A x

R x R x









 











  


















 (5) 

 

and the cokriging variance is: 

 
2

0 0 0
( ) ( ) ( )

CK K K

T A R
x x x      (6) 

The constant  is in practice filtered by the ordinary kriging of the residual, and 

does not need to be assessed. 

The estimation of the target variable at a point where the acoustic is known 

(underway) only uses the acoustic at the target point and on station (by the residu-

al). Then, in the Markov-type model, cokriging is multi-collocated: for estimating 

an underway point, the auxiliary variable is only used at the target point and on 

stations. It is the only case where the cokriging is collocated (Rivoirard 2001). In a 

different model, the previous estimation is only an approximation of cokriging. 

3.2 Practical implementation in partially heterotopic samplings 

Compared to cokriging in general, an advantage of the previous estimation, based 

on residual, is that cross structures do not need to be modelled. Cross structures 

only serve to experimentally test for the validity of the model.  

Two tools are used to test for the proportionality between the cross and simple 

structures; the cross variogram and the cross covariance. The cross variogram, not 

restricted to stationary cases, uses, only on station data (“isotopic tool”) and miss-

es short scale structures. The cross covariance, or preferentially in strong hetero-

topic cases, the cross correlogram, assumes stationarity but uses all the available 

information (“heterotopic tool”).   

The advantage of the estimation based on residual (no cross structure model) is 

compensated by the need to estimate the parameter α. Equation 4 is general and 

not specific to any sampling scheme. However, in the particular case of partially 

heterotopic sampling, Equation 4 is viewed as an “on station” relationship to be 

parameterised with on station data only and applied to underway data afterwards. 

In this case, rescaling is required. As a matter of fact, theoretically, the cokriging 

estimation variance is necessarily less or equal than the kriging estimation vari-

ance as long as the same data and the same model for the target variable are used. 

Here, the model is parameterised on a subset of a data which happens to be less 

variable (variance discrepancy problem). When applied to the more variable un-

derway acoustic data, it does not protect from inconsistent estimation variances. 
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To solve this problem, the cokriging variance has to be rescaled, so that finally we 

have: 

 

2

0 , 0 02
( ) ( ) ( )

CK K K

T A un R
x x x

k


     (7) 

where 
, 0

( )
K

A un
x  is the acoustic kriging variance, when all the data available are 

used, i.e., the stations and the underways. 

 

The estimation of the parameter  can be made by many ways theoretically 

equivalent. It can be estimated by the slope of the linear regression of T(x) on 

A(x). This approach has the advantage to allow quantifying the quality of the es-

timation (e.g. visual inspection of the scatter plots, R-square, etc). A weakness of 

the regression is that only the pairs of samples at the same location contribute to 

the estimation. An alternative is to use the mean ratio between the cross and sim-

ple experimental variograms computed only with data on station. The gain of this 

approach is to take into account all distance lags. However, no quality is directly 

associated to the estimation of . To enhance the robustness of the estimate, one 

could have used the simple variogram for all the underway observation or cross 

covariances. However, the advantage of using all the data is thwarted by loss of 

statistical coherence. We thus chose not to retain this last estimation. 

4 Results 

4.1 Variance rescaling 

We have simulated 500 sets of 7000 lognormal data (independently) from which 

500 subsets of 300 points have been taken randomly (7000 corresponds to the 

number of underway samples and 300 to the number of stations in 2001). 

We are in a special case of pure nugget effect in the equation (1), the variance 

underway and on-station have to be equal in mean.  

The variance and the mean of the simulated lognormal distribution are equal to 

the mean and the variance of the acoustic underway in 2001 (m = 63 and 
2 = 23061). In 80% cases, the ratio 

2k  between the empirical variance of the 

main 7000 samples and the empirical variance of the 300 subsamples is greater 

than 1 (Figure 2). The value 3.55 observed in 2001 (represented by a vertical dot-

ted line) is quite singular but not impossible. When a large value is taken, the vari-

ance of the subsample becomes extreme because of the small number of samples. 

So the observed discrepancy between the experimental variances can be inter-

preted as a sampling problem (heterotopic sampling of skew distributions) and are 

in no way particular to the data used in this study. In fact, it can be considered that 

the variance observed underway is more realistic as it is based on 20 times more 
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data justifying a multiplication of on-station variance. Nevertheless to be compa-

rable to a (monovariate) kriging variance the equation (7) is based on a downscal-

ing of the underway variance. 

 

 

Fig. 2. Histogram of ratio between the empirical variances of the main sample 

(7000 points) and the subsample (300 points) for 500 draws of a lognormal distri-

bution with the mean and the variance of the acoustic for the 2001 survey. The 

plain vertical line is equal to 1 and the dotted vertical line is equal to the observed 

ratio (3.55). 

4.2 Hypothesis testing and selection of favourable cases 

To test the autokrigeability assumption, experimental simple and cross correlo-

grams have been plotted for each of the variables. Cross correlograms are poten-

tially non symmetrical. They happened to be symmetrical and have been symme-

trized before representation (Figure 3). The single and cross correlograms have 

been calculated along the vessel track, i.e. in one dimension: In four surveys out of 

six (1997-1998-2001 with demersal catches and 2000 with pelagic catches), the 

Markov-type model hypothesis are grounded (Figure 3, graphs with grey back-

ground). They have then been selected for application of a Markov type model.  
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Fig. 3. Symmetrical cross correlograms calculated along the vessel track (1D). 

The x-axis is the distance from station (in n.mi) and the y-axis is the correlation 

between the acoustic underway and, according to the column: the acoustic on sta-

tion (on the left), the demersal NASC-equivalent collected on station (on the mid-

dle) and the pelagic NASC-equivalent (on the right).  

4.3 Estimation of parameter α 

The parameter  is first estimated by the slope of the linear regression of T(x) 

on A(x). The cross plots between T(x) and A(x) allow evaluating visually the es-

timation (Figure 4).  We can see that the estimations (and the R-square) are very 

sensitive to the large values and the fitting of the cloud is not perfect.  

The parameter  (Eq. 3) of the linear regressions happens to be very small 

(about zero in most cases). If the additional assumption =0 were made, the target 
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variable would be strictly proportional to the on-station acoustic. The  parameter 

would then be stable for different level of data. The estimation obtained for the 

whole distribution of data (Figure 4) could be processed without some outliers, or 

just for the low values. The estimation should probably be more robust. In fact, the 

estimation of  changes according to the threshold chosen and is still different for 

each survey. 

The parameter  is also assessed by the mean ratio between the cross and sim-

ple experimental variograms computed only with data on station. The gain of this 

approach is to take into account all distance lags. Results obtained (Figure 5) are 

similar to those obtained with the regression. 

 

Fig. 4. Cross plot acoustic – catch on- station for the estimation of the multiplica-

tive parameter. The lines represent the linear regressions between the two varia-

bles for each year. The values of the multiplicative coefficient and the value of 

the R-square of the regression are written above each graph. 

 

Fig. 5. Estimation of parameter α by the ratio between the 
, ( )A T h and ( )A h  

for on-station data only. The horizontal lines represent the mean value, i.e. the es-

timation. The x-axis represents distance in n.mi.  
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4.4 Estimations maps 

To evaluate the improvement provided by the acoustic information, the bivariate 

approach (using a model with acoustic as master variable) is compared with a 

mono-variate approach based on the sole trawl values. This comparison is mean-

ingful only if the variogram model for the trawl variable is the same for the 

kriging and the cokriging. It is then totally determined by the models chosen for 

the acoustic and the residual with the relation: 

 

 
2( ) ( ) ( ) ( )K CK

T T A Rh h h h        (1) 

 

Given that the sampling grid covers regularly the study area, the cokriged and the 

kriged maps have the same general long distance patterns and the use of the acous-

tic variable only impacts the short scale features of the distribution (Figure 6). In 

1997, the kriging interpolation in the south western area where no sample is avail-

able amounts to the local mean concentration. A bivariate approach makes it pos-

sible to use the underway observations and to suggest some spatial pattern for the 

fish concentration in this area. In 2000, even if the weight of the acoustic is low 

(= 0.12), the cokriged map computed with a Markov-type model honours some 

rich areas (in the North-East) which are not observed in the kriged map of the 

trawl data. 

4.5 Variance of the estimation error map 

For the four surveys, the estimation variance is smaller for the Markov-type ap-

proach than for the single variable approach. It is not surprising since the variance 

of cokriging is always less or equal than the variance of the correspondent kriging. 

4.6 Cross-validations 

The cross validation consists in re-estimating a known point. Here we re-estimate 

each on-station point where the two variables, acoustic and catch, have been re-

moved.  It allows appraising the robustness of the model. For each survey the re-

sults provided are better in the bi-variate model than with the single variable mod-

el. The correlation coefficients between the estimated and observed catch values 

are shown in the table 2.  

 
Table 2 Correlation coefficient between estimated and observed catch values 

 

Year Bivariate model Monovariate model 

1997 0.51 0.17 

1998 0.30 0.09 

2000 0.39 0.06 

2001 0.41 0.34 
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Fig. 6. Estimation maps obtained by the Markov-type model (left column) and a 

simple model using only the catch information available on station in a compati-

ble model (right column).  The maps on the left hand side are very more detailed.  

To compare the models, the grey scales are identical for each year but different 

from survey to survey. 
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5 Discussion 

The estimation of the  parameter is a key step of the process as it this parame-

ter quantifies the weight of the acoustic. In the model, the acoustic drives the 

catches and the residual allows rescaling the estimation on stations. Such behav-

iour is physically well understandable: acoustic provides a good representation of 

the fish abundance and the fish abundance is just obtained by adding a corrective 

term calculated by the divergence observed on stations between acoustic and 

catches (the residual). The main structure is then provided by the acoustic and the 

residual, in the general case, would not be strongly structured. However, in prac-

tice, the residual can have a long range structure because of one or few large val-

ues at the edge of the sampling area. 

The use of an auxiliary variable largely more densely sampled than the target 

variable improves its estimation. The bi-variate model improves the estimation of 

the catch by combining acoustic with a simple relation exhibiting the role of each 

variable. However it is important to mitigate the results at least by the quality of 

the estimation of the parameter α. This key parameter has to be estimated and the 

quality of its estimation drives the quality of the whole process. When variables 

get skew distributions like in the present study, once again, linear approaches hap-

pen to be fragile and we have indeed a weak confidence in the actual value of this 

parameter. 

When an estimation routine need to be processed every year, like the estimation 

of fish abundance, it is important to find a model robust enough to work for all the 

configurations, not only for a particular year with particular relation between the 

variables. Here the assumptions of the regression model are funded in four surveys 

out of six. For the two other cases (1999 and 2002) the erratic cross-structures do 

not allow to conclude to any model. The fact that the catch is driven by the acous-

tic, can be considered like a physical property, and we can think that the model 

will be also pertinent for the next years.  

Because of the large skewness of the data, the use of linear approaches is ques-

tionable.  Linear tools are indeed very sensitive to the large values which often 

hide the behaviour of the lower values (Rivoirard et al. 2000). Some non-linear 

tools like disjunctive kriging allow minimizing this impact. However the computa-

tion of a bivariate disjunctive model is laborious and requires heavy assumptions 

(Goovaerts 1997). The leading idea of this study has been to find a model simple 

enough and robust enough to be relevant in most available surveys.  
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