
HAL Id: hal-04652826
https://hal.science/hal-04652826v1

Submitted on 18 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web3-Powered service provisioning in cellular networks
using NFT and self-sovereign identity

Nischal Aryal, Fariba Ghaffari, Emmanuel Bertin, Noel Crespi

To cite this version:
Nischal Aryal, Fariba Ghaffari, Emmanuel Bertin, Noel Crespi. Web3-Powered service provisioning
in cellular networks using NFT and self-sovereign identity. 6th Conference on Blockchain Research
& Applications for Innovative Networks and Services (BRAINS), Oct 2024, Berlin, Germany. �hal-
04652826�

https://hal.science/hal-04652826v1
https://hal.archives-ouvertes.fr

Web3-Powered Service Provisioning in Cellular
Networks using NFT and Self-Sovereign Identity

1, 2 Nischal Aryal, 2 Fariba Ghaffari, 1, 2 Emmanuel Bertin, 2 Noel Crespi
1 Orange Innovation, 14000 Caen, France

2 SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France
{nischal.aryal, emmanuel.bertin}@orange.com, fariba.ghaffari@telecom-sudparis.eu, and noel.crespi@it-sudparis.eu

Abstract—The rise of internet and data usage highlights
the importance of service provisioning for Mobile Network
Operators (MNOs) in expanding their operations and meeting
user demands. Implementing scalable and secure authentication
and access control mechanisms is crucial for enabling service
utilization among eligible users and ensuring the viability of
emerging business models. Conventional centralized approaches
face limitations such as single-point-of-failure, low scalability,
computational overhead, and privacy vulnerabilities. MNOs
must explore innovative business models to augment revenue
streams and address these challenges. Realizing such models
involves automating user contracts with service providers and
safeguarding user privacy regarding data sharing with external
entities. Blockchain technology offers a transformative avenue for
integration within existing MNO infrastructures, providing novel
distributed authentication and access control methodologies. We
propose a new business model for MNOs and service providers
in which an Attribute-Based Access Control (ABAC) framework
handles user access to services on top of Blockchain. Moreover, a
tokenized data-sharing method facilitates selective data sharing
with service providers through MNO channels based on user-
defined permissions. Central to this approach are non-fungible
tokens (NFTs) and the Self-Sovereign Identity (SSI) paradigm,
where NFTs ensure secure, decentralized tokenization of user
data, and SSI empowers users with ownership and control over
their data. Assessments confirm the scalability of this solution,
making it suitable for different use-case requirements.

Index Terms—NFT, Cellular Network, SSI, DLT, Blockchain,
Smart contract

I. INTRODUCTION

There is an exponential growth in data consumption due
to the widespread adoption of smartphones, diverse mobile
applications, IoT devices, and emerging technologies, such as
AI/ML [1], [2]. In this landscape, Mobile Network Operators
(MNOs) must take some strategic actions to ensure customer
satisfaction, revenue growth, and a competitive advantage. For
this, service provisioning is critical because it enables the
efficient delivery of a wide range of services, including con-
tent streaming, messaging, video conferencing, and gaming,
allowing MNOs to meet customer expectations. Proper service
provisioning can be accomplished through optimizing network
design, managing resources, establishing service agreements,
and managing the Quality of Service.

In a simple service provisioning scenario, users first sub-
scribe to a service through an online channel, sharing their Per-
sonally Identifiable Information (PII). The Service Providers
(SPs) validate and store the users’ information via a central

authority and provide the users with access to the service.
There are several challenges with this scenario concerning
technicalities and data privacy. From a technical standpoint,
the central authority responsible for subscription and access
control is a single point of failure. It also leads to limited
scalability, IT complexity, lack of automation, and low fault
tolerance. From a data privacy standpoint, users often reveal
PII across multiple online platforms without full awareness
of the repercussions. When users share their PII to different
platforms, the platforms store their information on private
servers, which could lead to malicious activities. Once the
users share the information, they have little control over how
the platform uses their data. Any solution that can provide
a distributed management strategy with greater flexibility,
automation, and robustness while maintaining the ability of
data owners to control how their data gets used would be
considered a promising candidate to address these concerns.

Blockchain as a Distributed Ledger Technology (DLT) is
a cryptographically secure network of nodes in which all
changes in the system require the consensus of all the eligible
nodes. Thanks to its unique features, such as immutability,
transparency, and consensus mechanisms, there is a research
interest in using Blockchain for identity-related aspects such as
authentication, access control, identity management, and data
or resource sharing. Along with these features, Blockchain
also provides some intriguing security and privacy use cases,
such as Non-Fungible Tokens (NFTs) and Self-Sovereign
Identity (SSI). NFTs are unique digital assets that cannot be
duplicated, divided, or traded. They allow the efficient and
secure verification and ownership management of digital assets
and offer solutions to secure them [3]. Self-Sovereign Identity
(SSI) gives control to data owners over their data by allowing
them to define policies to access them [4]. In SSI, data owners
can independently present identity claims to the data requester
and verify the claims with cryptographic certainty through
Blockchain.

In this paper, we propose a Blockchain-based service pro-
visioning model using NFT and SSI to address the afore-
mentioned challenges. This method implements authentication
and access control procedures based on smart contracts. We
implemented a fine-grained Attribute-Based Access Control
(ABAC) technique on top of the Blockchain, where SPs can
validate the ownership of the NFT by matching the user’s
signature on the access request transaction and the MNO’s

signature on the NFT. Using unique NFTs for each user
eliminates the need for intermediaries during user authenti-
cation. Additionally, SSI incorporates the “Zero-Knowledge
Proof” concept, where the SP can authenticate the user without
any knowledge of their PII or the data within the NFT.
This method helps service providers verify the user’s identity
without having access to the user’s sensitive data.

The key contributions of our proposed method are as
follows:
● Eliminating the need for intermediaries during service-

based subscription and access control procedures,
● Providing flexible and automated subscription and access

control process based on a zero-knowledge proof, and
● Giving data owners complete ownership over their data.
The rest of this paper is organized as follows: Section II

provides a brief background, followed by a summary of the
state of the art in Section III. Section IV outlines the system
design and construction of our proposed method, followed
by the evaluation in Section V. Section VI provides our
conclusions about the proposed method as well as some future
research directions.

II. BACKGROUND

This section presents the fundamental background required
for the rest of the paper including access control, NFTa, and
SSI concepts.
● Access Control ensures that only authorized entities can

access the resources. This can be accomplished using
a variety of techniques. In this paper, we utilized the
ABAC solution, which is a fine-grained method support-
ing different constraints to define the legitimate user and a
context-specific solution to define the access policies by
the resource owners. ABAC has four sets of attributes.
Subject attributes specify the subject, Object attributes
distinguish the resources, Action attributes are the actions
that can be performed by the subject, and Environment at-
tributes describe the context in which access is requested.

● Self-Sovereign Identity (SSI) is a digital identity model
where an individual has full control over their data [5].
It enables individuals to securely store and manage their
personal information without relying on intermediaries.
Moreover, they can selectively disclose their personal
information in various scenarios, such as interacting with
businesses, using online services, etc. Note that, in the
SSI model, the users can store their data locally, in an
external database, or within the databases of claim issuers
[6], [7].

● Non-fungible Tokens (NFTs) are digital assets that prove
ownership of an individual item or information and are
usually stored on Blockchain. This concept, first imple-
mented by Ethereum’s ERC − 721 token standard and
developed in EIP −1155 [8], is a unique digital asset that
cannot be duplicated or divided. Unlike cryptocurrencies,
which have identical characteristics and can be traded
one-to-one (fungible), NFTs are indivisible and cannot be

exchanged due to their distinct properties and metadata
(non-fungible) [9].

III. RELATED WORKS

Due to the significance of access control in providing
services for the users, and for preserving the user’s privacy, a
variety of solutions are proposed in this area. A considerable
part of Blockchain-based access control solutions in service
provisioning literature are dedicated to centralized systems
with a trusted central authority to manage user access. Despite
the low implementation complexity of these methods, they
suffer from a single point of failure, low scalability, low
availability, low non-repudiation, and lack of proper privacy
preservation [10], [11].

Based on our survey regarding the existing state of the art
in access control solutions, this technology is mainly used for
(1) defining and storing the access policies and rules in smart
contracts [12]–[17], (2) verifying the user’s access request
[13], [14], [16], [18], and (3) enforcing the access control
decision ([13], [16]).

Along with access control, some solutions offer privacy
for data sharing in different sectors, such as healthcare and
finance, using SSI. For instance, Zhuang et. al [19] propose
a Blockchain-based access control system for sharing the
patient’s PII data in the healthcare sector with the doctors
through the SSI in which the user decides about the data which
they want to share. Ahmed et al. [20] propose a Blockchain-
based SSI system focusing on the financial sector.

While many methods have been proposed for providing
access for users in different sectors, only a limited number
of these studies provide self-sovereign management of the
user’s identity and address user privacy. Moreover, to the best
of our knowledge, a very limited number of works focus on
service provision, access control, and privacy preservation in
the cellular network sector.

IV. SYSTEM OVERVIEW

In this section, we explain in detail how our proposed smart
contracts work and how it deals with three main tasks: 1)
NFT generation: allows users to create and save NFTs in
their smart contracts, 2) Service-based registration: allows
users to sign up for services and service providers to set rules
for user access, and 3) Authentication and Access Control:
verifies if users are who they say they are and decide if they
can use services. Fig. 1 shows an overview of how the method
works.

Note that to design this system, we assume that the follow-
ing steps are performed:
● The user has a subscription with the MNO, meaning they

have internet access via their SIM card’s mobile data or
other types of internet connection provided by the MNO.

● During the subscription procedure, a user has provided
their PII to the MNO (i.e., same as the current sub-
scription process). So, it is assumed that the MNO pos-
sesses the user’s PII data, including their name, surname,

R1

R3

R4

S1S2

S3

S5 S6

S4

S7

A1

A2

A3

SCAuth

SCAAC

SCU

User

Service
Provider

Mobile Network Operator

R2

Fig. 1. An overview of the proposed design. R1-R3 (blue lines) show the token generation steps, S1-S7 (yellow lines) show the service-based registration
process, and A1-A3 (green lines) summarize the authentication and access control processes. For simplification, only the core smart contracts are mentioned
in the figure. The remaining smart contracts are described in Section IV-A

address, identity photo or photo of identity card, bank
account information, and so on.

● Before users can subscribe to services, SP must register
with the system and agree with the MNO. This implies
that the MNO and the service provider have already
agreed on offering specific services with certain benefits
to users through the MNO’s platform. The details of this
procedure are beyond the scope of this paper. However,
we have addressed a similar process in our earlier work
[21].

Given these assumptions, the initial phase involves gener-
ating NFTs, denoted as R1 to R4 in Fig. 1. In this step,
the user initiates a subscription request for the Blockchain-
based service. Initially, the MNO establishes a dedicated smart
contract, denoted as SCU , for the user. Subsequently, the
user accesses the application using credentials provided by
the MNO post-subscription. Next, the user configures their
biometric, facial recognition data, or any other authentication
method specific to their device to generate an NFT , sends it
to the MNO for validation and signing, and finally, stores it
within their contract application.

Following NFT generation, users subscribe to various
services offered via the Decentralized Application (DApp),
denoted as S1 to S7 in Fig. 1. Once a user selects a provider,
the provider’s Blockchain address or specific code is included
in a list of approved services within the user’s contract. This
allows users to submit their NFT for initial registration, and
if further data is required by the service provider, users can
grant or deny access through their smart contract. Leveraging
this access mechanism, service providers can request the MNO
to share specific data. Upon successful registration, the user’s
access policy, comprising the service plan, pricing, expiration
date, and other access attributes, is appended to their contract.

After completion of the service-based subscription, users
can request access to the services (referred to as A1 to
A3 in Fig. 1) by transmitting their wallet addresses to the

authentication and access control contract. Subsequently, the
authentication and access control contract cross-references the
user’s access attributes with the policies stored within their
smart contract. Based on this evaluation, the contract either
grants access permission or rejects the access request.

A. Proposed Smart Contracts

1) Address Book Contract (SCAddBook): Address Book is
a unique and tamper-proof contract that stores the addresses of
all other single contracts, such as SCDB , SCEP , SCReg , and
SCAC that are required for token generation, service-based
subscription and authentication and access control processes.
We designed this contract to avoid the use of hard-coded ad-
dresses and to handle maintainability defects of smart contracts
[22]. Moreover, having a list of addresses of the other contracts
allows managing and implementing the modifiers in functions
to benefit from the intrinsic access control capability of smart
contracts, and to provide more secure collaboration among
them.

2) Eligible Providers Contract (SCEP): This contract
records the addresses of all eligible service providers in the
Blockchain-based service provisioning system. If a service
provider can reach an agreement of service with the MNO,
their Blockchain address will be added to this contract. Note
that, as mentioned before, the agreement and negotiation
process between an MNO and a service provider is supposed
to be off-chain, and in this paper, we will not focus on this
phase. The purpose of designing this contract is that SCReg

and SCAC can verify the eligibility of the providers to whom
the users are demanding to connect.

3) User Address Database Contract (SCDB): This con-
tract contains a list of user-specific contract addresses SCU

and the user’s wallet address, Wallet AddressU . When a
user subscribes to the Blockchain-based services provided by
an MNO and the MNO deploys a smart contract for them,
the record will be added for that specific user to map the
Wallet AddressU to the SCU .

4) User Contract (SCU): This is a user-specific contract
that stores the information required for further authentication
and access control procedures. The SCU contract is created
and deployed by the MNO after verifying the user subscription
request to the Blockchain-based service provisioning applica-
tion. The user’s NFT, the list of their registered/subscribed
services, the balance of their wallet, and the permission vector
are some of the most important data stored in this contract.
The permission vector is a vector of bits that shows in which
personal data, the user permits MNO to share with the service
provider.

5) Registration Contract (SCReg): This contract is respon-
sible for handling service-based registration requests by veri-
fying the identities of the user and service provider and, then,
inserting the required policies in the user’s smart contract.

6) Access Control Contract (SCAC): This contract is
responsible for controlling the user’s access to the services by
validating the user’s current attributes with existing policies in
their smart contract.

B. System design

We detail the three main functionalities of the proposed
method. First, the following setup must be done in the system:

– The SCAddBook contract needs to be deployed. To do so,
the system admin (i.e., one of the addresses registered
on behalf of the MNO) deploys it. Whenever a smart
contract searches for a particular smart contract, it can
refer to the SCAddBook contract.

– Next, the admin deploys the SCEP and SCDB contracts
and stores their addresses in SCAddBook.

– The addresses for all eligible service providers are also
stored in the SCEP by the MNO. We assume that
the system admin checks the eligibility of all service
providers before adding them to the SCEP contract (i.e.,
through an off-chain agreement).

– As previously discussed, users in the SSI model have the
options to store their data in various locations such as lo-
cal storage, external databases, or within the databases of
the claim issuer. In this study, we assume that users store
their data on the claim issuer’s site and manage access
permissions to this data using Blockchain technology [6],
[7].

1) Token generation: The main purpose of this step is to
generate a unique NFT token for the user and store it securely
in the Blockchain. This generation requires the following steps
(the enumeration is based on Fig. 1):

(R1): The user logs in to the DApp developed by the MNO
and enters their credentials. Note that, since the MNO
develops the DApp, the user can log in with a unique,
one-time secure link or other predefined credentials such
as the user’s biometrics (e.g., fingerprint or face ID),
secure password, etc. Given this information, the user
requests the MNO for permission to use the provided
Blockchain-based service.

(R2): Once MNO receives the credential and required PII of
the user through a secure channel (e.g., the DApp), it

matches the user’s data with stored PII. If the verification
is successful, MNO deploys a specific smart contract,
SCU , for the user in Blockchain.

(R3): Along with the AddressSCU
, MNO sends a secure, on-

time, unique link for the user to generate the NFT . By
opening the link, DApp can request that the user enter
their fingerprint, face ID, dedicated phone PIN, or other
unique data, as well as an SMS code for two-factor
authentication. Using these data, DApp will parse the
generated strings from two different factors and calculate
their hash to generate a unique NFT for the user. The
NFT is sent to the MNO through the secure channel
provided by DApp. MNO signs the NFT using its private
key and sends it back to the user.

(R4): Once the user receives the signed NFT , they can create
a transaction to send the NFT to the SCU using the
Wallet AddressU . The SCU verifies the sender of
the message and if msg.sender == owner, it will
register the user’s NFT .

2) Subscription in service: In this step, the user, whose
NFT is stored in the SCU , registers for the services pro-
vided by the legitimate service providers and accepts/denies
the provider’s access to their PII data stored in the MNO.
The following steps are needed for the user registration (the
enumeration is based on Fig. 1):

(S1): The user opens the specific tab of the desired service
provider in the DApp and selects the suitable plan. The
user will then be directed to the page to accept/deny the
data that the service provider asks the user to share. Note
that, in this paper, the main data that the user needs to
share is the NFT . The other data, based on the user’s
preference, incentives of the service provider, etc. can be
allowed or denied for further sharing.

(S2): The user’s selected options are fed into a
permission_vector as a list of bits, which is set to
1 if the user accepts sharing the data, and 0 when they
deny sharing. This transaction is sent to the SCU with
Wallet AddressU as the sender. The SCU checks the
transaction’s sender, and if msg.sender == owner,
it will register the user’s permission_vector for
the specific service provider. Note that the user can
give minimum access in this step and then increase
permissions in the future. When these steps are finished,
DAPP informs the service provider.

(S3): The service provider calls the validation and
registration() function of the SCReg to validate
the user’s information and authenticate the user. First,
the SCReg fetches the AddressSCEP

and AddressSCDB

contracts from the SCAddBook. Once the addresses of
these two contracts are available, SCReg first checks in
the SCEP to determine if the service provider is eligible
to send requests. If that eligibility is confirmed, SCReg

sends a request to SCDB to get the address of the SCU

using the Wallet AddressU sent by the service provider.
After receiving the address, SCReg sends an event to

the DApp requesting the biometric information of the
user. When the user receives a notification to provide
their biometric data, another transaction containing this
information is sent to SCReg . Upon receiving this data
as an array of bytes from the DAPP, SCReg redirects
to SCU to retrieve the user’s valid NFT . SCReg then
compares the received NFT (i.e., the array of bytes from
the DAPP) with the user’s NFT stored in SCU . If these
two values match, the user is authenticated.

(S4): The SCReg responds to the service provider that
the user with an identification pair (AddressSCU

,
Wallet AddressU) is authenticated. Using these data,
the service provider sends the data-sharing request to the
MNO.

(S5): When the MNO receives the request, it fetches the
permission_vector recorded by the user in the
SCU . Note that, since the user has already sent a transac-
tion in Blockchain to store this permission_vector,
and the user validation is verified before recording the
permission, we are assured that the only user could be
the one to give this access to the service provider.

(S6): Based on the retrieved permission_vector, the
MNO shares the information with the service provider
for the next usage. Note that these data are not required
for the user’s next authentication for registration, access
control, or payment, but can be used for further adver-
tisement, providing content, etc.

(S7): In parallel with the last three steps (S4 to S6), the SCReg

sends a request to the SCU to add the new service to the
user’s service list by calling the set_New_service()
function. First, the SCU fetches the AddressSCAuth

from
SCAddBook and verifies the sender of the transaction. If
msg.sender == AddressSCAuth

, the service will be
recorded to the user’s registered services.

3) Service-based Authentication and Access Control:
In this step, the registered user requests a connection to
the service of the service provider through the DApp. The
Attribute-based Access Control (ABAC) solution is used in
this phase. The main steps of the access control procedure are
described below (the enumeration is based on Fig. 1):

(A1): The user sends a transaction to the SCAC requesting
a connection to a legitimate service. In this request,
the provider’s address or service code can be transmit-
ted to the SCAC , and the transaction is sent by the
Wallet AddressU along with the NFT .

(A2): After receiving the access request, SCAC fetches
the AddressSCEP

and AddressSCDB
contracts from

SCAddBook. Once the addresses of these two contracts
are available, SCAC first verifies that the service provider
is on the list of eligible addresses in SCEP . Once the
verification is successful, SCAC sends a request to SCDB

to get the address of SCU using the Wallet AddressU
that is the msg.sender. By fetching the SCU , SCAC

retrieves the policy and the access attributes to the desired
service from the contract.

(A3): To verify the user’s access eligibility to the service,
assume that, in the policies, there are the following four
attributes: 1) a Subject (SA), who is the user, 2) an Object
(OA) that is the specific service, 3) an Environment (EA)
which is the expiration time and the user’s balance in their
wallet, and 4) an Action attribute, which can be allowed
or denied. SCAC does the following verification through
attributes:

SA =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if msg.sender =WalletAddressU ,

T oken′ = Token
0, otherwise

OA =
⎧⎪⎪⎨⎪⎪⎩
1, if eligible(SPtx) = True,
0, otherwise

EA =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if Balanceu ⩾ Priceservice,

CurrentT ime > Expiration T ime

0, otherwise

where Token′ is the token sent by the user and
eligible(SPtx) is the function of showing if the service
provider that is mentioned in the transaction, is one of
the eligible providers. Finally, the decision would be sent
to the user and the service provider (as an event) through
action attribute (AA) as follows:

AA =
⎧⎪⎪⎨⎪⎪⎩
1(allow), if SA = OA = EA = 1,
0(deny), otherwise

OAI RAN

U
H

D

N
IC

 - eno1

Access
Gateway

N
IC

 -
et

h0

Blockchain

Ethereum nodes using
Go Ethereum (Geth)

LEGEND

UHD

NIC

MNO Connection

User Connection

Universal Hardware Driver

Network Interface Controller

Ubuntu Operating System

Magma core framework

OpenAirInterface Framework

SPs Connection

UE
Samsung Galaxy

S4

USRP B210 Internet & Blockchain Gateway
NodeJS, Web3js, Solidity

Website Frontend
HTML, CSS, JS

Website Backend
NodeJS, Web3js, Solidity

Service
Providers

Fig. 2. A design overview of our testbed.

V. EVALUATION

To evaluate our proposed method, we deployed the re-
quired testbed containing the MNO, the service providers,
the users, and the Blockchain which all entities can connect
to. To simulate the users and the MNO, we first deployed a
private cellular network [23] using OpenAirInterface (OAI)
and Magma core. OAI and Magma core are open-source
frameworks for deploying cellular network components on
commercially available hardware, such as UE, Radio Access

Concurrent Requests

La
te

nc
y

(m
s)

0

200

400

600

800

200 400 600 800 1000

1 node 8 nodes 12 nodes 16 nodes

(a)

Concurrent Requests

La
te

nc
y

(m
s)

0

50

100

150

200

250

200 400 600 800 1000

1 node 8 nodes 12 nodes 16 nodes

(b)

Concurrent Requests

La
te

nc
y

(m
s)

0

2

4

6

8

200 400 600 800 1000

1 node 8 nodes 12 nodes 16 nodes

(c)

Fig. 3. Service-based Registration Latency

Network, and core network/access gateway. Next, we set up
a private Ethereum network using the Go Ethereum (Geth)
framework [24], [25]. Geth is a popular implementation of the
Ethereum network developed in the Go language. The first
step to deploy the private Blockchain is to create a genesis
block (Fig. 4 depicts part of the genesis block in our setup),
in which the chainID can be a random number different than
main-net or other test-nets, and consensus algorithm that, in
our testbed, is ”clique” [26], one of the Proof of Authority
(PoA) consensus model’s algorithms [27]. as the network’s
consensus protocol. PoA is a reputation-based method in
which the reputation of the validators is the indicator of
their selection. The validators in PoA have formally approved
accounts, and their identity are public [11]. The smart contracts
are developed using the Solidity [28] programming language.
Finally, we set up a gateway for the testbed to communicate
with the private Blockchain. In this configuration, the user first
completes MNO-based registration (i.e., conventional 4/5G
AKA procedure) before receiving internet service. When the
user’s equipment attempts to connect to our testbed, the access
gateway executes the authentication and key agreement pro-
cess, which validates the authenticity of the user’s subscription
to the internet service. Following successful authentication,
the user gains internet access, through which he/she finally
connects to the Dapp website provided by the service provider.

{
"config": {
"chainId": 769599,
"homesteadBlock": 0,
"eip150Block": 0,
"eip155Block": 0,
"eip158Block": 0,
"byzantiumBlock": 0,
"constantinopleBlock": 0,
"petersburgBlock": 0,
"istanbulBlock": 0,
"berlinBlock": 0,
"clique": {
"period": 5,
"epoch": 30000

}
},
"difficulty": "1",
"gasLimit": "8000000“

Fig. 4. Configuration of genesis block in the system setup

The performance analysis of the suggested design is done
in three parts: (1) Comparison with existing state of the art,
(2) Evaluating the scalability in terms of increasing number
of concurrent connection requests, and (3) Gas consumption

of different on-chain processes.

A. Comparison with existing solutions

Table I compares the proposed method with other state-of-
the-art methods for providing access control services and SSI
solutions. To the best of our knowledge, we could not find a
paper that shared the same scenario as this paper. Thus, we
compare the more related state of the arts.

As shown in Table I, several works implemented the ABAC
solution, while other works proposed different access control
methods. It is important to mention that we only focused on
comparing our work with papers that are more related to our
use case. Using the SSI and tokenization of the authentication
are subjects that are rarely provided by the other methods.
These concepts can provide privacy and accountability in
the system, which are two important factors in service pro-
visioning through cellular networks. In Table I, compared
to the works that use PBFT models, our proposed model
can provide higher scalability, and in comparison to PoW, it
is more efficient and provides higher performance regarding
latency. Furthermore, several methods are using Blockchain
for either storing policies or only validating the user’s access
to the system. Comparing our proposed method and these
solutions, we can state that our proposed method can provide
higher automation in authentication and access control by
enforcing the access result for user’s access to the services.
This can remove any single point of failure in the access
control procedure. So, we can claim that the proposed system
is more fault-tolerant.

B. Scalability

We evaluate the scalability of our proposed method by ana-
lyzing the latency of on-chain processes -—token generation,
service-based subscription, and service-based authentication
and access Control– to handle different numbers of concurrent
requests. The scalability of the system can be defined as
changes in throughput or latency when altering one/several
parameters. To measure scalability, we assess the latency using
the following formula:

Latency = tf − ts
∣Tx∣

TABLE I
COMPARISON WITH EXISTING SOLUTIONS

Ref. [12] [15] [18] [14] [13] [20] [19] [16] This
work

Properties
Access Control Automation ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓
Authentication automation ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓
Scalability regarding users ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Privacy-preserving ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓
Data sharing possibility ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓
Use of SSI ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓
Non-fungible identity ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓
Service provisioning in cellular network ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓
Blockchain role* 1,2 1 1 1,2,3 1,2,3 1,2 1,2 1,2 1,2,3
Access Control Model ABAC General CP-ABE ABAC ABAC - - ABAC ABAC
Consensus model PoA PoS PBFT PoW PBFT PoA Raft PBFT PoA

* (1) is using Blockchain as storage for policies, (2) is using Blockchain for access validation, and (3) means the method is using Blockchain
for access enforcement.

Here, tf represents the completion time of the simulation,
while ts denotes the starting time of the simulation. It’s
essential to clarify that in this context, simulation refers to the
duration spanning from when concurrent requests are initiated
to when transaction receipts for all requests are received.

In this evaluation, we altered the number of full nodes in
the system up to 16 and the number of concurrent requests up
to 1000. The results are depicted in Figure 3(a-c), which show
that the latency of both processes is almost stable after 400
concurrent requests. Moreover, these figures also show that
scalability is not affected when we increase the number of
Blockchain full nodes. Note that each node in the Blockchain
represents either an MNO or a service provider. It is also
important to mention that the depicted latency in these figures
is not representative of the user’s experienced latency, it shows
the average latency and the capacity of Blockchain to handle
the number of concurrent requests.

C. GAS consumption

This section evaluates the GAS consumption of different
function calls and contract deployments. The GAS is the
fee that the sender must pay to submit transactions to the
Ethereum network. The cost that is mentioned in this part
is the cost of sending a transaction of a contract to the
Ethereum blockchain (i.e., transaction cost) [29]. The GAS
cost is defined in Gwei (i.e., as 10(−9)ETH). Table II shows
the GAS cost in different processes. It is important to mention
that in private or consortium Blockchains, the price of sending
or processing the transaction is based on the agreement among
all participating entities, and no currency is mandatory [11].

VI. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we present a system to offer services using
Blockchain technology, potentially creating a fresh business
model for mobile network operators and their partnerships
with other service providers. We tackle the challenge of
safeguarding user privacy and giving them full ownership
and control over their data. To accomplish this, we utilize
access control methods and authentication techniques like

TABLE II
GAS PRICE OF PROCESSES AND TRANSACTIONS OF THE PROPOSED

METHOD

Process Transactions Tx cost

Contract
deployment

SCAddBook 266550
SCDB 191518
SCEP 398664
SCU 549967
SCAC 590228
SCReg 666643

Provider registration Add new eligible provider 77329

User registration Add SCU in SCDB 50975

User registration Add new eligible provider 77329
Authenticate and add policy 115957

Subscription NFT validation and User sub-
scription

0*

Access control Access verification using saved
policies

0**

* In this step, the user’s biometric and address are sent to the smart
contract for verification. Through the process, nothing needs to be
saved in a smart contract, and the ledger’s state doesn’t need to change.
So, the cost is zero.
** This process is a call not transaction. So, since it doesn’t
change the state of the ledger, the cost is zero.

Non-Fungible Tokens (NFTs) and the Self-Sovereign Identity
(SSI) approach. Our main aim is to develop flexible, auto-
mated, and easily scalable solutions for subscription-based
services and user authentication and access control, ensuring
that individuals maintain complete authority over their own
data.

We put the system into operation by setting up a private
cellular network with multiple simulated service providers
utilizing the Ethereum Blockchain with a maximum of 16
full nodes. Evaluating the scalability of the system involved
varying the number of full nodes up to 16 (which could
represent either service provider or MNO nodes within the
Blockchain) and simulating up to 1000 users with concurrent
requests. Our findings show that even as the number of nodes

or requests increases, the latency remains largely consistent,
revealing the high scalability of the system.

However, to put our proposed system into practice, several
questions have to be addressed, such as selecting the type of
blockchain, defining the role of different actors in the system,
and establishing ownership of the Blockchain in real-world
scenarios. Our system is designed to serve a particular group
of stakeholders. So, we design a permissioned consortium
Blockchain that is flexible based on the needs of different
parties, and it only allows the participation of entities from
the consortium. The key players in this system are the users,
mobile network operators (MNOs), and service providers.
Among these parties, users have limited processing power,
storage, and resources, rendering them unable to function as
full nodes within the Blockchain. Consequently, users in this
setup act as light nodes, retaining only the portion of the
Blockchain’s information needed for conducting transactions
while abstaining from involvement in the consensus process.
Thus, the underlying Blockchain structure could be configured
as a consortium of MNOs and service providers, determining
transaction costs (if applicable), consensus models, storage
methods, and related parameters.

Several areas could be explored in future research to en-
hance the system’s performance and its practical application.
For example, the current method for registering/subscribing
providers and their agreements with MNOs to deliver services
relies on manual agreements with pre-defined prices and
Service Level Agreements (SLAs). Automating this process
securely and in a more scalable manner could be achieved us-
ing Blockchain technology and smart contracts. Additionally,
since Blockchain technology demands substantial storage in its
full nodes to maintain an updated ledger and ensure security,
enhancing storage efficiency is another aspect to consider.
Implementing chain sharding could prove highly advantageous
in addressing storage requirements [30].

REFERENCES

[1] “Ericsson Mobility Report,” Nov. 2023. [Online]. Available:
https://www.ericsson.com/4ae12c/assets/local/reports-papers/mobility-
report/documents/2023/ericsson-mobility-report-november-2023.pdf

[2] N. Aryal, F. Ghaffari, E. Bertin, and N. Crespi, “Subscription man-
agement for beyond 5g and 6g cellular networks using blockchain
technology,” in 2023 19th International Conference on Network and
Service Management (CNSM). IEEE, 2023, pp. 1–7.

[3] B. Hammi, S. Zeadally, and A. J. Perez, “Non-fungible tokens: a review,”
IEEE Internet of Things Magazine, vol. 6, no. 1, pp. 46–50, 2023.

[4] “The path to self-sovereign identity,”
https://www.lifewithalacrity.com/article/the-path-to-self-soverereign-
identity/, accessed: 2024-04-07.

[5] A. Mühle, A. Grüner, T. Gayvoronskaya, and C. Meinel, “A survey on
essential components of a self-sovereign identity,” Computer Science
Review, vol. 30, pp. 80–86, 2018.

[6] Š. Čučko and M. Turkanović, “Decentralized and self-sovereign identity:
Systematic mapping study,” IEEE Access, vol. 9, pp. 139 009–139 027,
2021.

[7] R. Nokhbeh Zaeem, K. C. Chang, T.-C. Huang, D. Liau,
W. Song, A. Tyagi, M. Khalil, M. Lamison, S. Pandey, and
K. S. Barber, “Blockchain-based self-sovereign identity: Survey,
requirements, use-cases, and comparative study,” in IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology, ser. WI-IAT ’21. New York, NY, USA: Association

for Computing Machinery, 2022, p. 128–135. [Online]. Available:
https://doi.org/10.1145/3486622.3493917

[8] S. B. Far, S. M. H. Bamakan, Q. Qu, and Q. Jiang, “A review of non-
fungible tokens applications in the real-world and metaverse,” Procedia
Computer Science, vol. 214, pp. 755–762, 2022.

[9] Q. Wang, R. Li, Q. Wang, and S. Chen, “Non-fungible token (nft):
Overview, evaluation, opportunities and challenges,” arXiv preprint
arXiv:2105.07447, 2021.

[10] A. Gauhar, N. Ahmad, Y. Cao, S. Khan, H. Cruickshank, E. A. Qazi, and
A. Ali, “xDBAuth: Blockchain based cross domain authentication and
authorization framework for Internet of Things,” IEEE Access, vol. 8,
pp. 58 800–58 816, 2020, publisher: IEEE.

[11] F. Ghaffari, E. Bertin, N. Crespi, and J. Hatin, “Distributed
ledger technologies for authentication and access control in
networking applications: A comprehensive survey,” Computer
Science Review, vol. 50, p. 100590, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013723000576

[12] G. D. Putra, V. Dedeoglu, S. S. Kanhere, R. Jurdak, and A. Ignjatovic,
“Trust-based blockchain authorization for iot,” IEEE Transactions on
Network and Service Management, 2021.

[13] A. I. Abdi, F. E. Eassa, K. Jambi, K. Almarhabi, M. Khemakhem,
A. Basuhail, and M. Yamin, “Hierarchical blockchain-based multi-
chaincode access control for securing iot systems,” Electronics, vol. 11,
no. 5, p. 711, 2022.

[14] F. Ghaffari, E. Bertin, N. Crespi, S. Behrad, and J. Hatin, “A novel
access control method via smart contracts for internet-based service
provisioning,” IEEE Access, vol. 9, pp. 81 253–81 273, 2021.

[15] J. Zhang, Y. Yang, X. Liu, and J. Ma, “An efficient blockchain-
based hierarchical data sharing for healthcare internet of things,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 10, pp. 7139–7150,
2022.

[16] Q. Gong, J. Zhang, Z. Wei, X. Wang, X. Zhang, X. Yan, Y. Liu, and
L. Dong, “Sdacs: Blockchain-based secure and dynamic access control
scheme for internet of things,” Sensors, vol. 24, no. 7, p. 2267, 2024.

[17] L. Feng, J. Lin, F. Qiu, B. Yu, Z. Jin, J. Wang, J. Cheng, and S. Yao,
“Sdac-bbpp: A secure dynamic access control scheme with blockchain-
based privacy protection privacy for iiot,” IEEE Transactions on Network
and Service Management, 2024.

[18] S. Gao, G. Piao, J. Zhu, X. Ma, and J. Ma, “Trustaccess: A trustworthy
secure ciphertext-policy and attribute hiding access control scheme based
on blockchain,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 6, pp. 5784–5798, 2020.

[19] Y. Zhuang, C.-R. Shyu, S. Hong, P. Li, and L. Zhang, “Self-sovereign
identity empowered non-fungible patient tokenization for health infor-
mation exchange using blockchain technology,” Computers in biology
and medicine, vol. 157, p. 106778, 2023.

[20] K. A. Ahmed, S. F. Saraya, J. F. Wanis, and A. M. Ali-Eldin, “A
blockchain self-sovereign identity for open banking secured by the
customer’s banking cards,” Future Internet, vol. 15, no. 6, p. 208, 2023.

[21] N. Aryal, F. Ghaffari, E. Bertin, and N. Crespi, “A blockchain-based
approach for service level agreement management in cellular network,”
in 15th International Conference on Network of the Future (NoF), 2024.

[22] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining
smart contract defects on ethereum,” IEEE Transactions on Software
Engineering, 2020.

[23] N. Aryal, F. Ghaffari, S. Rezaei, E. Bertin, and N. Crespi, “Private cel-
lular network deployment: Comparison of openairinterface with magma
core,” in 2022 18th International Conference on Network and Service
Management (CNSM). IEEE, 2022, pp. 364–366.

[24] “go-ethereum,” https://geth.ethereum.org/, accessed: 2024-04-07.
[25] “Go ethereum - github,” https://github.com/ethereum/go-ethereum, ac-

cessed: 2024-04-07.
[26] “Clique poa protocol rinkeby poa testnet,”

https://github.com/ethereum/EIPs/issues/225, accessed: 2024-04-07.
[27] S. D. Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and

V. Sassone, “PBFT vs Proof-of-Authority: Applying the CAP Theorem
to Permissioned Blockchain,” p. 11.

[28] C. Dannen, Introducing Ethereum and solidity. Springer, 2017, vol. 1.
[29] G. Wood et al., “Ethereum: A secure decentralised generalised trans-

action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[30] G. Kaur and C. Gandhi, “Scalability in blockchain: Challenges and so-
lutions,” in Handbook of Research on Blockchain Technology. Elsevier,
2020, pp. 373–406.

