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This paper describes a sensitivity study performed on simulated radar and optical remote sensing forest data. It presents how the
dual model has been built up. The first step is a forest growth model fed with biophysical parameters. The geometrical description
is then the input of an optical hyperspectral model, giving reflectance spectra, and a Synthetic Aperture Radar (SAR) model,
giving the polarimetric and interferometric observables. As an illustration, the first results obtained by both models outputs are
presented, and fusions of these outputs are performed.

1. Introduction

The retrieval of biophysical parameters of forests with remote
sensing is nowadays a challenge. In particular, forest biomass
and soil and branches moisture content are three parameters
of interest. It is well known that low frequency radars may
provide lots of characteristics of forests, and in particular
P-band is often proposed for biomass estimation [1]. On
the other hand, spectral signatures provided by optical
measurements are able to deliver features of forest vegetation,
like Leaf Area Index (LAI) [2], to derive optical indexes like
the Normalized Difference Vegetation Index (NDVI), and
can be used to determinate tree species [3].

Hopefully, using both sources of information through
a combination process should improve the determination
of the characteristic parameters of forest [4]. To evaluate
the potential of this combined approach, a focus is done in
this paper on a parallel direct modeling approach in which
the same forest scenario is simulated in polarimetric P-band
backscattering and in optical bands. This parallel modeling
approach was described and validated in a previous paper
[5], and here the focus will be made on its results.

In Section 2 the general functioning of the parallel
modeling, with the inputs and links between the models, is
described. Then, in Section 3 a sensitivity study is carried out

with the radar model only on a forest with different biomass,
soil moisture content, and branches moisture content.
Section 4 consists of a sensitivity study with the optical
model. Finally, the results carried out on previous radar and
optical data, of a nonsupervised and of a supervised data
analyses, are, respectively, shown in Sections 5 and 6.

2. Parallel Modeling

2.1. Model Organization. The radar and optical modeling is
considered as parallel because the geometrical 3D descrip-
tion of the forest is the same for both models. In fact,
a ground representation of a pine forest as a function of
growing age and consequently growing biomass is obtained
thanks to a growth model depicted in [6], which delivers LAI
and the statistical parameters of the trunks and branches in
terms of size, location, and orientation, for a given biomass
[7].

It is necessary to clarify that the biomass considered in
this paper is the sum of branches and trunks biomass, as
leaves biomass is considered as negligible.

As shown in Figure 1, this geometrical information
is then used for MIPERS (Multistatic Interferometric
Polarimetric Electromagnetic Model for Remote Sensing)

http://crossmark.crossref.org/dialog/?doi=10.1155%2F2012%2F409512&domain=pdf&date_stamp=2012-11-28
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Figure 1: General diagram of the parallel radar and optical models.

simulations of the radar backscattering matrix [8] and for
DART (Discrete Anisotropic Radiative Transfer) simulations
of the scene reflectance and 3D radiative budget [9].

2.2. Model Adaptation. The two models have different ways
of functioning.

For the radar model MIPERS, the scatterers are repre-
sented by finite length cylinders for the trunks and branches,
as shown in Figure 2.

At P-band, the wavelength is 75 cm so the leaves will not
have any influence and so have not been considered in the
simulation.

For the optical model DART, the trees and the soil are
represented by two types of elements: volume (for leaves)
and surface (for trunks, branches, and ground) elements, as
shown in Figure 3 for the representation of buildings.

In order to have radar and optical scene as close as
possible, the cylinders of the radar model are replaced by 3D
elements made of polygons.

A sensitivity study on scene reflectance was performed
with 3D representations of cylinders with 8 to 24 polygons
per cylinder and showed that 8 polygons per cylinder were
enough to correctly represent the whole scene made of
approximately 100.000 cylinders [5]. Leaves are represented
by volumes with an LAI given by the growth model. The
optical model uses a discrete ordinate ray tracing method
for simulating the scene bottom of atmosphere (BOA)
hyperspectral reflectance.

2.3. Radar and Optical Simulation Ground Parameters. Radar
simulations have been carried out on an 80 by 80 m wide
scene, with a resolution of 1 m, at P-band (430 MHz).
Branches and trunks are represented by homogeneous
cylinders, and the soil is considered as flat. Moisture contents
(m.c.) for the soil, branches, and trunks are inputs of the
model.

For each pixel of the Single Look Complex (SLC) data
simulated, the coherent sum of all the scatterers response is
computed, taking into account direct contribution from soil
and double bounce, all of them with the proper attenuation.
An average value on the whole scene is then obtained for all
polarizations.

For optical simulations, the model has been adapted
to be able to simulate forest the same way as the radar
model. Branches and trunks are represented by 3D objects
made of surfaced polygons, and leaves are represented by

Figure 2: Scatterers representation in the radar model.
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Figure 3: Representation of volume (up) and surfaces (down) in
the optical model.

homogenous 3D volumes. The leaves moisture content
in optical simulations is linked to the branches moisture
content in radar simulations. For soils, the moisture content
is the same for both kinds of simulations.

Optical simulations use the following parameters.

(i) Leaves of the undergrowth are made of spectral sig-
nature provided by the ASTER database [10].

(ii) PROSPECT [11] model is coupled with DART to
simulate the impact of tree leaves moisture content
on scene spectral signature.

(iii) Spectral signature for trunks and branches was mea-
sured on pine bark in 2002 [12].

(iv) The ground is made of bare soil. The following
hypothesis is done: a bare soil corresponds to a
ground with a null biomass (0 ton/ha). The spectral
information is extracted from database developed at
the ONERA and including spectral signature mea-
sured in laboratory of bare soils with several moisture
content [13].

 8039, 2012, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2012/409512 by C

ochrane France, W
iley O

nline L
ibrary on [26/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



International Journal of Antennas and Propagation 3

(v) The scene is 12 m by 12 m wide, which is sufficient,
because the scene is homogeneous and there is no
speckle effect in optical data. Simulations are per-
formed, with a spatial resolution of 4 m, for 160
spectral bands over the entire reflective spectral
domain (0.4–2.5 μm). These parameters are common
with those considered for airborne campaigns at the
ONERA [14].

Table 1 shows the values of biophysical parameters consid-
ered as input of radar and optical models.

Note that in order to simplify the simulations we assume
that leaves m.c. and branches m.c. are evolving together, as
shown in Table 1, as optical data tolerate a delay between
acquisitions [15].

For every pixel, and every spectral band, a bottom of
atmosphere reflectance is computed by DART. The average
values of reflectance for each band are then combined to
obtain the spectral signature.

With these spectral signatures, three optical indexes are
computed:

(i) the Normalized Difference Vegetation Index (NDVI),
linked to the LAI [16];

(ii) the Global Vegetation Moisture Index (GVMI),
linked to the leaves moisture content [17];

(iii) the NINSOL, an optical index developed at the
ONERA [18] and sensitive to the soil moisture con-
tent.

3. Radar Simulations

Figure 4 represents the evolution of polarimetric backscat-
tering as a function of biomass for various soil moisture
contents, and Figure 5 represents the evolution of polari-
metric backscattering as a function of biomass and branches
moisture content.

Soil moisture content varies between 0% for very dry
soils and more than 39% for very wet, saturated soils, with
average values for forests around 20%. In Figure 4, the aver-
age values of biomass are kept for vegetation, and only soil
moisture content is parameterized. Actually, soil moisture
content is supposed to vary independently of vegetation
moisture content. It can be seen that this parameter poorly
influences HV, has a strong influence on VV for low ages and
a reduced one at higher ages, and is overall prominent for
HH.

Actually, HH intensity follows the same evolution with
different offsets. For usual values of moisture content,
around 25%, the impact is low. We can notice that HV
intensity is poorly influenced by soil characteristics, which
is expected.

For branch moisture content, according to the literature
[19], it looks reasonable to consider a variation between a
ceiling value of 40% and a top value of 70%.

In this case, Figure 5 shows a very strong influence of
this parameter on the polarimetric response in P-band for all
polarizations. Actually, as branch moisture content increases,
VV and HV increase but also canopy extinction increases

Table 1: Biophysical parameters for the simulations.

Biophysical parameters Simulations

Age of the forest (yr) 6 16 26 36 46 56

Total biomass (ton/ha) 14 50 88 114 128 133

LAI (m2/m2) 5.4 5.1 4.4 3.3 2.9 2.5

Leaves m.c. (%) 39 49 60 71 81 92

Branches m.c. (%) 40 46 52 58 64 70

Volume m.c. index 1 2 3 4 5 6

Soil m.c. (%) 0 18 24 29 34 39

Age of the forest, total biomass, and LAI are dependent to each other. Leaves
m.c. and branches m.c. are also dependent on each other. On the opposite,
soil m.c. is independent of the other parameters.
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Figure 4: Radar polarimetric radiometry for several biomasses and
soil moisture content, as given in Table 1.

which makes the trunk double bounce with soil decrease
which mainly corresponds to HH.

It can be seen that the influence of the input parameters
on the output ones is complex and that incorporating in the
analysis additional data may be fruitful.

4. Optical Simulations

4.1. Optical Simulations for Forest without Leaves. First the
scene is composed of only flat soil, trunks, and branches. No
leaves are considered, which corresponds to winter season for
deciduous trees.

Figure 6 shows the evolution of the spectral reflectance,
on such a temperate forest with a ground cover (grass rye),
for several biomasses corresponding to growing ages.

The soil spectrum and the bark one are plotted also. One
can see that the shape of the various scene spectra follows the
soil one all the more so as the biomass is low. An explanation
of this result is that as forest age is growing, the number
of branches per unit area decreases, in spite of an increase
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Figure 5: Radar polarimetric radiometry for several biomasses and
branches moisture content.
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Figure 6: Reflectance spectra of the whole scene for different
biomasses, as well as for the bare organic soil and for the bark.

in branches weight, and then the part of soil in the images
decreases.

It is coherent with the fact that barks spectrum presents
low influence, except for small biomasses.

Figure 7 deals with the same forests with a mineral
soil with two moisture contents: a dry one (m.c. ideally
considered at 0%) and a wet one (m.c. of 30%). One can see
that the spectral reflectance of the whole scene tightly follows
the soil spectra.
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Figure 7: Reflectance spectra simulated for several ages of forest
and a mineral soil with a 0% m.c. for the first one and a 39% m.c.
for the other one. In addition, the measured reflectance spectra of
the soil for both m.c. are displayed in orange.

Comparing both scenes, it is clear that scene reflectance
spectra are more sensitive to biomass for organic soil than for
mineral ones, which can be explained by the fact that the pine
bark spectrum is closer to the mineral soil spectrum than to
the grass rye one.

We can see here that the spectral reflectance of the scene
is more affected by the change in soil moisture content than
in biomass.

4.2. Optical Simulations for Forest with Needles. Here leaves,
needles as a matter of fact, are considered. For the first
simulation, several soil spectral signatures of the same kind
of soil with moisture content from 0% for a dry soil to
39% for a wet soil, have been chosen as the soil spectral
signature. The biomasses are identical to those used for radar
simulations. The optical indexes have been computed for the
previous parameters and are shown in Figure 8.

One can notice that the NDVI is a little bit sensitive to
the biomass evolution and independent of the soil moisture
content parameter. In fact, when the biomass is increasing,
the LAI is decreasing, because as each tree biomass is
growing, their density is decreasing, so the part of the soil
in the pixel is more and more important.

For same reason, the NINSOL is more sensitive to soil
moisture content for high biomass.

For the second simulation, several leaves moisture con-
tents have been simulated with PROSPECT, from 39% to
92%, and the corresponding optical signatures have been
chosen as the leaves spectral signature. The biomass varies
the same way as previously. The result is shown in Figure 9.
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Figure 8: Sensitivity of spectral indices for several biomass and soil
moisture content, as given in Table 1.
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Figure 9: Sensitivity of spectral indices for several biomasses and
leaves moisture content.

One can observe that the NDVI is not sensitive to leaves
moisture content and evolutes the same way as in Figure 8.

For the GVMI, strong variations can be seen in the
figure. The GVMI is much more significantly linked to leaves
moisture content, than to biomass.

The NINSOL presents the same evolution with biomass
and leaves moisture content. This optical index is more
sensitive to leaves moisture content that it is supposed to be.
An explanation is than this optical index has been designed
for bare soils, which is not the case here since part of its
variation is due to vegetation.
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Figure 10: Result of a PCA on radar HH, HV, and VV radiometry.
In the 3D representation of the 3 third vectors, the color corre-
sponds to the volume m.c. and the symbol to the soil m.c. The
corresponding biomass from 14 to 133 ton/ha is indicated in the
figure.

5. Radar and Optical Complementarity with
Unsupervised Data Analysis

With the radar and the optical outputs of the previous
simulations on two types of forest, analyses of radar and
optical data have been done with an unsupervised data
analysis: the Principal Component Analysis (PCA).

All combinations of biophysical parameters were taken
into account for a total of 216 simulations: 6 biomasses, 6
soil moisture content, and 6 leaves and branches moisture
content, as previously indicated in Table 1.

The PCA principle [20] is to represent the data in a new
base which maximize the variance along the axes. The axes
are given in a decreasing order of variance: the first one
is the axis that maximizes the variance; the second one is
the axis perpendicular to the first one that maximizes the
variance, and so on for the other axes. These three first axes
only will be plotted, in order to link them to biophysical
parameters.

5.1. Forest without Leaves. In a first time, the scene with soil,
trunks, and branches only will be considered. This situation
is an approximation of a winter temperate forest but without
snow in the scene.

We can see in Figure 10 that with the polarimetric radar
radiometry only as an input of the PCA, there is a separation
for soil moisture content, for volume moisture content, and
for biomasses lower than 50 ton/ha. It seems that there is
poor sensitivity for high biomasses.
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Figure 11: Result of a PCA on radar HH, HV, VV radiometry and
optical NINSOL index for forest without leaves.

For Figure 11, the optical index NINSOL is added to the
input list of the data analysis. NDVI and GVMI are not
computed in this case because there is no leaf in the scene.

We can notice that the biomass separation and the
volume moisture content separation are similar, while the
soil moisture separation is improved for low biomasses.
This result was expected because the NINSOL has been
designed to be sensitive to soil moisture content and so
brings information on this parameter variation in the data
analysis.

However, it seems that this information was already
included in the radar results, that is, the fact that HH
backscattering is sensitive to soil moisture content.

5.2. Forest with Needles. Now, simulated data on forest with
needles are injected as input of the PCA. Radar data are
simulated at P-band, with a wavelength of roughly 70 cm.
Consequently, for radar simulations, the presence of leaves
has no effect on the results, and then the results with or
without leaves are the same.

With optical indexes only, as in Figure 12, there is a very
good separation for volume moisture content and a good
separation for soil moisture content lower than 29%.

This result may be explained by the fact that NDVI and
GVMI are, respectively, sensitive to LAI, and so biomass, and
to leaves moisture content. But the leaves are occulting the
soil, and so the NINSOL which has been designed for bare
soils cannot be sensitive to soil moisture content, as it was
for forest without leaves.

In Figure 13, radar data are incorporated in the PCA. In
this case, we can notice that the separation is in the same

0.25

0.2
0.15

0.1

0.05
0

−0.05

−0.1 0.1
0.05

0
−0.05

−0.1

−0.08
−0.06
−0.04
−0.02
0
0.02
0.04

T
h

ir
d 

sc
or

e

Volume m.c.:
1
2
3
4
5
6

Soil m.c.:
0%
18%
24%
29%
34%

39%

First score
Second score

Volume 
m.c.

Biomass 

Soil m.c. 

128 ton/ha

133 ton/ha

50

88 ton/ha

114

Figure 12: Result of a PCA on optical NDVI, GVMI, and NINSOL
indexes for forests with needles.
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Figure 13: Result of a PCA on radar HH, HV, VV radiometry
and optical NDVI, GVMI, and NINSOL indexes, for forests with
needles.

order for biomass and volume moisture content as with
optical data only as input as the PCA.

In addition, the soil moisture content is well separated in
this case. This shows the interest of the fusion of radar and
optical data to retrieve biophysical parameters.
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Finally, a PCA with the same inputs as previously but
without VV was performed, and its result is displayed in
Figure 14.

One can see that the separation is the same as when VV is
one of the inputs, with close results for soil moisture content
and volume moisture content. Only the biomass is a little less
well separated. This result is very interesting for evaluating
the performances while working with dual-polarization or
compact-polarization radar [21].

We have seen in this section that the unsupervised
data analysis was well separating the data along the three
biophysical parameters. This result allows us to see how the
same data will evolve with a supervised data analysis.

6. Radar and Optical Complementarity with
Supervised Data Analysis

The considered data analysis is the Canonical Analysis [22].
The principle of this analysis is close to the PCA but with
the objective of minimizing the variance of data inside some
classes and maximizing the variance between the classes.
Here again, the data are represented in a new base in which
the axes are given in a decreasing order of variance.

The three radar intensities and three optical indexes
previously computed for forests with needles are the input
of the supervised data analysis.

The first Canonical Analysis was performed with the
three radar inputs and with the three optical inputs pre-
viously computed on forest with needles, and classes of
constant biomass were done.
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Figure 15: Result of a Canonical Analysis performed on biomass,
with radar HH, HV, VV radiometry and optical NDVI, GVMI and
NINSOL indexes.

In Figure 15, the separation along the biomass parameter
is obvious for the first score. In addition, we can see a good
separation of soil moisture content and volume moisture
content for very low biomass. This can be explained by the
fact that after having found the first axis that will maximize
the separation of data along the biomass parameter, the
canonical analysis will act like a PCA and will find the effects
of the two other parameters in the data.

In order to separate the data along the three parameters,
two other Canonical Analyses were performed with classes of
same soil moisture content for the second Canonical Analysis
and classes of same volume moisture content for the third
one.

A data representation is proposed with the first score of
the three Canonical Analyses displayed along the three axes.

In Figure 16, the very good separation of the three
parameters can be seen. The separation is almost performed
along orthogonal planes, which will facilitate future param-
eter retrieval. The only disadvantage is the need for training
data covering the range of the three parameters.

7. Conclusion

A parallel model for simulating electromagnetic scattering
and optical reflectance spectrum of forests has been pre-
sented. It starts from a growth model, and the subsequent
geometrical discrete description is the common input for
both optical and radar models. A sensitivity analysis has been
carried out for the first time on P-band polarimetric radar
scattering and on optical data separately, for forests without
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Figure 16: Result of a Canonical Analysis performed on biomass,
with radar HH, HV, VV radiometry and optical NDVI, GVMI, and
NINSOL indexes.

leaves and for forests with needles. Then, the sensitivity study
has continued with fusion of radar and optical data with
two data analyses: a nonsupervised analysis, the Principal
Component Analysos, and a supervised one, the Canonical
Analysis.

In this paper, it was shown that radar results, which are
identical whatever the presence of leaves or needles, lead to
a good separation of volume moisture content and of soil
moisture content for low biomass, that is, lower than roughly
50 ton/ha. In addition, low biomasses are well separated
from larger ones. On the other hand, optical data, in the
case of forest with needles, leads to a good separation of
the biomass and the volume moisture content, but the soil
moisture content is not well separated. In the case of trees
without leaves, that is, deciduous trees in winter, fusion
improves slightly the radar results. In the case of trees with
needles, the fusion of both radar and optical data allows a
good separation of the three biophysical parameters, making
possible inversion strategies based on such mixed data.

It was also shown that with such a fusion, compact pola-
rimetry yields performances close to full polarimetry ones.

To sum up, this sensitivity analysis has exhibited the
benefit which may be withdrawn from the use of parallel
radar and optical models and the improvement of the
inversion of forests biophysical parameters thanks to the
fusion of radar and optical data.
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