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Abstract 
Previous research has shown the importance of conducting early interventions in mathematics in disadvantaged 

children. Solving arithmetical word problems is a field in which children particularly fail. In this study, 

preschoolers from disadvantaged French public schools (N= 101; Mage = 5-6) were taught strategies for using 

fingers to solve arithmetic word problems and compared with a control group. The intervention consisted of 

collective rituals based on learning fingers patterns and 7 sessions spread over 4 weeks, for about 20 minutes, 

focusing on explaining how to use the fingers to solve problems. The results showed that the intervention has a 

significant post-test impact on the targeted transformation problem-solving skill and that children with lower 

performances in problem solving at pre-test benefited more from the intervention. The intervention had also 

indirectly benefited the other problem-solving skills. However, there was no intervention effect on the arithmetic 

addition task. Our research highlights that an intervention focused on explicit teaching of finger strategies for 

problem solving can be successfully implemented into ecological learning contexts, especially in disadvantaged 

areas. 
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International assessments in mathematics such as Timss 2019 or Pisa continue to place France below the European 

average as well as that of the other OECD countries (DEPP, 2020). In response to this low ranking, French 

education policies have engaged mathematics education researchers to develop collaborative research with 

teachers and to test the effectiveness of teaching sequences into real-life learning context (Villani & Torossian, 

2018). Arithmetic word problem solving is one of the least successful fields of mathematics in the 1st and 2nd 

grades in French national assessments: in 2021, 32.7% of children entering 1st grade were considered to be in 

difficulty (MENR, 2021). This rate rose to 51.3% in 2nd grade. This domain is particularly marked by social 

inequality: the performance gap between the proportion of 1st grade children enrolled in priority education (public 

school network defined by geographical areas with families with a low socio-economic level, on average - see 

below in method section) with a satisfactory mastery of problem solving and those enrolled outside non-priority 

education is 19.7%, surpassing all the other domains assessed. It therefore seems important that teaching of this 

domain be introduced even before entering 1st grade, especially for disadvantaged children enrolled in priority 

education. This raises several questions. How should problem solving be taught at such an early age? How should 

we go about finding an effective means to solving the problem that can be taught by the teachers themselves? 
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Arithmetic word problems    

What is an arithmetic word problem? 
Word problem solving seems to be considered a key skill in mathematics (for an overview of the research literature 

on word problem solving, see Verschaffel et al., 2020). Word problems are arithmetic problems that tell stories 

without any formal mathematical symbolism of the mathematical operation (addition, subtraction, multiplication 

or division). Word problems are not, however, authentic problems of everyday life: the modelling of the problem, 

e.g. the numerical information or the operations to be used, are simply easier to deal with. To be more precise, a 

word problem can be defined as “a text (typically containing quantitative information) that describes a situation 

assumed as familiar to the reader and poses a quantitative question, an answer to which can be derived by 

mathematical operations performed on the data provided in the text.” (Greer et al., 2002, p. 271). In the additive 

field, 3 classes of problem can be distinguished according to the semantic structure of the additive terms involved: 

combine (“There are 4 boys and 7 girls. How many children are there altogether?”), change/transform (“There are 

3 tokens, I add 2. How many tokens are there now?”) and compare (“Tyler is 5 years old. Mila is 3 years older 

than Tyler. So How old is Mila?”) (Riley et al., 1983; Vergnaud, 1982). These classes of problem do not have a 

simple correspondence with the mathematical operations. Depending on what the question is about (the number 

of boys, the number of girls or the number of children) or the nature of the action of the change (an increase or a 

decrease), the problem can be modelled by addition or subtraction. “There are 3 tokens, I add 2. How many tokens 

are there now?” or, “I have a number of tokens. I lose two. Now, I have 5. How many did I have at the beginning?” 

can be modelled by addition while, “There are 3 tokens. I lose 2. How many tokens are there now?” or, “I have a 

number of tokens. I add two more. Now, I have 5. How many did I have at the beginning?” can be modelled by 

subtraction. Several studies have highlighted the relevance of this semantic structure, both in terms of the difficulty 

of the problems and the strategies used by children to solve them (see Verschaffel & De Corte, 1997 for a review). 

Why teach arithmetic word problem solving?  
The learning objective of word problem solving depends on the grade level at which the problem is proposed. 

Thus, if mathematical formalism has already been introduced, proposing a problem to children may have as its 

objective to give practice at applying what has just been taught. Working on word problems before teaching 

mathematical formalism can serve two major learning goals. The first is to make sense of a mathematical operation. 

This is the case of “Realistic Mathematics Education”, which advocates a “bottom-up” approach (Van den Heuvel-

Panhuizen, 2000). The aim of the teaching here is to help children to make the transition to more formal 

mathematical activities in which conventional symbols make sense to them (Gravemeijer et al., 2000). A second 

goal may be to confront children with problems that are considered complex for their age, in the sense that children 

cannot solve them in a routine way. Whatever the objective, how to teach word problems effectively remains 

problematic (Verschaffel et al., 2020, p. 4, 5).  

How should we teach arithmetic word problem solving in pre-school?  
In order to give meaning to mathematical operations, Fagnant (2013) stresses that word problem solving should 

be taught before the introduction of formal symbols of operations concerning either written forms (+, −,×,÷) or 

verbal forms (plus, minus, times, divided by). Children need to understand that the use of mathematical symbols 

is equivalent to the concrete actions. Indeed, Fagnant suggests that children's informal strategies, such as using 

manipulatives or fingers, could serve to give meaning to these operations. In the French system, this would require 
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that this teaching should take place before grade 1 (children aged about 6 years old) when the symbolism of 

addition and subtraction is introduced. 

The semantic structure of the problem and the nature of the question have an impact on a child’s performance. 

Transforme and combine problems are more successful, especially when the question is about the final state and 

the whole rather than compare problems (Riley et al., 1983, p. 162‑164). Problems of the same semantic class, 

whether solvable by addition or subtraction, should be taught in parallel and not separately since their treatment 

involves concepts and procedures of several closely connected types (Fagnant, 2005; Vergnaud, 1982, 1992) 

The simulation of situations, at first physically with a tangible manipulation and then mentally, favours the learning 

of arithmetic operations and the understanding of symbols. Levine and her colleagues (1992) showed that, as early 

as age 4, children are able to solve problems by simulating with materials (without the possibility of simultaneously 

seeing the two addends of the problem). To solve word problems, children use various strategies such as tapping 

their feet, decomposing numbers or using their fingers (Siegler & Shrager, 1984). These strategies involving 

physical gestures seem to appear spontaneously very early on the child's development (for a review of the role of 

gestures in learning arithmetic, see Goldin-Meadow et al. (2014)). Thus, the use of a physical simulation of the 

word problem on the one hand and the use of tangible material on the other will favour the transition to 

conceptualization, in other words from quantity (concrete magnitude) to the symbolic code of numbers. 

Fingers, a relevant number representation tool for solving problems 
Finger use as a relevant intermediary between quantity and the symbolic codes has been suggested by different 

authors, in particular because fingers have the specificity of being sensori-motor representations (e.g. Andres et 

al., 2008; Butterworth, 1999; Di Luca & Pesenti, 2011). Fingers can help mainly in two domains: A deeper 

understanding of the concept of number and arithmetic learning. 

Quantities can be represented by fingers as counted units (i.e. raising fingers one at a time). In this case, fingers 

tend to take on an ordinal meaning. This means that the obtained collection is a concrete representation where each 

unit is present and can be manipulated. In this regard, the raised fingers are an analogical code of quantity which 

makes it more concrete than the number-word or the Arabic code. Fingers thus have the same function as materials 

(Levine et al., 1992): they are a collection of tangible units. Quantities can also be represented as patterns (i.e. 

raising fingers simultaneously to design a set). In this second case, fingers generally take on a cardinal meaning. 

The fingers represent a composite set of units, being used as a new code. By using this same representation to 

represent quantities of different collections (cars, marbles, etc.), the child gradually moves away from a tangible 

representation and enters into a process of abstraction. Thus, fingers allow a representation of the cardinality of a 

set and give meaning to quantities by being a link between the quantity’s magnitude and the symbolic code.  

Beyond helping to have a deeper understanding of the concept of number, the fingers also support arithmetic. Even 

if finger counting is not a necessity for performance in arithmetic (Lafay et al., 2013) and inter-individual 

differences are strong (Guedin et al., 2018), researchers have looked at the possible relationship between finger 

use and performance in arithmetic. In a longitudinal study involving children from kindergarten to 2nd grade, Jordan 

and her colleagues (2008) found a relationship between finger use and calculation performance, but only in 

younger children. Dupont-Doime and Thevenot (2018) added that children who use their fingers in addition tasks 

are the ones who have a higher working memory capacity. These results have been completed in a longitudinal 

study showing that children who use their fingers the most at age 5 use them the least at age 7 and that 7-year-old 



4 
 

children who use their fingers have a lower working memory capacity (Poletti et al., 2022). Despite these 

correlational studies, there is no evidence of a causal relationship between finger use and performance in arithmetic 

(Guedin et al., 2018). These authors have argued for the promotion of finger use in arithmetic tasks in the early 

school years. Specific finger strategies should be explicitly taught to children who have difficulties in discovering 

and implementing them (Dupont-Boime & Thevenot, 2018, p. 41). What about today's teacher representation and 

practice about finger-counting? Two recent studies (in Turkey, Mutlu et al., 2020, and in France, Poletti et al., 

2023) show that preschool teachers are mostly positive and explicitly teach finger counting strategies. Historically, 

this positive attitude has not always been present, as it was thought that counting on fingers could prevent children 

from reaching more mature strategies (Boaler & Chen, 2016).   

Siegler and Shrager (1984) and Baroody (1987) described different finger use in children learning arithmetic. In 

simple additions, the two main strategies were “counting all” and “counting on”. For an arithmetic problem such 

as 3+2, counting all means representing the first addend “three” on the first hand (counted by raising fingers one-

by-one or as finger patterns), then representing the second addend on the second hand, and at the end counting out, 

one by one, all the raised fingers to determine the total. Variations may exist: e.g., children can represent the first 

addend and then, complete the first hand before using the second hand. It is useful, for example, if the second 

addend is greater than 5 (e.g. 2+6) or if the addition consists of more than two addends (e.g. 2+4+3). In this case, 

the reading of the cardinality may be facilitated by recognition of the finger pattern obtained. “Counting on” means 

starting from the first addend (3 in the example of 3+2) and adding the second addend by counting out “four, five” 

and raising corresponding fingers. Björklund and her colleagues (2019) have also observed different strategies of 

using fingers for subtraction by preschoolers. They focused their results on a Transform problem where the 

question was about the final state (“If you have 10 candies and eat six of them, how many are left?”). They 

identified three main strategies depending on whether the numbers involved (in the previous example, 10, 6, 4) 

were represented with finger patterns or by counting fingers one by one. They found that the most common way 

was not to count fingers as single units, but to structure the part-part-whole relationship with finger patterns. 

Researchers have noted the lack of interventional studies and encourage researchers to investigate the effectiveness 

of training in the use of fingers (Berteletti & Booth, 2016; Costa et al., 2011; Fayol, 2012, Chap. I; Gracia-Bafalluy 

& Noël, 2008). To our knowledge, only two studies have evaluated the efficiency of a school intervention based 

on finger training (Ollivier et al., 2020; Orrantia et al., 2022). Ollivier et al.’s program was based on the 

development of fine motor skills and on an explicit knowledge of how fingers can represent and decompose 

numbers. This was aimed to lead 5- to 6-year-old children to counting on their fingers and thus performing better 

in calculation tasks. The results were encouraging as they showed that children improved compared to those in the 

control group, who also worked on decomposing numbers using cubes or tokens but without perceptual training 

of fingers. However, as two skills were trained (finger gymnastics and the decomposition of numbers), future 

studies are needed to better understand what is efficient in the program. Almost at the same time, the team of 

Orrantia and colleagues (2022) started testing the effectiveness of teaching finger use as a representative of 

symbolic code. They have shown into real-life learning context that an intervention aimed at training finger 

patterns to represent numbers improves children’s understanding of cardinality. These two studies show that 

teaching the use of fingers to represent number improve both a deep understanding of numbers and word problem 

solving. 
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The Current study 
The main purpose of our research is to evaluate the impact of a problem-solving program into real-life learning 

context. Kindergarten schools in priority education network (with most disadvantaged background) have been 

targeted to test this intervention, since problem-solving is a mathematical domain particularly marked by 

differences in learning due to social inequality (MENR, 2021). As described in the previous section, the use of 

fingers seems to be a good way of representing the numbers involved in word problems. Few studies have 

investigated the effectiveness of such instruction. Ollivier et al. (2020) have revealed that training children to 

represent quantities with their fingers has a positive impact on problem solving. Orrantia et al. (2022) have shown 

that by receiving training on how finger patterns represent numbers, children can develop a better understanding 

of cardinality. These authors have shown that teaching how to represent numbers on one’s fingers seems to be 

effective. However, to our knowledge, no study has yet been conducted on the effectiveness of explicit teaching 

on the ways of using one’s fingers to solve word problems. In support of this line of thought, Björklund’s study 

(2019, p. 21) suggests that, “Finger use for problem solving is not necessarily a ‘natural’ phenomena that all 

children engage in spontaneously”. 

Our research question is, therefore, whether performances in problem solving can be improved in kindergarten 

children by explicitly teaching them different ways of how to use their fingers to solve problems. We would only 

teach the transformation problems where the question concerns the final state and instead vary the nature of the 

action of the transformation (increase, decrease). Our research compares a teacher-implemented intervention 

program, in which strategies for using fingers to solve transformation problems are taught, with a “business as 

usual” group within a population of disadvantaged kindergarteners (for more details, see Control group section). 

The children’s mathematical skills (core skills tasks on understanding numbers, word problem solving and 

arithmetic tasks) were tested before and after experiment. We hypothesize that children who have learned how to 

use their fingers to solve word problems will manage to solve transformation problems where the question is about 

the final state (directly targeted by the intervention) better than those who have received conventional instruction 

(the “business as usual” group). This is why, even though the intervention focuses on a single type of problem 

(transformation with question on the final state), we have evaluated the children's performance on other types of 

problem (compare problems or transform problems where the question is about the initial state or the 

transformation itself): children could also indirectly benefit from the teaching of explicit problem-solving 

strategies. Finally, as fingers can also be used to solve arithmetic tasks, we can assume that the children in the 

intervention group would show an improvement on addition tasks. 

Method 

Participants 
The sample used in the experiment consisted of 130 children, aged from 5 to 6 years, enrolled in 12 kindergarten 

classes in 5 French public preschools. In France, schools are free of charge and the attribution of places depends 

almost exclusively on the family’s place of residence. The social position index (SPI), a measure of student social 

status (Rocher, 2016) has been constructed as a weighted average of characteristics including types of diploma, 

cultural practices, material conditions and parental involvement in their children’s schooling. This guiding scale 

varies for French schools between 49.6 and 155.6, with an average of 103 in 2022. In 2022, 11% of all French 

schools were identified as meeting the conditions for the “Priority Education Network with a low SPI. Schools in 
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this network benefit from special teaching conditions, in particular a class size of about 12 children. The five 

schools involved in our research all belong to this “Priority Education Network”, are characterised by a low SPI 

(69.80; 73.5; 75.4; 88.3; 101) and thus benefit from small class sizes. Within the priority education networks, a 

distinction is made between the PEN+ (reinforced priority education network), which concerns neighbourhoods 

with the greatest concentrations of social difficulties that have a strong impact on academic success, and the PEN, 

which are more socially mixed but still encounter more significant social difficulties than schools located outside 

the priority education system. In our research, the classes belonging to the PEN and PEN+ were identified in order 

to control any potential effect of schools that had been assigned to one network or the other. 

The experiment was approved by the local school boards. Parental consent was obtained for each participating 

child and each child gave his/her assent to participate in the experiment. Of the original sample of 130 children, 

16 did not participate in the study because they were absent at the pre- or post-test sessions, 7 children were absent 

from at least two training sessions, and 6 were considered as outliers based on their results. The final sample 

comprised 101 children (58 girls and 43 boys). The children ranged in age from 63 to 76 months (M = 70.2 months, 

mean age 5 years and 10 months, SD = 3.28). The classes were divided into experimental and control groups in 

order to balance the numbers of participants and priority education network membership: in the interventional 

group, 3 classes belonged to the PEN and 3 classes belonged to the PEN+; This same organisation applied to the 

control group. Participants from the two groups did not differ with respect to age, gender, and for their repartition 

in PEN and PEN+ classes (Table 1). Data were collected at the end of their kindergarten year, from May to June 

2022.  

 Non Intervention 

group 

Intervention group Statistics 

Non intervention vs. 

intervention group 

Total sample 

included 

Sample size 52 49 101 101 

Mean age (SD) 69.8 months (3.1) 70.7 months (3.4) t(99) = 1.48;  

p= 0.14 

70.2 months (3.3) 

Girls / Boys 31 / 21 27 / 22 2 (N=101) = 0.21;  

p = 0.65 

58 / 43 

Priority Education 

Network membership: 

PEN / PEN+ 

3 / 3 classes 

28 / 24 children 

3 / 3 classes 

25 / 24 children 

2 (N=101) = 0.08;  

p = 0.78 

6 / 6 classes 

53 / 48 children 

Table 1. Characteristics of the study populations: by subgroups and in total. 

Procedure 
Development of the learning sequence involved collaboration between researchers and 4 teachers who were not 

part of the experiment. This work led to the production of a booklet for teachers and a 4-hour training course for 

them. Twelve teachers volunteered to participate in the experiment. These twelve teachers did not participate in 

the prior collaborative work. Six of them underwent the training course and went on to carry out the sequence in 

their own classroom. At the end of the intervention, the training course was followed by the remaining 6 teachers, 

those in the control group (Figure 1). The 4-hour teacher training focused on 4 points: the importance of conducting 

problem solving in kindergarten, the existence of different strategies for using fingers to solve transformation 

problems, the automation of canonical finger configurations until patterns are acquired and, finally, on how the 

training sessions should be implemented.  
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Figure 1. Outline of the research method 

Control group 
The non-intervention group was “business as usual”: the teachers continued to work as they were used to doing 

with a duration of activities on numbers equivalent to that of the experimental group. Between the pre-test and 

post-test, the teachers in the control group offered 7 small group sessions on numbers and about ten ritualised short 

sessions for working on numbers. The non-intervention group teachers were not informed of the purpose of the 

intervention. They were unaware that the intervention was about word problem solving even if they knew that the 

intervention was about “numbers” (as opposed to geometry, for example). These teachers taught number skills as 

they were used to. Thus, these 7 sessions could focus on core competencies (“Give me” tasks, “How many” tasks, 

verbal chain, number Comparison, etc.) but also on problem solving, if this was part of their curriculum. 

Intervention 
The intervention started each morning with the whole class gathered together as usual for fifteen minutes followed 

by small group sessions. This took place four times a week for three weeks. The teaching sessions were conducted 

in small groups of about 4 children for about 20 minutes. Each child attended 7 sessions spread over 4 weeks 

(about 2 sessions/child/week). These started one week after the beginning of the ritual. 

Collective rituals: verbal numerical chain & the “Lucky-Luke” game 

The ritual was as follows: for 5 minutes, the verbal numerical chain was worked on according to an established 

progression over a 10 days spread for 3 weeks. This covered counting from 1 to a given number, counting from a 

given number to another number and then counting backwards. During the next 10 minutes, finger work was 

proposed with the “Lucky-Luke” game (see Appendix 1). The aim of this game was to automatize the verbal 

number code via a finger pattern (decode a verbal code with fingers) and vice-versa (code a finger pattern). A 

finger configuration for each number was chosen during the training course in line with the most commonly used 

representations in France (Berteletti & Booth, 2016). The structure of the learning sequence content was as follows: 

first, in incrementing numbers in order (for example, the children had to show 1 then 2 then 3 with their fingers), 

then the numbers in disorder (the children had to show 2 then 1 then 3 with their fingers), and then as quickly as 

possible. The name “Lucky-Luke” refers to a comic strip in which a cowboy has to shoot faster than his shadow. 

The numbers increased with an interleaving of values so that the numbers were reworked regularly. The 

organisation and content of these two rituals are presented in Appendix 2. 

Training sessions 

After a week of this daily ritual, the sessions on transformation problems were introduced (see Appendix 3). These 

sessions were built on two principles.  
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First, there was a gradual withdrawal of simulation using tangible materials. Based on Levine's study (1992), each 

training session started with simulated problems and the necessity of abstraction was ensured by not letting the 

child see the composite of the addend. To achieve this, an opaque box was presented to the children. The teacher 

placed tokens in the box, adding or removing them without the children being able to see inside. The teacher then 

systematically asked the same question: "How many tokens are there in the box?” and then "How do you know?" 

so that the pupils could justify their answer. During each session, 7 transformation problems were played using 

the box. The children did not have access to the tokens, only the teacher handled them. The tokens were only used 

to simulate the verbal problem. Children were encouraged to use their fingers to find out how many tokens were 

in the box. As by age 5, children succeed in solving word problems without physical simulation, the training 

sessions ended with 1 or 2 verbal problems without the teacher handling any materials.  

Secondly, making strategies explicit. The teacher encouraged each child to use his/her fingers by linking the 

action(s) to the Lucky-Luke game. The children’s different strategies for solving the problem were discussed and 

praised. The answer was validated by opening the box. Three strategies for modelling addition were taught during 

the sequence: one which consists in putting the two quantities of tokens onto the two hands (e.g. 4 on one hand 

and 2 on the other), a second which consists of putting a quantity on one hand (e.g. 4 on one hand) and then 

completing that hand with the second quantity (we obtain 5 fingers raised on the first hand and one finger raised 

on the second hand). The interest of this second strategy was explained to the pupils: not only could they recognise 

the final configuration worked on during the Lucky-Luke ritual ("we can see that you have 6 on your fingers!") 

but it is also possible to add several terms as proposed in the learning sequence. A third strategy was then proposed: 

to have a term in one’s head and then use one’s fingers to “count on”. A fourth strategy using fingers was taught 

focusing on subtraction: use one’s fingers to represent the higher number and then lower the number of fingers 

corresponding to what needs to be removed. For each problem the teacher explained how the children could use 

their fingers to answer the question in word problems. Each session was organised as follows: 7 problems in which 

the teacher used tokens, followed by 1 or 2 problems given orally only. During the sessions, a strategy using the 

fingers to solve the problems could be explained to the children. The chronology of strategies and the choice of 

verbal problems are presented in Appendix 3. 

Outcome Measures 
The children were tested twice in a quiet room in their respective preschools: once one week before the intervention 

and once one week after the intervention. The tests were administered individually by graduate students in sessions 

of approximately 25 minutes. The test assessed overall math skills: Eight tasks on core competencies (T1-T8), two 

tasks on problem solving (T9 & T10) and one task on arithmetic (T11), see Table 2 for details of the items. 

 

 Description Items in this 

order 

Score 

max 

Core competencies  

T1. 

TVerbalChain 

Verbal numerical chain. The child was asked to count as high as 

possible as (s)he could. After a mistake or when (s)he had counted to 

100, the task was stopped. The resulting score was the number 

reached by the child therefore between 0 and 100. 

 100 

T2.  

TNumId 

Numeral identification. The child was presented with 20 

flashcards in succession with numbers on them and asked, 

4, 2, 5, 0, 3, 9, 

7, 6, 8, 10, 12 

18, 25, 30, 43, 

20 



9 
 

“What number is this?”. The task was stopped after 3 

consecutive mistakes. The maximum score possible was 20. 

75, 80, 94, 

128, 432 

T3. 

TDecodeFingers 

Production of a number using the fingers. The child was told 

a number and asked to raise, as quickly as possible, the 

number of fingers corresponding to the number announced. 

3, 1, 5, 2, 10, 

4, 6, 8, 7, 9 

10 

T4. 

TCodePatterns 

Recognition of canonical finger shapes. The child was shown 

photographs of canonical finger shapes on a computer screen 

for 1500 msec. (S)he was asked to say the number of fingers 

raised as fast as possible. The canonical finger shapes are those 

used in large parts of Europe (Berteletti & Booth, 2016): raising 

the right thumb for one, the index finger for two and continuing 

following the order of the fingers and using the fingers of the 

other hand in the same way. 

2, 5, 1, 10, 3, 

6, 4, 9, 7, 8 

10 

T5.  

TGiveMe 

“Give me” tasks. The child was asked to put a number of 

tokens into a cup. The task had potentially 6 items of 

increasing difficulty. First, the two most difficult items were 

presented to the child. If both items were executed 

successfully, the task was stopped and a score of 6 points 

given. If the child made a mistake on one of the two items, the 

previous 4 items were presented. One point was awarded for 

each successful item. 

3, 2, 5, 8, 9, 

12 

6 

T6.  

THowMany 

“How many” tasks. 6 cards were presented in succession to the 

child. Each one contained several identical animals: for 

example, 8 lions. Two questions were asked: "Can you tell me 

how many lions there are?” and then, to assess the cardinality 

principle, she was asked to conclude "how many lions?”. 1 

point was given for each correct answer. As in the previous 

task, the 6 items were of increasing difficulty with the two most 

difficult items being initially presented to the child. If both 

items were completed successfully, the task stopped and a score 

of 12 points was given. If the child made a mistake on one of 

the two items, then the next four items were introduced.  

4, 6, 5, 7, 6, 8 12 

T7. 

TComparison 

Number Comparison Fluency. The child was presented with 

40 pairs of single-digit numbers. (S)he had to cross out the 

larger of each pair of numbers in two minutes. This task is 

taken from the 1st grade national assessments1. All correct 

items were scored as 1, giving a maximum of 40. 

 40 

T8. 

TUseNumbers 

Spontaneous use of numbers. The child was presented with 3 

fixed quantities of bottles in succession. (S)he then had to take 

the right quantity of corks to close each bottle. While taking 

the corks, a flap made the collection of bottles invisible. So, to 

succeed in this task, the child had to count the number of 

bottles and take the corresponding number of corks. All 

correct items were scored as 1, giving a maximum of 3. 

6, 8, 9 3 

Problem-solving 

T9. 

TTransformPb 

Arithmetical transformation problem-solving. The child was 

read 6 transformation problems. A second reading was 

possible, at the child's request or if the child did not answer. 

The problems concerned the final question after 

transformation. Three items were modelled by addition and 

the other three by subtraction. The task stopped after 3 

2+1=?;  

4-2=?; 

3+5=?; 

10-3=?; 

6 

 
1 https://eduscol.education.fr/2295/evaluations-des-acquis-et-besoins-des-eleves-au-cp 

https://eduscol.education.fr/2295/evaluations-des-acquis-et-besoins-des-eleves-au-cp
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consecutive errors. All correct items were scored as 1, giving 

a maximum of 6. 

2+1+1=?;  

8-2-1=? 

T10. 

TOtherPb 

Other problem-solving. The child was given 6 problems. As in 

the previous task, the problems were read. A second reading 

was possible, at the child's request or if the child did not 

answer. Two items were Compare problems, two Transform 

problems with a question about the transformation and two 

Transform problems with a question about the initial state. 

The task stopped after 3 consecutive errors. All correct items 

were scored as 1, giving a maximum of 6. 

5-3=?;  

9-2=?; 

8-4=?;  

10-2=?; 

6-3=?;  

3+2=?. 

6 

Arithmetic 

T11.  

TAdd 

Addition tasks with Arabic digits. 10 single-digit additions 

were presented. A visual support was offered to the child with 

the arithmetic sentence on a computer screen. They were also 

read out loud by the experimenter. For example, “3 plus 2, 

how much is that?” The task stopped after 3 consecutive 

errors. One point was awarded for each item successfully 

solved. Thus, the score could range from 0 to 10. 

2 + 1; 1 + 3; 

3 + 2; 3 + 4; 

0 + 8; 6 + 3; 

3 + 5; 7 + 3; 

2 + 3 + 2; 

3 + 2 + 4. 

10 

Table 2. Outcome Measures 

Statistical analyses 
Descriptive statistics are reported as the mean (standard deviation - SD) calculated at pre-test and post-test in the 

non-intervention and intervention groups for each different outcome measured. An independent sample t-test was 

used to compare the two groups on the pre-test scores, in order to check equivalence between groups at the baseline. 

Only a marginal difference between the non-intervention and intervention groups was reported at Pre-test on the 

TAdd (t(99) = 1.94; p = 0.055; Cohen’s d=0.39). The other t-test indicated that the groups were equivalent on the 

different outcome measures at pre-test (all p > 0.05).  

Because participants were maintained in their respective classes (with different teachers), generalized linear mixed 

models (GLMM - lmer function of lme4 R-package, using a Restricted Maximum Likelihood (REML) algorithm 

for the estimation of the random effects) were used to assess the effects of the intervention (see for example Hilbert 

et al. (2019) for a description of the advantages of the GLMM method in comparison to other alternative statistical 

analysis methods in a context of intervention testing design with repeated measures). This statistical analysis 

strategy to assess the effect of an intervention in the educational domain is similar, for examples, to the one used 

by Lassault et al. (2022) or even by Boggio et al. (2023). All outcome measures (T1-T11) were standardized (M 

= 0; SD = 1) prior to the analysis. This allowed to standardize all slope coefficients, in order to makes them 

appropriate effect size measures in these mixed effect models (Lorah, 2018). This GLMM procedure was primarily 

applied to problem solving variables, allowing us to test our hypotheses directly. Indeed, a significant intervention 

effect was expected on TTransformPb with better post-test scores at this task hypothesized in the intervention 

group than in the control group. Moreover, whereas the intervention targeted transformation problem-solving, we 

also wanted to assess a potential intervention effect on the adjacent problem-solving skills evaluated by the 

TOtherPb. For each of these two outcome measures, the following mixed model (1) was fitted to predict the post-

test scores (POST-PbSolvij, of each i schooler placed in the j class) by using the pretest score measured in the same 

problem solving task (PRE-PbSolvij), the pretest score measured in the TAdd task, using intervention 
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(INTERVENTION: 1 for the intervention group and 0 for the control group), and the school PEN network 

(SCHOOL NETWORK: 1 for PEN+ and 0 for PEN) as fixed effects and class / teacher as a random effect (u0𝑗): 

 POST-PbSolv𝑖𝑗 =  𝛽0 + 𝛽1 PRE-PbSolv𝑖𝑗 ∗ 𝛽2INTERVENTION
𝑗

+ 𝛽3PRE-TAdd𝑖𝑗 ∗ 𝛽2INTERVENTION𝑗 +

𝛽4SCHOOL NETWORK𝑗+ u0𝑗 + 𝜀𝑖𝑗  (1) 

In this model (1), 𝛽0 corresponds to the intercept and other 𝛽𝑘 are the standardized slope coefficients; these latter 

enabled us to estimate the effect sizes for the different predictors. An interaction term between PRE-PbSolv𝑖𝑗  and 

INTERVENTION𝑗 predictors was included to take into account that the baseline level of a child at Pre-test (on the 

same problem-solving outcome variable) could interact with the intervention effect. In the same way, the pre-test 

scores in the TAdd (PRE-TAdd𝑖𝑗) were added as predictor (fixed effects) with the concomitant inclusion of an 

interaction term between PRE-TAdd𝑖𝑗 and the intervention factor. Indeed, TAdd assessed a calculation skill and 

this latter could have a potential relation with the problem-solving outcome variables. Moreover, a statistical 

marginal difference was observed between the non-intervention and intervention groups in terms of TAdd pre-test 

scores, indicating the need for close monitoring during the analysis of intervention effects. Therefore, since the 

variables were standardized, the model estimated the intervention effects at post-test by controlling: (1) baseline 

differences at pre-test on the problem-solving outcome variable (TTransformPb or TOtherPb); (2) baseline 

differences at pre-test on the TAdd arithmetic task and, (3) differences due to school networks. 

Although arithmetic (T11) and mathematical core competencies (T1-T8) were not directly targeted by the 

intervention, we want to check whether this latter would have (or not) an impact on these corresponding outcome 

measures. To that end, the following more simple mixed model (2) was fitted to predict the post-test scores 

(POSTij, from each i schooler placed in the j class) by the pretest scores (PREij) using intervention 

(INTERVENTION: 1 for intervention group and 0 for control group) and school PEN network (SCHOOL 

NETWORK: 1 for PEN+ and 0 for PEN) as fixed effects and class / teacher as random effect (u0𝑗): 

POST𝑖𝑗 =  𝛽0+𝛽1PRE𝑖𝑗 ∗ 𝛽2INTERVENTION𝑗+𝛽3SCHOOL NETWORK𝑗+u0𝑗 + 𝜀𝑖𝑗  (2) 

Therefore, this model (2) was similar to model (1), at the exception that pre-test scores in the TAdd was not entered 

in this model (2) (of course except for TAdd post-test scores).  

Results of the different fixed effects of the models are reported with the estimates (standardized β slope coefficients 

– reflecting effect size), the 95% confidence interval of the estimates (CI), the t-value and the associated p-value. 

Conditional (cond R2) and marginal (marg R2) determination coefficients and intraclass correlation coefficients 

(ICC) were used to assess the model performances and the influence of random effects. 

 

Results 

Descriptive results 
Means (and standard deviations) calculated for both the Non-intervention and the Intervention groups at Pre-Test 

and at Post-Test are reported in Table 3. The descriptive results for the Intervention group indicate that scores for 

all of the eleven mathematical tasks improved from the pre-test to the post-test. To a lesser extent, mathematical 

performances were also better at Post-test than at Pre-Test for the Non-intervention group, except for 

TDecodeFingers and TOtherPb (with a not significant decrease of mean score at post-test).  

Table 3. Outcome measures results. Means (standard deviations) at pre-test and post-test calculated for the different 

outcome measures in the No Intervention and in the Intervention groups.  
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 No Intervention (n = 52) Intervention (n = 49) 

 Pre-test Post-test Pre-test Post-test 

Core competencies     

TVerbalChain 49.27 (28.99) 50.81 (28.60) 50.59 (27.95) 57.14 (25.44) 

TNumId 13.48 (3.29) 13.62 (3.22) 12.78 (3.37) 13.45 (3.49) 

TDecodeFingers 9.65 (1.10) 9.63 (0.89) 9.45 (1.24) 9.84 (0.47) 

TCodePatterns 9.10 (1.38) 9.27 (1.22) 8.82 (1.51) 9.31 (1.12) 

TGiveMe 5.62 (0.80) 5.79 (0.54) 5.65 (0.69) 5.69 (0.62) 

THowMany 11.44 (1.53) 11.62 (1.29) 11.39 (1.40) 11.84 (0.62) 

TComparison 31.08 (9.99) 33.31 (9.59) 29.71 (10.80) 33.24 (8.69) 

TUseNumbers 1.71 (1.16) 2.04 (1.08) 1.92 (1.20) 2.31 (0.87) 

Problem Solving     

TTransformPb  2.56 (2.38) 2.88 (2.37) 3.22 (2.04) 4.53 (1.88) 

TOtherPb  1.50 (1.89) 1.17 (1.80) 1.53 (1.68) 2.04 (1.96) 

Arithmetic     

TAdd 5.38 (3.72) 6.02 (3.72) 6.69 (2.99) τ 6.92 (3.34) 

τ marginal difference between No intervention and intervention groups at pre-test (p = 0.051). All other differences 

at pre-test were no significant (all p > 0.13). 

 

Intervention effects on problem solving tasks 
Arithmetical transformation problem-solving task (TTransformPb). A significant effect of the intervention 

was expected for the problem-solving tasks, and more especially on arithmetical transformation problem-solving 

performance (TTransfomPb). The test of model (1) showed a significant effect of the intervention on the 

TTransformPb post-test scores (βINTERVENTION = 0.43; CI = [0.04; 0.83]; t = 2.17; p = 0.033). This indicated that 

TTransformPb scores of children in the Intervention group showed greater improvement at post-test than those of 

children in the Non-intervention group (Figure 2). TTransformPb scores at post-test were also (not surprisingly) 

significantly predicted by performances on the same task at pre-test (βPRE-TPbSolv = 0.63; CI = [0.41; 0.84]; t = 5.79; 

p < 0.001).  

 

Figure 2. The intervention has a significant post-test impact on the score for transformation problems (taking 

into account pre-test differences in solving transformation problems and in arithmetic). 

Moreover, a significant interaction appeared between intervention and TTransformPb pre-test scores (βPRE-

TPbSolv×INTERVENTION = -0.33; CI = [-0.64; -0.02]; t = 2.14; p = 0.035). The negative slope coefficient of this 

interaction effect’s estimates indicated that children with lower performances in arithmetic transformation problem 
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solving at pre-test benefited more from the intervention (on the task TTransformPb) than children with higher 

TTransformPb pre-test scores (Figure 3). Although initial levels in the arithmetic task (TAdd) predicted only slight 

(and not significant) the TTransformPb scores at post-test (βPRE-TAdd = 0.14; CI = [-0.06; 0.34]; t = 1.35; p = 0.181), 

the better the children were on addition tasks with Arabic digits (TAdd), the greater the intervention effect was in 

post-test on the TTransformPb, as indicated by the significant interaction between TAdd pretest scores and 

intervention (βPRE-TAdd×INTERVENTION = 0.32; CI = [0.01; 0.63]; t = 2.02; p = 0.046). The school network effect was 

not significant (βSCHOOL NETWORK = 0.00; CI = [-0.40; 0.41]; t = 0.02; p = 0.98). The good fit estimation parameters 

for the Model (1) applied to the TTransformPb post-test scores indicated a marg R2 = 0.58 and a cond R2 = 0.66 

with an ICC = 0.19. 

Table 4. Parameter estimates for the problem-solving dependent variables analysing with generalized linear 

mixed Model (1). Results of the different fixed effects of the models are reported with the estimates (standardized 

β slope coefficients – reflecting effect size) and the 95% confidence interval of the estimates (between brackets). 

Asterisks indicates the level of significance, and the significant fixed effects are reported in bold characters. 

Intraclass correlation coefficients (ICC) are reported for the random effects. Marginal (Marg R2, in italic) and 

Conditional (Cond R2) determination coefficients assesses the Model (2) performances. 

Problem-
solving 
dependent 
variable 
(post-test) 

Fixed Effects (Model 1) Random 
effects 

Goodness 
of fit 

Pre-
test 

score 
Intervention 

Pre-test × 
Intervention 
interaction 

TAdd 
pretest 
score 

TAdd pretest 
score × 

Intervention 
interaction 

PEN / PEN+ 
School 
network 

ICC 
Marg R2 / 
Cond R2 

TTransformPb 0.63*** 
[0.41 ; 
0.84] 

0.43* 
[0.04 ; 0.83] 

-0.33* 
[-0.64 ;  
-0.02] 

0.14 
[-0.06 ; 
0.34] 

0.32* 
[0.01 ; 0.63] 

~0.00 
[-0.40 ; 0.41] 

0.19 0.58 / 0.66 

TOtherPb 0.36** 
[0.11 ; 
0.61] 

0.36* 
[0.02 ; 0.70] 

-0.03 
[-0.41 ; 
0.34] 

0.17 
[-0.07 ; 
0.40] 

0.22 
[-0.17 ; 0.61] 

-0.41* 
[-0.76 ; -0.06] 

0.03 0.43 / 0.45 

* p <0.05; ** p <0.01; *** p <0.001. TAdd = Arithmetic addition task with Arabic digits. PEN = priority education network; PEN+ = 

reinforced priority education network; ICC = Intraclass correlation coefficients. 

 

 

Figure 3. The lower the children's TTransformPb pre-test scores, the more they benefited from the post-test 

intervention. 

Other problem-solving task (TOtherPb). As highlighted above, the intervention had a positive and significant 

impact on the targeted transformation problem-solving skill. Therefore, the question arises as to whether the 

intervention may have also indirectly benefited the other problem-solving skills. Considering the fitting with model 

(1) of the post-test scores at the TOtherPb task (marg R2 = 0.43 / cond R2 = 0.45; ICC = 0.03), the intervention 

effect was also significant (βINTERVENTION = 0.36; CI = [0.02; 0.70]; t = 2.12; p = 0.037), with higher performances 
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at post-test on TOtherPb for the intervention group than for the non-intervention group (while controlling the 

initial level). Although TOtherPb post-test scores were significantly predicted by pre-test scores (βPRE-TOtherPb = 

0.36; CI = [0.11; 0.61]; t = 2.88; p = 0.005), there was no significant interaction between intervention and TOtherPb 

baseline level (βPRE-TOtherPb×INTERVENTION = -0.03; CI = [-0.41; 0.34]; t = 0.17; p = 0.87) (Figure 4). Moreover, neither 

TAdd pre-test scores (βPRE-TAdd = 0.17; CI = [-0.07; 0.40]; t = 1.43; p = 0.16) nor interaction between these latter 

and intervention factor (βPRE-TAdd×INTERVENTION = 0.22; CI = [-0.17; 0.61]; t = 1.12; p = 0.27) had a significant 

predictive effect on TOtherPb post-test scores. However, it should be noted that the scores at post-test on this other 

problem-solving task were significantly lower for children from PEN+ schools (mPEN+ = 0.92; SD PEN+ = 1.40) 

compared to children from PEN schools (mPEN = 2.21; SD PEN = 2.12; βSCHOOL NETWORK = -0.41; CI = [-0.76; -0.06]; 

t = 2.33; p = 0.022).  

 

 

Figure 4. The intervention has a significant impact on the TOtherPb scores (taking into account the pre-test 

differences in solving transformation problems and in arithmetic). 

Intervention effects on the arithmetic addition task (TAdd) 
Since the use of fingers can be an important support to “count all” or to “count on” and then for addition 

calculations, we could expect that the intervention would have an effect on the arithmetic task of addition with 

Arabic digits. It is therefore not surprising that the baseline level of performance predicted quite strongly the TAdd 

post-test scores (βPRE = 0.58; CI = [0.39; 0.78]; t = 5.96; p < 0.001). In this context, both groups showed an 

improvement in this skill and there was neither an intervention effect (βINTERVENTION = 0.01; CI = [-0.32; 0.34]; t = 

0.06; p = 0.96), nor interaction between baseline level and intervention factor (βPRE×INTERVENTION = 0.14; CI = [-

0.17; 0.45]; t = 0.92; p = 0.36) when tested with Model (2). Post-test scores on the TAdd task were significantly 

lower in PEN+ schools (mPEN+ = 5.40; SDPEN+ = 3.87) than in PEN schools (mPEN = 7.42; SD PEN = 2.96; βSCHOOL 

NETWORK = -0.35; CI = [-0.68; -0.01]; t = 2.04; p = 0.044). Model (2) was fitted to TAdd post-test score data with 

marg R2 = 0.47, cond R2 = 0.49 and ICC = 0.04 (see Table 5 for details). 

 

Intervention effects on core competencies (T1-T8). 
The basic tasks (T1 to T8) were not directly targeted by the intervention. Statistical GLMM analyses with model 

(2) applied to the post-test scores (see Table 5 for details) confirmed that intervention did not have any significant 

effect on any of these tasks, although almost all slope coefficient estimates were positive (βINTERVENTION coefficient 

from 0.09 to 0.29), thus in the direction of larger improvements (descriptively) for the intervention group than for 

the non-intervention group (except βINTERVENTION = -0.14 for TGiveMe). Post-test scores were significantly 
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predicted by the baseline level at the same task (from βPRE = 0.35 to βPRE = 0.90, all p < 0.05; except for TGiveMe: 

βPRE = 0.11; p = 0.38). This baseline level interacted with the intervention effect only for THowMany post-test 

scores (βPRE×INTERVENTION = -0.51; CI = [-0.80; -0.21]; t = 3.40; p < 0.001, note a marginal interaction effect for 

TDecode fingers: βPRE×INTERVENTION = -0.34; CI = [-0.70; -0.03]; t = 1.84; p = 0.07; in all the other tasks: -0.2 < 

βPRE×INTERVENTION -values < 0.2 and all p-values > 0.35). No significant school network effect was reported for all 

of these core competency tasks (-0.37 < βSCHOOL NETWORK -values < 0; all p-values > 0.12 in the other tasks).  

 

Table 5. Parameter estimates for the different core competencies and arithmetic dependent variables 

analysing with generalized linear mixed Model (2). Results of the different fixed effects of the models are 

reported with the estimates (standardized β slope coefficients – reflecting effect size) and the 95% confidence 

interval of the estimates (between brackets). Asterisks indicates the level of significance and the significant fixed 

effects are reported in bold characters. Intraclass correlation coefficients (ICC) are reported for the random 

effects. Marginal (Marg R2, in italic) and Conditional (Cond R2) determination coefficients assesses the Model 

(2) performances. 

Dependent 
variable (post-
test) 

Fixed Effects (Model 2) Random 
effects 

Goodness of fit 

Pre-test score Intervention 
Pre-test × 

Intervention 
interaction 

PEN / PEN+ 
School 
network 

ICC Marg R2 / Cond R2 

Core Competencies 

TVerbalChain 0.87*** 
[0.72 ; 1.02] 

0.20 
[-0.05 ; 0.44] 

-0.09 
[-0.30 ; 1.12] 

-0.11 
[-0.37 ; 0.14] 

0.06 0.73 / 0.75 

TNumId 0.90*** 
[0.78 ; 1.03] 

0.14t 

[-0.03 ; 0.31] 
0.00 

[-0.17 ; 0.18] 
-0.03 

[-0.21 ; 0.14] 
~0 0.82 / 0.82 

TDecodeFingers 0.38** 
[0.11 ; 0.65] 

0.29 
[-0.27 ; 0.85] 

-0.34 
[-0.70 ; 0.03] 

-0.24 
[-0.80 ; 0.33] 

0.16 0.10 / 0.24 

TCodePatterns 0.64*** 
[0.39 ; 0.89] 

0.15 
[-0.20 ; 0.49] 

-0.16 
[-0.49 ; 0.18] 

-0.13 
[-0.49 ; 0.22] 

0.01 0.32 / 0.33 

TGiveMe 0.11 
[-0.14 ; 0.36] 

-0.14 
[-0.60 ; 0.32] 

0.12 
[-0.28 ; 0.51] 

-0.37 
[-0.84 ; 0.10] 

0.05 0.07 /0.12 

THowMany 0.85*** 
[0.65 ; 1.04] 

0.25 
[-0.06 ; 0.55] 

-0.51*** 
[-0.80 ; -0.21] 

-0.14 
[-0.45 ; 0.16] 

0.01 0.46 /0.47 

TComparison 0.80*** 
[0.62 ; 0.97] 

0.09 
[-0.20 ; 0.39] 

-0.07 
[-0.32 ; 0.17] 

-0.24 
[-0.54 ; 0.06] 

0.06 0.61 / 0.64 

TUseNumbers 0.35* 
[0.08 ; 0.62] 

0.22 
[-0.16 ; 0.59] 

-0.01 
[-0.39 ; 0.36] 

-0.17 
[-0.56 ; 0.21] 

~0 0.16 / 0.16 

Arithmetic 

TAdd 0.58*** 
[0.39 ; 0.78] 

0.01 
[-0.32 ; 0.34] 

0.14 
[-0.17 ; 0.45] 

-0.35* 
[-0.68 ; -0.01] 

0.04 0.47 / 0.49 

t p <0.10; * p <0.05; ** p <0.01; *** p <0.001. PEN = priority education network; PEN+ = reinforced priority education network; ICC = 

Intraclass correlation coefficients. 

 

Discussion 
 

The purpose of the present research was to test the effect of an early mathematical intervention on kindergarteners’ 

progress in problem solving. We compare a teacher-implemented intervention program with a “business as usual” 

group within a population of disadvantaged kindergarteners. For this study, we have co-constructed 7 small group 

teaching sessions on the use of fingers to solve problems in kindergarten. These sessions were designed to 

incorporate finger pattern rituals and implement them in real-life learning settings. Public kindergarten schools 

within priority education networks, which operate in socially disadvantaged environments, were selected to pilot 

this intervention. This choice was made because problem-solving is notably impacted by learning disparities 

arising from social inequalities (MENR, 2021). While children in these schools do not exhibit specific cognitive 

profiles, they may encounter challenges with language skills, which are essential for problem-solving. It would be 
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valuable to ascertain whether such an intervention could yield benefits for kindergarteners from more privileged 

social backgrounds.  

In a context of socially disadvantaged children with potential difficulties in word problem solving, we have 

obtained the result, as expected, that teaching strategies for using fingers to solve transformation problems (with 

question on the final state, TTransformPb) improve the targeted knowledge. Interestingly, while the children 

retained the core skills (without any further beneficial effects of the intervention), the intervention had a positive 

impact on other types of word problem solving (TOtherPb), including compare and all types of transform 

problems. As anticipated, these other problems were more difficult for all the children than the transformation 

problems with questions on the final state. However, contrary to our hypotheses, the children who benefited from 

the intervention did not make more progress on the addition task (TAdd). 

Our study thus reinforces the results of previous studies that have shown a relationship between learning to 

represent numbers with one’s fingers and problem solving (Ollivier et al., 2020; Orrantia et al., 2022). The 

originality of our study lies in the fact that we do not teach only representations of numbers with fingers, but that 

rather we teach how to use them to model a problem. As a result, although the children were able to assimilate the 

strategies taught and use them on untaught word problems, they did not particularly benefit from the intervention 

where symbolic calculation tasks (TAdd) were concerned. There are several possible reasons for this. Firstly, the 

fact that the children in the intervention group started with a higher calculation ability than the children in the 

control group needs to be taken into consideration. Secondly, although the children could use their fingers during 

the symbolic calculation tasks, this possibility was not specified in the instructions so, perhaps the children thought 

that it was forbidden. The symbolic addition task, which did not refer to quantities, could have posed a 

psychological barrier to using fingers as an analogic code? This is in line with what Björklund (2019, p. 23) noted: 

“The literature brings to the fore a strong view that children commonly use fingers when encountering arithmetic 

tasks and thus it was surprising to find that only in 44% of the observations in our study were fingers used in one 

or another way.” We can therefore assume that children, especially those from disadvantaged backgrounds, do not 

spontaneously use their fingers and that explicit instruction of their use for each of the relevant situations is 

necessary. Thirdly, the control group worked maybe on calculation tasks. Interventions into real-life learning 

context inevitably raise questions about the fidelity of implementation of interventions (Fixsen, 2005). Within the 

intervention groups, implementation fidelity was assessed during a single visit across all 7 small group sessions. 

The implementation grid included elements such as the adequacy of the tasks in relation to those prescribed, an 

explanation of the strategy employed, validation or rejection of the children’s answers by opening the box and 

showing the tokens and the link between the Lucky-Luke ritual and the training session. During this single visit, 

these items were found to be present in each experimental group. However, such a grid has not been used to 

observe the exact content taught in the control group which is why it is conceivable that the control group worked 

on the calculation task. Finally, a word problem involves two phases: modelling (by recognizing the operation 

involved) and calculation, this last a skill that is found in TAdd. This absence of benefits in symbolic calculation 

tasks, albeit that benefits to problem solving occurred, could mean that the pre-schoolers in the experimental group 

made particular progress in the modelling phase instead. This reveals another limitation of the study: the purely 

quantitative evaluation (successes or failures in the word problems). Beyond this binary aspect, there is a 

qualitative aspect which could have been interesting to study more closely, that of seeing if the fingers were used 

more frequently in the post-test than in the pre-test in the intervention group. 
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The overall aim has been to improve problem-solving performance in pupils at-risk. Mathematical skills are, in 

fact, cumulative because they build on knowledge acquired in previous years (Merkley & Ansari, 2016), making 

failure over the years all the more difficult to remedy. It is therefore important to intervene early. In France, as the 

national evaluations seem to indicate (MENR, 2021), one of the most unequally developed skills seems to be that 

of problem solving. This was the reason for setting up an intervention with disadvantaged children and it seems to 

have worked: children with lower performances in transformation problem solving at pre-test benefited more from 

the intervention (on the task TTransformPb) than children with higher TTransformPb pre-test scores. On the other 

hand, in a context other than the one targeted (on the task TOtherPb), these children appear to not continue using 

what they have been taught. One possibility would therefore be to enrich the current study with the explicit teaching 

of strategies for using the fingers for all types of word problem, as well as for calculation tasks. Furthermore, post-

tests were conducted subsequent to the intervention. However, the question of whether the performance can be 

sustained over time remains unanswered. 

Our study is a pilot study in the sense that it was designed to evaluate the effectiveness of a complete system 

comprising teacher training, teaching focused on problem solving and based on the use of fingers. Nevertheless, 

this approach has several methodological limitations that need to be considered. Firstly, the results of the 

experiment could be attributed more to the increased motivation of the teachers involved in the intervention group 

than to the experimental protocol itself. In fact, the teachers involved in the study had all volunteered and the 

drawing of lots to allocate the groups may have provoked mixed reactions.  The informal feedback we received 

following the draw suggests that it is actually quite complex to determine whether teachers were disappointed to 

be allocated to the control group. Indeed, some teachers expressed a certain relief at the idea of not changing their 

practices. We also attempted to control for this effect by engaging control group teachers in subsequent training 

enriched with intervention results. Secondly, and crucially, we cannot distinguish the effect of problem-solving 

teaching from the effect of finger use. Although we can conclude that children performances improve when taught 

how to use their fingers to solve arithmetic problems, it is possible that this positive progression could perhaps 

have been achieved by using other representations of number. Given the immediate availability of fingers, as well 

as their dual nature as an analogical code and pattern, we thought it appropriate to consider them as a suitable 

medium for teaching problem solving. But now that we have observed that the device seems to influence learning, 

it would be appropriate to explore similar teaching methods using other representations, with the aim of 

determining the real impact of the specificity of fingers on learning compared with an unstructured external 

analogical code (e.g. tokens) or even a structured external analogical code such as dice constellations. Finally, the 

study has demonstrated an effectiveness in solving transformation problems as well as other arithmetic problems. 

All the proposed problems relied on the use of numbers as measures of quantities such as a number of cars, candies, 

among others. However, the link between the choice of analogical code and the type of problem should be studied. 

Specifically, when the number denotes a position (e.g., the 3rd box or the 5th rung of a ladder), are fingers still 

good tools for resolution? In such cases, it might be more advisable to opt for a more suitable ordinal system. For 

example, the number line allows both the representation of numbers to indicate a position (a given graduation) and 

to quantify (the number of intervals between the origin and the graduation). Thus, the comparative evaluation of 

the effectiveness of different analogical codes, as well as their relevance according to the type of problem, seem 

to be research axes to consider in further studies.  
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Conclusion 
 

Interventions that have been evaluated for their effectiveness prior to entry into 1st grade are still an underdeveloped 

practice (for a meta-analysis, see Nelson & McMaster, 2019). Although recent studies show that early numeracy 

intervention has a beneficial impact on learning and a particularly beneficial effect on Low-SES (Darnon & Fayol, 

2021; Nelson & McMaster, 2019; Raudenbush et al., 2020), few studies have focused on problem solving in very 

young children. Yet, knowing how to solve mathematical problems is a skill that children are expected to master 

in the French curriculum, and is assessed from the first year of elementary school (1st grade). The results obtained 

show that learning problem solving is accessible from the age of 6, the disadvantaged areas included. This study 

has been intended to be a pilot study: an interventional study into real-life learning context carried out by the 

teachers themselves. The results are consequently encouraging, albeit that further studies are needed to better 

understand how to help children experiencing difficulties with problem solving. Although using one’s fingers 

seems to be a good choice for modelling statements, studies contrasting an intervention based on the use of fingers 

with the use of another type of material (tokens, cubes, lines) need to be carried out.  Further research is needed to 

identify the types of word problems and, more generally, the situations in which the use of fingers is relevant or 

even effective. 
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Appendix 1. The Lucky Luke game 

 

Appendix 2. Progression of the collective rituals: The Lucky-Luke game and verbal numerical chain 

Days Lucky Luke game (10mns) Verbal numerical chain (5mns) 

D1 
Focus 1 to 5 

Code: Order, Disorder  

Decode: Order, Disorder 

- Count from 1 to 30 

- Count from 2 to 10 

D2 
Focus 0 to 5 + speed 

Code: Order, Disorder, speed 

Decode: Order, Disorder, speed 

- Count from 1 to 30 

- Count from 3 to 10 

D3 
Focus 5 - 6 - 7 

Code: Order, Disorder 

Decode: Order, Disorder 

- Count from 4 to 10 

- Count down from 5 (with fingers) 

D4 
Focus 5 - 6 - 7 + speed 

Code: Order, Disorder, speed 

Decode: Order, Disorder, speed 

- Count from 5 to 10 

- Count down from 8 (with fingers) 

D5 

Focus 8 – 9 – 10  

Code: Order, Disorder 

Decode: Order, Disorder 

- Count from 1 to 30 

- Count from 6 to 12 

D6 
Focus 8 – 9 – 10 + speed 

Code: Order, Disorder, speed 

Decode: Order, Disorder, speed 

- Count from 7 to 12 

- Count down from 9 (with fingers) 

D7 

Focus 5 to 10 + speed 

Code: Disorder, speed 

Decode: Disorder, speed 

- Count from 8 to 12 

- Count down from 10 (with fingers) 

D8 

Focus 5 to 10 + speed 

Code: Disorder, speed 

Decode: Disorder, speed 

- Count from 9 to 12 

- Count down from 10  

D9 

Focus 1 to 10 + speed 

Code: Disorder, speed 

Decode: Disorder, speed 

- Count from 1 to 30 

- Count down from 10 (with fingers)  

D10 

Focus 1 to 10 + speed 

Code: Disorder, speed 

Decode: Disorder, speed 

- Count from 5 to 10 

- Count down from 10  

« Order »: the numbers were given in integer order 

« Disorder »: the numbers were given out of order 

« Speed »: the children were challenged to give the answer as quickly as possible 

« Code »: the teacher showed a canonical pattern of fingers and the children had to give the verbal code. 

« Decode »: the teacher would say a verbal code and the children would draw a corresponding finger pattern 
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Appendix 3. Progression of the training sessions. Each session was organised as follows: 7 problems in which the 

teacher used tokens, followed by 1 or 2 problems given orally only.  
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