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Abstract

The field of deep learning is renowned for its resource-intensive nature, hence

improving its environmental impact is crucial. In this paper, we propose a

novel model compression method to mitigate the energy demands of deep

learning for a greener, and more sustainable AI landscape. Our approach re-

lies on an asymmetric weakly-differentiable pruning function that leverages

weight statistics to directly incorporate adaptable pruning into the quan-

tization mechanism. This enables us to achieve higher compression rates

globally while simultaneously reducing energy consumption and minimiz-

ing classification performance degradation. The efficacy of our approach

was evaluated using three distinct models on three distinct datasets: cere-

bral emboli (HITS), epileptic seizure recognition (ESR), and MNIST. Our

method demonstrated a superior balance between compression, energy con-

sumption, and classification performance compared to other state-of-the-art

extreme quantization methods, across all models and datasets. In fact,
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on the HITS dataset with a two-dimensional convolutional neural network,

we achieved strong gains of 50.6%, 54.9%, 52.1% in compression rates (of

the global model and the quantized layers only, respectively) and energy

consumption, respectively, while improving the Matthews correlation coef-

ficient by 2.5% compared to other approaches. The code is available at:

https://github.com/yamilvindas/pTTQ

Keywords: Model compression, Model quantization, Model pruning,

Signal classification, Transcranial Doppler
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1. Introduction

Deep learning models, such as convolutional neural networks (CNNs)

and transformers, have demonstrated considerable success in a multitude of

applications, including computer vision [1, 2], natural language processing

[3], and signal processing [4, 5, 6]. However, these models often possess

a considerable number of parameters, elevated energy consumption, and

prolonged inference times [7], rendering them unsuitable for environmental

constraints.

Recent works have sought to reduce the memory and resource require-

ments of these models by employing different model compression techniques

[8]. Techniques such as quantization [9], pruning [10], and neural architec-

ture search (NAS) [11] have demonstrated impressive results by reducing

the number of parameters of deep learning models without a considerable

compromise of the model performance. Quantization is a technique that

reduces the precision of model parameters (weights and/or activations) in

order to decrease the memory footprint, energy consumption and inference
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time. Pruning involves removing (by setting to zero) some of the model pa-

rameters in order to eliminate redundancy, and it even acts as a regularizer

[10]. NAS is a method that works towards finding efficient architectures

that are suited for a desired task and that respect certain criteria. How-

ever, these techniques are often employed separately or sequentially, which

can increase the development time of the models and may result in subop-

timal performance in terms of classification, compression, and energy, due

to the decorrelation of the tasks. Furthermore, NAS can facilitate the cre-

ation of highly efficient networks; however, it is often a time-consuming

process that requires significant computational resources to achieve opti-

mal outcomes [12]. A solution consists of combining pruning and extreme

quantization1, fostering the creation of sparser models without substantial

performance drop. The sparsity in these models can be leveraged to reduce

energy consumption, inference times, and memory requirements through

efficient sparse encoding.

In this paper, we focus on extreme (ternary) quantization and pruning,

and we propose a method to perform both simultaneously. On one side,

trained ternary quantization (TTQ) [13] sets the weight to either zero, a

negative value, or a positive one, using symmetric thresholds. On the other

side, a pruning mechanism is integrated within the ternarization process to

prune the parameters zeroed by TTQ. And we expand the search space of

quantized models by employing asymmetric thresholds. This task is nontriv-

ial, as pruning needs to be tailored to both the layers of the model and the

dataset to prevent a significant decrease in the task-specific performance.

1Quantization methods that prioritize low bit-width quantized weights, often fewer

than 4 bits.

3



To do this, we introduce a weakly-differentiable threshold function based on

[14], but adding two asymmetric thresholds that can be learned through-

out the training process. Finally, our method can be easily integrated into

more general compression methods such as Deep Compression, facilitating

seamless combinations with other model compression techniques. Our main

contributions can be summarized as follows:

• Novel asymmetric weakly-differentiable threshold function based on

the statistics of the weights with learnable parameters for pruning.

• New concurrent pruning and extreme quantization method, based on

ternary asymmetric weights.

• Improving compression rates without significantly compromising the

model performance.

• Extensive experimental validation highlighting the effectiveness of our

method, with state-of-the-art results in terms of compression/energy/

classification performance trade-off.

The rest of the paper is structured as follows. In section 2 we introduce

the works related to our method. In section 3 we present in detail the dif-

ferent components of our method. In section 4 we describe the experimental

setup that we use to validate our approach and present the results and their

discussion. Finally, in section 6 we conclude and present the guidelines of

our future work.
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2. Related work

2.1. Model quantization

Model quantization has been an important research topic in the deep

learning community in recent years. This has been driven by the need to

reduce the energy resources consumed by deep learning, especially in edge

applications where efficiency is critical.

Classic approaches can be based on matrix factorization (e.g., singular

value decomposition) and vector quantization [15] or weight sharing and/or

clustering [16, 17, 18, 19]. Weight sharing can be achieved using different

approaches, such as soft weight sharing based on Gaussian mixture models

[17], k-means clustering of the weights with or without identification of the

important convolutional filters [16, 18], or cross-layer parameter sharing [19].

Quantization can also be performed at different granularities: channel-

wise for CNNs [9], using subgroups of weights in the different layers [20],

or at different levels in depth and width of the weight tensors based on the

quantization error [21].

Furthermore, mixing different types of precision can be a solution to

the performance drop attributable to quantization [9, 22, 23, 24]. These

approaches can be expensive to apply, as the number of possible precision

combinations increases exponentially with the number of layers. Some works

have proposed solutions based on metrics extracted from the Hessian matrix

[22]. The general idea is that in a flat zone of the loss landscape, one can

carry out more aggressive pruning than in irregular areas. Some works have

demonstrated that, quantization can be effectively performed if a pre-trained

model is used, since near-optimal low-bit solutions exist close to the full-

precision (FP) solutions [25]. Following the same idea, other works propose
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adaptive quantization, where the bit-width used to encode the weights can

be adapted to the hardware or device conditions [26].

Knowledge distillation [27] is also a popular method for model compres-

sion, and can be applied to quantization [28, 29, 30]. Some works use it

directly to compensate for the performance drop due to quantization, with-

out reducing the size of the network or modifying its architecture [29]. Other

approaches use knowledge distillation to reduce the size of the model while

performing quantization [28]. Bai et al. [30] propose binary quantization for

BERT2 models using quantization-aware training (QAT) and post-training

quantization. First, they start by training with QAT a half-sized ternary

BERT. Then, they initialize the weights of a full-size binary BERT using a

ternary weight-splitting operator. Finally, they apply knowledge distillation

to recover from the performance drop attributable to quantization.

Moreover, most QAT methods are difficult to optimize due to their non-

differentiable nature. Consequently, the straight-through estimator (STE)

[31] is often employed to approximate gradients. Zhang et al. [32] pro-

pose using learnable quantizers to minimize quantization errors. Bhalgat et

al. [33] introduce LSQ+, an asymmetric quantization method suitable for

skewed distributions with negative values, along with a trainable scale and

offset. Additionally, some researchers attempt to reformulate the quantiza-

tion problem as a differentiable task using non-linear functions [34].

Another important aspect of quantization is whether quantization is sim-

ulated or not. Indeed, in simulated quantization, all the computation is done

in full-precision (FP), and thus the gain in inference time due to quantiza-

tion can be negligible. Most quantization works use simulated quantization,

2Bidirectional Encoder Representations from Transformers.
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which does not allow one to easily take advantage of arithmetic operations

to improve latency and reduce energy consumption [9]. Some recent works

propose the use of integer-only quantization, taking advantage of arithmetic

operations [35, 36, 37] to reduce inference time and energy consumption,

while reducing memory requirements.

Finally, even though numerous works focus on quantizing the model pa-

rameters using 4 bits or more, extreme quantization can be of interest as it

can further reduce the memory requirements of the models. Different ap-

proaches have been studied to achieve extreme quantization, such as binary

networks [38, 39, 40, 30], ternary models [13, 29, 21, 41], or mixed-precision

quantization [42]. Most of these binary or ternary networks work with weight

tensors having binary (0 or 1) or ternary (-1, 0, or 1) values multiplied by

FP coefficients. The main difference in the various methods is the heuristics

used to binarize or quantize the weights, which often depends on manually

selected thresholds or thresholds based on the statistics of the weight ten-

sors. Moreover, extreme quantization often creates significant noise during

training because of STE approximation of the gradients, which can lead

to difficult optimization. Fan et al. [43] proposed to tackle this issue by

selecting a random subset of weights to quantize instead of quantizing all

the weights, making it possible to keep some gradients without error, thus

improving the gradient flow.

While several model quantization methods have successfully achieved

significant compression rates, only a limited number of approaches capitalize

on pruning to further enhance compression.
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2.2. Model pruning

An alternative to parameter quantization is parameter pruning, where

a subset of the parameters is set to zero based on different criteria. It has

been shown that pruning can be a very effective technique for model com-

pression without requiring a strong modification of the main architecture

or training strategy [10]. Moreover, it has also been shown that, due to

over-parameterization, there is often redundancy in the parameters of deep

learning models; thus pruning can act as a regularizer, improving the gen-

eralization capabilities of the models [10]. This has been empirically shown

and studied for different types of models, such as CNNs [44] a transformer

models [45].

Different approaches can be used to prune the weights of a model. Classic

approaches are based on removing the smaller weights (according to a certain

metric, e.g., the L1 norm) by setting them to zero [16]. More sophisticated

models carry out gradual pruning during training until the desired sparsity

rate is reached [46], or use determinantal point processes to select a subset of

neurons in a layer and fuse them [47], or carefully select the layers/filters to

prune, based on their importance [48] (which is computed using the statistics

of the next layer’s parameters).

Moreover, due to the threshold operator, pruning operations are often

non-differentiable, which makes them difficult to automatically tune during

training. Some approaches try to solve this by using different methods to

optimize pruning, such as reinforcement learning (RL) [49] or genetic algo-

rithms [50]. Manessi et al. [14] proposed a differentiable threshold function

with learnable parameters, making it possible to automatically prune the

models while increasing the compression rates.

Finally, quantization and pruning can be used together, as they are com-
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plementary. Different works have shown that combining both strategies can

be beneficial [16, 51, 17, 52]. This can be done by the sequential application

of both techniques [16, 51], using Bayesian optimization techniques [52] or

soft-weight sharing [17].

However, to the best of our knowledge, we propose the first incorpora-

tion of a learnable pruning mechanism into an extreme quantization process

(ternarization), applied to several model architectures extensively evaluated

on three different datasets. This could facilitate a more efficient optimiza-

tion of both quantization and pruning, carried out concurrently, without

significant performance degradation.

3. Methods

In this section we specify the different components of our method: the

weakly-differentiable threshold function used for pruning, the concurrent

ternarization and pruning process, and the strategy employed for selecting

the layers to undergo quantization. An overview of our method can be found

in Figure 1.

3.1. weakly-differentiable threshold function

We propose to use a weakly-diffedrentiable threshold function to achieve

simultaneous pruning of weights and ternary quantization. To this end, we

propose to use the following function p, inspired from [14]:

p(w; tmin, tmax, α) = ReLU(w−∆w(tmax))+∆w(tmax)×S(α×(w−∆w(tmax)))

−ReLU(−w −∆w(tmin))−∆w(tmin)× S(α× (−w −∆w(tmin))) (1)

where S : x → 1
1+e−x is the sigmoid function, tmin, tmax ≥ 0 are two

hyperparameters controlling the minimum and maximum pruning thresholds
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Figure 1: Training loop overview of the TTQ pruning function (on the left) compared to

our proposed pruned TTQ (pTTQ) method (on the right). Unlike TTQ, the normalization

step (first arrow) is not mandatory, and the model pruning is done direcly by a weakly-

differentiable pruning function with learnable threshold parameters ∆min
w and ∆max

w

(denoted as ∆min
w and ∆max

w in Figure 1), and ∆w : R → R is a function

of w (the weight tensor to be quantized) defined as ∆w : t → µw + t × σw

where µw and σw are the mean and standard deviation of w. For the sake of

clarity, we denote ∆min
w = ∆w(tmin) and ∆max

w = ∆w(tmax). This function

is weakly-differentiable, and the weak derivatives of p with respect to tmin

and tmax are the following:

∂p

∂tmin
(w; tmin, tmax, α) = σw×H(−w−∆min

w )−σw×S(α× (−w−∆min
w ))

+ σw × α×∆min
w × S(α× (−w −∆min

w ))× (1− S(−w −∆min
w )) (2)
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∂p

∂tmax
(w; tmin, tmax, α) = −σw ×H(w−∆max

w )+σw ×S(α× (w−∆max
w ))

− σw × α×∆max
w × S(α× (w −∆max

w ))× (1− S(w −∆max
w )) (3)

where H is the Heaviside step function defined by H(x) = 1 if x ≥ 0,

H(x) = 0 otherwise.

As noted in [14], equations 2 and 3 are different from zero almost every-

where, allowing good gradient flow using gradient descent. The differences

with respect to [14] lie in two key aspects: (1) our proposal incorporates

two asymmetric thresholds as opposed to a single threshold, and (2) our

thresholds depend on the statistics (mean and standard deviation) of the

input tensor.

3.2. Pruned trained ternary quantization (pTTQ)

Unlike trained ternary quantization (TTQ) [13], our approach involves

directly applying pruning during ternarization using the p function from

Section 3.1. In contrast to the TTQ pruning method, which relies on fixed

thresholds derived from potential outliers in the weights’ distribution (max-

imum absolute value of the weights), our approach utilizes trainable pruning

thresholds determined by the mean and standard deviation of the weights’

distribution. This approach is better suited for asymmetric weights distri-

butions, which is typically the case for a layer’s weights, and it enables our

method to adapt to new data distributions and models more effectively.

Let w ∈ R denote a FP weight, and wt ∈ R its ternarization. We

compute wt from w as follows:

wt = (
sgn(p(w, a, b, α))− 1

2
×Wl+

1 + sgn(p(w, a, b, α))

2
×Wr)×sgn(p(w, a, b, α))

(4)
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where Wl,Wr > 0 are learnable scaling parameters, and sgn is the sign

function. The (scaled) gradients of the loss function L with respect to w are

computed in the same way as in TTQ, using the straight-through estimator:

∂L
∂w

= [(
sgn(p(w, tmin, tmax, α))− 1

2
×Wl+

1 + sgn(p(w, tmin, tmax, α))

2
×Wr)

× sgn(p(w, tmin, tmax, α)) + (1− |sgn(p(w, tmin, tmax, α))|)]×
∂L

∂wt
(5)

Furthermore, unlike to TTQ, we do not necessarily need to normalize

the FP weights before quantization. In fact, this is not necessary because

our approach has learnable parameters (tmin, tmax, and α) that can adapt to

the weights of a layer during training. These parameters can be global (i.e.,

the same for all layers in the model that are to be quantized), or local (i.e.,

one set of parameters per layer to be quantized). We refer to our method

as ”pTTQ” for pruned Trained Ternary Quantization.

3.3. Quantization layer selection

To select the layers to be quantized, we used the Hessian-based metric

introduced in [23]. Therefore, in order to respect the assumptions of this

metric, we used FP pre-trained models as initialization for the different

quantization approaches.

The rationale behind this approach is that the Hessian metric provides

information about the curvature of the loss landscape: small values indicate

a flat loss landscape, while high values indicate a more curved landscape.

Thus, extreme quantization of layers with a highly curved loss landscape

(high values of the metric) is prone to higher performance degradation be-

cause the model can easily escape the local minima reached. On the contrary,

extreme quantization of flat zones of the loss landscape (small values of the
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metric) is more robust to the approach as it is more difficult to escape the

local minima reached.

3.4. Model compression evaluation metrics

We introduce the notations and metrics that we used to compare different

methods from three distinct perspectives: sparsity, compression, and energy

consumption. We denote by MFP the FP model composed of L layers, and

MQ a quantized model obtained from the FP model. We also assume that

we have three functions: nbits, nqw, and nzqw. The first one, nbits, counts

the number of bits necessary to store the (non-zero) weights of a model.

The second metric, nqw, counts the number of weights within the selected

quantization candidates of the model. Meanwhile, the third metric, nzqw,

counts the number of weights that are equal to zero within the selected

quantization candidates of the model. The main difference between nqw

and nzqw is that the former takes into account all the weights, while the

latter only focuses on the zero weights.

Sparsity. Sparsity is evaluated based only on the weights selected for quan-

tization. Thus, we denote the sparsity rate of the quantized weights as

SRQW , which is defined as follows:

SRQW (MFP ,MQ) =
nzqw(MQ)

nqw(MFP )

Higher values of SRQW indicate higher sparsity of the quantized model

with respect to the FP model.

Compression. We measure the compression performance of the different

methods based on the global (whole model) and local (only the weights

13



selected for quantization) compression rates. Therefore, we denote the com-

pression rate as CR, which is defined as follows:

CR(MFP ,MQ) =
nbits(MQ)

nbits(MFP )

Moreover, to facilitate the comparison between methods, we also work

with the compression rate gain CRG:

CRG(MFP ,MQ) = 1− CR(MFP ,MQ)

Finally, we distinguish the compression rate gain of the whole model, CRT
G,

from that of the layers selected for quantization, CRQ
G.

Energy consumption. Accurately assessing model energy consumption is

challenging because manual measurements depend on hardware and envi-

ronmental factors, and because custom hardware can be designed to opti-

mize sparse and quantized tensor operations, depending on the model and

application requirements.

Therefore, we introduce our own energy consumption metric using the

orders of magnitude of 32 floating point operations given in [53], and those

of random access memory (RAM) data transfers given in [54]. Our aim is

to provide orders of magnitude of the energy consumption (in Joules) of the

different models in order to fairly compare the ternary quantization methods

from both the sparsity and quantization perspectives. To do this, we make

three assumptions : (1) only the non-zero parameters are counted for the

multiplications and additions; (2) multiplications and additions have the

same energy consumption3, that of a 32 floating-point multiplication, i.e.,

3We take the worst case, as separating multiplications from additions is not straight-

forward.
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3.7 pJ according to [53]; and (3) only the non-zero weights are transferred

to RAM, by blocks of 32 bits (4 bytes). Hence, the energy consumption

metrics, ECMA, ECDT , and ECT , corresponding to the mult-adds, data

transfer, and total consumption, respectively, are defined as follows:

ECMA(M) = NMA × 3.7× 10−12J (6)

ECDT (M) = 10−9 ×
L∑
i=1

(⌈nnzw(Mi)×Bi

32
⌉+N i

SF )J (7)

ECT (M) = ECMA(M) + ECDT (M) (8)

where M is the evaluated model, NMA is the number of multiplications and

additions necessary to obtain the output of the model, nnzw is a function

counting the number of non-zero weights in a given tensor, for all i ∈ [1, L],

Mi corresponds to layer i of M, Bi is the number of bits used to encode

one weight of that layer (32 for an FP model, 2 for a ternary one), and N i
SF

is the number of scaling factors used for that layer (0 for FP models, and 2

for ternary models4). Finally, we can define the energy consumption gain,

ECT
G, of a sparse quantized model MQ with respect to its FP counterpart

MFP as follows:

ECT
G(MQ) =

|ECT (MFP )− ECT (MQ)|
ECT (MFP )

(9)

4. Experiments

4.1. Experimental setup

4.1.1. Datasets

TCD HITS dataset. Our main interest is the classification of transcranial

Doppler (TCD) high-intensity transient signals (HITS) between artifacts

4FP models do not require scaling factors as no ternarization is performed.
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(Art.), gaseous emboli (GE), and solid emboli (SE). This detection of solid

emboli is an important task as it can help clinicians prevent ischaemic stroke

because emboli can block cerebral arteries. To train the different models,

we used a private TCD HITS dataset consisting of 1 545 HITS (569 SE,

569 GE, and 403 Art.), each with an associated audible TCD signal and

its corresponding time-frequency representation. For more details on this

dataset and the different pre-processing steps, we refer the reader to [55].

Epileptic seizure recognition (ESR) dataset. We propose to evaluate our

method on another medical signal processing task, namely, epileptic seizure

recognition (ESR), using the pre-processed ESR dataset of the UCI reposi-

tory [56]. The dataset consists of 11 500 electroencephalogram (EEG) sig-

nals, equally distributed into five classes: (1) seizure activity and (2)–(5) no

seizure activity. As in most works, we focus on binary classification where

the first class consists EEG signals with seizure activity and the second class

corresponds to the rest of the samples. For more details about this dataset

and the different pre-processing steps, we refer the reader to [56, 57].

MNIST dataset. We also propose to use a subset of the MNIST dataset

[58] to evaluate our method. To reduce the computational requirements, we

propose to reduce the original MNIST training set from 60 000 images to 6

000 by keeping only 10% of the samples. Nevertheless, the test set remains

untouched, with 6 000 test samples.

4.1.2. Optimization strategy

All the models (FP and quantized ones) were optimized using the Adamax

optimizer, with different learning rates and weight decay values. As indi-

cated in [13], the gradients are computed using the quantized weights, and
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the FP weights are updated using these gradients.

Furthermore, for pTTQ, we propose to use different learning rates for

the various hyperparameters: one for the weights of the model and one for

the learned thresholds tmin and tmax. These parameters are also optimized

using Adamax, with an additional cosine annealing learning rate scheduler

using a maximum of 10 iterations.

4.1.3. Evaluation metrics

To measure the performance of the different FP and quantized models,

we used several metrics. For the model compression metrics, we used those

introduced in 3.4. For the classification performance, we used the Matthews

Correlation Coefficient (MCC) and the MCC drop with respect to the FP

model ∆MCC = MCC(MQ)−MCC(MFP ).

Finally, for statistical purposes, all the experiments were repeated 10

times. The reported metrics correspond to the mean and standard deviations

of those repetitions.

4.1.4. Implementation details

All the codes were implemented using Pytorch and Scikit-Learn, and a

batch size of 32 was used for all experiments. The different experiments were

run on two high performance computing clusters: one with 25 heterogeneous

machines (each machine with between 16 Gb and 128 Gb of RAM, CPUs

with 8–32 cores, and different types of Nvidia Quadro RTX and Tesla GPUs),

and another with NVIDIA Tesla V100 GPUs5. The GitHub for the MNIST

and PTB experiments can be found at: https://github.com/pTTQSubmission/pTTQ.

5For a detailed description of this cluster, we refer the reader to

http://www.idris.fr/jean-zay/jean-zay-presentation.html
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4.2. Experiment 1: Comparison with state-of-the-art extreme quantization

methods

The aim of this experiment is to compare our approach with three state-

of-the-art (quantization) methods: a binary method (DoReFa [38])6 using

1-bit encoding for quantized weights, a ternary method (TTQ [13]) using

2-bit encoding, and a FP model encoding weights with 32/64 bits.

To this end, we trained different models on the three aforementioned

datasets. For the HITS and ESR datasets, we used the 2D CNN and the

1D CNN-Transformer from [57]. For the MNIST dataset, we used a vanilla

2D CNN model consisting of an encoder with two convolutional layers with

10 and 20 kernels of shape 5 × 5 (followed by max pooling and a ReLU

activation function), and a classifier consisting of two linear layers with 80

and 50 input features, respectively. Moreover, we applied dropout with a

ReLU activation function after the first linear layer, as well as dropout with

a probability of 0.5, and a logarithmic softmax activation after the second

linear layer.

The training parameters were adapted to the dataset and the model, as

reported in Table 1. For the 2D CNN model on the HITS dataset, a learning

rate of 10−3 was used for both the scaling factors and the thresholds. For

the ESR dataset, the 2D CNN model was trained using a learning rate

of 10−3 for the scaling factors and 10−5 for the thresholds, while the 1D

CNN-Transformer was trained using a learning rate of 10−4 for both the

scaling factors and the thresholds. For the rest of the models, the previously

mentioned learning rates were identical to the global learning rate. The

6Binary methods yield non-sparse models as 0 is not a possible quantization value, but

they tend to have higher compression rates for the non-zero weights.
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results are presented in Table 2.

First, we can observe that in terms of energy consumption, pTTQ is

the best performing method for all the tested models and datasets. This is

evidenced by the improvements from 0.13% to 71.99% for ECT
G with respect

to DoReFa or TTQ. In particular, for the 2D CNNs on the HITS and ESR

datasets (the ones with the highest percentage of weights to be quantized),

this improvement is remarkable, with enhancements from 13.87% to 71.99%.

This is an important advantage of our method, especially for energy-limited

applications.

Second, we note that, as expected, in terms of compression the best

performing models are obtained with the binarization method DoReFa, fol-

lowed by ternarized models with our pTTQ approach. Indeed, DoReFa

outperforms TTQ and pTTQ by margins ranging from 3.05% to 64.22% in

terms of CRT
G. However, while the discrepancy between TTQ and DoReFa is

consistently above 10.79% CRT
G, pTTQ comes closer to DoReFa in terms of

compression, despite necessitating an additional bit to encode the quantized

weights. Moreover, pTTQ is capable of outperforming DoReFa in terms of

compression for the 1D CNN-Transformer model on the ESR dataset, with

an improvement of CRT
G of 0.40%. Additionally, despite going from 32 bits

to 1 bit when using DoReFa, CRQ
G is not 100%, as some 32-bit scaling factors

are still required.

Third, it is observed that in terms of classification, the model and the

dataset influence the performance of quantization methods. In particular,

for the HITS dataset (our main application), the best performing quanti-

zation method is pTTQ with margins of up to 4.28%. In addition, it can

be observed that the 1D CNN-Transformer model exhibits a notable en-

hancement in classification performance when pTTQ is employed, with an
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Table 1: Experiment 1: Training parameters for the different models based on the dataset

and the quantization method used. tinit
min and tinit

max correspond to the initial values chosen

for tmin and tmax at the beginning of the training procedure. lr corresponds to the

learning rate. In the last column, we specify the percentage of weights of the model to be

quantized, selected using the Hessian-based metric outlined in section 3.3.

Dataset Model
Quant.

tinitmin tinitmax α lr Epochs
No. % weights

method params. to quantize

HITS

2D CNN

FP - - - 10−3 50

1 681 923

-

DoReFa [38]
- - - 3× 10−3 50

92.05TTQ [13]

pTTQ 2 2 104 5× 10−3 20

1D CNN-Trans.

FP - - - 7× 10−2 150

766 271

-

DoReFa [38]
- - - 10−4 50

14.97TTQ [13]

pTTQ 3 3 103 10−5 150

ESR

2D CNN

FP - - - 10−3 100

1 555 842

-

DoReFa [38]
- - - 10−3 50

99.51TTQ [13]

pTTQ 4.5 4.5 103 10−3 70

1D CNN-Trans.

FP - - - 3× 10−1 100

109 942

-

DoReFa [38]
- - - 10−3

150

24.22TTQ [13] 100

pTTQ 1 1 800 10−3 150

MNIST 2D MNIST CNN

FP - - - 10−3 70

9 840

-

DoReFa [38]
- - - 10−4 200

53.35TTQ [13]

pTTQ 1 1 104 5× 10−6 50

20



Table 2: Results of Experiment 1, in %. FP corresponds to the FP model where no

quantization has been performed. ∆MCC corresponds to the difference between the

MCC of the FP model and the MCC of the quantized model. CRT
G, CRQ

G, SRQW , and

ECT
G evaluate the compression and energy performance of each quantization method, and

were introduced in 3.4. Values in bold correspond to the highest values.

Dataset Model Quant. method CRT
G ↑ CRQ

G ↑ SRQW ECT
G ↑ MCC ↑ ∆ MCC ↑

HITS

2D CNN

FP - - - - 89.84± 3.09 -

DoReFa [38] 89.18± 0 96.87± 0 - 3.54± 0 85.05± 5.96 −4.79

TTQ [13] 24.96± 2.25 27.12± 2.44 28.96± 2.12 23 .42 ± 1 .30 86 .82 ± 2 .29 −3 .02

pTTQ 75 .54 ± 3 .39 82 .06 ± 3 .69 83.12± 3.47 75.53± 1.53 89.33± 4.45 −0.55

1D CNN-Trans.

FP - - - - 82.64± 1.77 -

DoReFa [38] 14.50± 0 96.87± 0 - 0.37± 0.03 84 .07 ± 3 .11 +1 .43

TTQ [13] 0.14± 0.04 0.91± 0.27 6.75± 0.26 1 .88 ± 0 .03 83.22± 2.36 +0.58

pTTQ 8 .37 ± 0 .05 55 .89 ± 0 .34 58.50± 0.32 2.01± 0.05 85.12± 1.94 +2.48

ESR

2D CNN

FP - - - - 92.81± 3.53 -

DoReFa [38] 96.40± 0 96.87± 0 - 29.90± 0 94 .12 ± 0 .87 +1 .31

TTQ [13] 85.61± 1.37 86.03± 1.37 86.59± 1.29 76 .45 ± 1 .13 95.00± 1.11 +2.19

pTTQ 93 .35 ± 0 .96 93 .80 ± 0 .96 94.17± 0.91 90.32± 0.69 92.23± 2.32 −0.58

1D CNN-Trans.

FP - - - - 94.33± 1.51 -

DoReFa [38] 23 .46 ± 0 96 .86 ± 0 - 0.90± 0 96.79± 0.55 +2.46

TTQ [13] 11.40± 2.61 47.07± 10.79 50.22± 10.16 3 .21 ± 0 .66 96.25± 0.79 +1.92

pTTQ 23.86± 0.04 98.54± 0.16 98.67± 0.15 6.04± 0.01 96 .35 ± 0 .95 +2 .02

MNIST 2D MNIST CNN

- - - - - 94.39± 0.46 -

DoReFa [38] 51.67± 0 96.84± 0 - 3 .28 ± 0 87.03± 7.14 −7.36

TTQ [13] 13.86± 2.33 25.97± 4.37 30.40± 4.12 2.58± 0.35 92.09± 0.89 −2.30

pTTQ 33 .92 ± 1 .02 63 .58 ± 1 .92 65.79± 1.80 6.10± 0.15 91 .01 ± 0 .61 −3 .38

increase of 2.48% in MCC compared to the FP model, while the standard

deviation is reduced.

Finally, based on the previous observations, we can see that pTTQ offers

an interesting trade-off between compression, energy consumption, and clas-

sification. This is evidenced by the fact that it is the method with the best

energy consumption metrics, while often achieving the best or second-best

compression and classification performance.
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4.3. Ablation study

We conducted a thorough study of pTTQ by performing an ablation

study to better understand the different components of our contribution.

We therefore studied three aspects. First, we analyzed the influence of hav-

ing a pruning function depending on the statistics of the weights. Second, we

examined the influence of having asymmetric pruning thresholds compared

to symmetric ones (original pruning proposed by [14]). Third, we investi-

gated the influence of having global or local hyperparameters for pruning

and quantization. Lastly, we studied the impact of training the hyperpa-

rameters tmin and tmax in controlling the pruning thresholds.

4.3.1. Experiment 2: Influence of pruning on weight statistics

We propose to prune the weights before ternarization using a differen-

tiable pruning function based on the statistics of the weights to be pruned.

An alternative to this is to directly train the initial thresholds, similarly to

what is done in [14]. Therefore, in this experiment, we trained the same

models as in the previous experiment (section 4.2), but we directly learn

∆min
w and ∆max

w , without making them dependent on the statistics of the

weights.

The training parameters of the pTTQ models are identical to those em-

ployed in the previous experiment. Those of the trained thresholds which

are independent of weights’ statistics can be found in Table 3. The results

are presented in Table 4.

First, we notice that using the statistics of the weights for pruning in

pTTQ helps to achieve higher energy consumption gains. Indeed, for the

majority of the models and datasets, quantization using pruning based on

the statistics of the weights is the method with the highest energy consump-
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Table 3: Experiment 2: Training parameters for the different models quantized without

using the weight statistics based on the dataset. ∆init
min and ∆init

max correspond to the initial

values chosen for the thresholds ∆min and ∆max that will be directly learned. lr, lrS ,

and lrT correspond to the global learning rate, the learning rate for the scaling factors,

and the learning rate for the learned thresholds (∆min and ∆max), respectively.

Dataset Model ∆init
min ∆init

max α lr lrS lrT Epochs

HITS
2D CNN 1 1 90 10−5 10−3 10−2 100

1D CNN-Trans. 1 0.5 200 10−3 10−3 10−2 200

ESR
2D CNN 1 1 100 10−3 10−3 10−2 50

1D CNN-Trans. 0.5 0.5 104 5× 10−4 5× 10−4 5× 10−4 150

MNIST 2D MNIST CNN 1 1 100 10−3 10−4 10−4 100

Table 4: Results of Experiment 2, in %. FP corresponds to the FP model where no

quantization has been performed. Weight statistics indicates whether the thresholds of

the pruning function depend on the mean and standard deviation of the weights (Yes),

or whether they are directly learned (No). CRT
G and ECT

G evaluate the compression and

energy performance of each quantization method, and were introduced in 3.4. Values in

bold correspond to the highest values.

Dataset Model Weight statistics CRT
G ↑ ECT

G ↑ MCC ↑

HITS

2D CNN
No 50.55± 0.74 42.21± 0.43 88.08± 3.67

Yes 75.54± 3.39 75.53± 1.53 89.33± 4.45

1D CNN-Trans.
No 12.36± 0.04 7.83± 0.02 81.81± 4.39

Yes 8.37± 0.05 2.01± 0.05 85.12± 1.94

ESR

2D CNN
No 95.80± 1.16 88.46± 3.56 92.47± 4.48

Yes 93.35± 0.96 90.32± 0.69 92.23± 2.32

1D CNN-Trans.
No 22.94± 3.55 5.79± 0.89 94.80± 4.52

Yes 23.86± 0.04 6.04± 0.01 96.35± 0.95

MNIST 2D MNIST CNN
No 37.48± 2.32 5.81± 0.43 93.57± 0.50

Yes 33.92± 1.02 6.10± 0.15 91.01± 0.61
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tion gain of ECT
G, with improvements ranging from 0.25% to 33.62%. The

only exception is the 1D CNN-Transformer, where the absence of weight

statistics for pruning results in an improvement of the energy consumption

gain by 5.82%. However, this gain comes at the expense of classification per-

formance, which is reduced by approximately 3.31% MCC (on average) with

respect to the quantized models using pruning based on weight statistics.

Following this, we also observe that, for the majority of models and

datasets, pruning based on the statistics of the weights also allows for im-

portant gains in terms of classification performance, with an improvement

of up to 3.13% MCC.

up to 3.13% MCC. Despite being quantized and pruned without using

the weights’ statistics, the 2D CNN model outperforms the others by a

margin of 0.24% and 2.56% MCC on the ESR and MNIST datasets, respec-

tively. Nevertheless, these models demonstrate lower energy consumption

gains than those quantized using weight-statistics-based pruning.

Lastly, in terms of compression, it can be observed that when pruning

is not performed based on the statistics of the weights, there is a tendency

for compression performance to increase. However, in the majority of cases,

this improvement is relatively small, with an increase of up to 3.99% in

CRT
G. On the other hand, the greatest gap in terms of CRT

G is obtained

when pruning the weights based on their statistics, with an increase in CRT
G

of 24.99%.

4.3.2. Experiment 3: Influence of asymmetric pruning

Another important aspect of our proposed approach is asymmetric prun-

ing. Indeed, we make the assumption that by enlarging the function search

space (using asymmetric thresholds instead of symmetric ones), we can find
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neural networks with a better trade-off between compression, energy con-

sumption, and classification performance. To do this, we modify pTTQ by

using the same (symmetric) pruning function as that described in [14].

The training parameters are the identical to those employed in the pre-

vious experiment. The only difference between the two experiments is that

in this experiment the models are trained with the pruning function of [14],

resulting in a single threshold being learned (initialized using ∆init
min as in the

previous experiment). The results are presented in Table 5.

Table 5: Results of Experiment 3, in %. FP corresponds to the FP model where no

quantization has been performed. Asymmetry indicates whether the thresholds of the

pruning function are asymmetric (Yes) or symmetric (No). CRT
G and ECT

G evaluate the

compression and energy performance of each quantization method, and were introduced

in 3.4. Values in bold correspond to the highest values.

Dataset Model Asymmetry CRT
G↑ ECT

G ↑ MCC ↑

HITS

2D CNN
No 50.55± 0.74 42.21± 0.43 88.08± 3.67

Yes 75.54± 3.39 75.53± 1.53 89.33± 4.45

1D CNN-Trans.
No 14.96± 0.01 6.90± 0.32 26.44± 33.07

Yes 8.37± 0.05 2.01± 0.05 85.12± 1.94

ESR

2D CNN
No 96.00± 1.01 88.70± 3.45 93.78± 1.29

Yes 93.35± 0.96 90.32± 0.69 92.23± 2.32

1D CNN-Trans.
No 24.16± 0.02 6.092± 0.004 94.62± 2.21

Yes 23.86± 0.04 6.04± 0.01 96.35± 0.95

MNIST 2D MNIST CNN
No 33.21± 12.22 5.29± 1.78 93.26± 0.83

Yes 33.92± 1.02 6.10± 0.15 91.01± 0.61

First, we observe that in terms of classification, asymmetric pruning

tends to yield a higher and more stable performance than symmetric prun-

ing before ternarization. Indeed, for all the models and datasets, the clas-

sification performance of asymmetric quantized models is relatively good
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(similar to the FP models), whereas the performance of the symmetrically

quantized models can drop drastically. This is the case for the 1D CNN-

Transformer model on the HITS dataset, where the symmetrically quantized

model achieves an MCC of 26.44± 33.07%, which corresponds to a decrease

of 58.68% MCC with respect to the FP and asymmetrically quantized mod-

els.

Second, asymmetric and symmetric pruning tend to give similar results

in terms of energy consumption. However, asymmetric pruning outperforms

symmetric pruning by a large margin of 33.32% ECT
G for the 2D CNN model

on the HITS dataset. In addition, the symmetrically quantized 1D CNN-

Transformer on the HITS dataset outperforms the one using asymmetric

pruning by a margin of 4.89% ECT
G, but this comes at the expense of a very

low classification performance (26.44±33.07% MCC vs. 85.12±1.94 MCC).

Lastly, both asymmetric and symmetric pruning perform similarly in

terms of compression. When symmetric pruning outperforms asymmetric

pruning, we observe two behaviors: either the classification performance is

low (e.g., the 1D CNN-Transformer on the HITS dataset with an MCC of

26.44 ± 33.07%), or the gap is relatively small, from 0.30% to 2.65% CRT
G.

Conversely, when asymmetric pruning outperforms symmetric pruning by a

large margin (24.99% CRT
G for the 2D CNN on the HITS dataset), the other

metrics (ECT
G and MCC) also exhibit a notable improvement (33.32% ECT

G

and 1.25% MCC for the 2D CNN on the HITS dataset).

4.3.3. Experiment 4: Global vs. local threshold parameters

The objective of this experiment is to compare two configurations of

our method: (a) when we have local pruning hyperparameters, namely, one

tmin and one tmax per quantized layer; and (b) when we have global pruning
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hyperparameters, namely, one tmin and one tmax for all the quantized layers.

To do this, we trained the different models on the three datasets, using

pTTQ with local and global hyperparameters (the same as in the previous

experiment). The results can be found in Table 6.

Table 6: Results of Experiment 4, in %. Granularity indicates whether the thresholds of

the pruning function are the same for all the layers (Global), or whether they are unique

for each layer (Local). CRT
G and ECT

G evaluate the compression and energy performance

of each quantization method, and were introduced in 3.4. Values in bold correspond to

the highest values.

Dataset Model Granularity CRT
G↑ ECT

G ↑ MCC ↑

HITS

2D CNN
Global 92.05± 0.00 87.53± 0.00 0± 0.00

Local 75.54± 3.39 75.53± 1.53 89.33± 4.45

1D CNN-Trans.
Global 14.96± 0.00 7.01± 0.37 43.57± 28.78

Local 8.37± 0.05 2.01± 0.05 85.12± 1.94

ESR

2D CNN
Global 99.51± 0.01 94.85± 0.00 5.27± 12.03

Local 93.35± 0.96 90.32± 0.69 92.23± 2.32

1D CNN-Trans.
Global 11.50± 0.34 3.09± 0.09 93.59± 1.10

Local 23.86± 0.04 6.04± 0.01 96.35± 0.95

MNIST 2D MNIST CNN
Global 0.10± 0.73 0.88± 0.14 59.43± 4.61

Local 33.92± 1.02 6.10± 0.15 91.01± 0.61

First, we note that, in terms of classification, locally learned quantiza-

tion parameters allow us to obtain a significantly better performance, with

up to 89.33% MCC improvement. Indeed, the performance of the quantized

models with local quantization parameters is consistent across datasets and

models, close to their FP counterparts. Moreover, when using global quan-

tization, the performance tends to vary considerably from one dataset and

model to another, often achieving extremely low performance, compared

with locally quantized models or FP models.
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Second, if we focus only on compression and energy, the advantage of

locally over globally learned parameters is not obvious, because depending

on the dataset or the model, the quantization method giving the best perfor-

mance is not always the same. Indeed, for some datasets and models, such

as the 2D CNN models on the HITS dataset, global quantization parameters

allow us to achieve a CRT
G 16.51% higher than local quantization param-

eters. On the other hand, on the ESR dataset, the 1D CNN-Transformer

model quantized with local parameters achieves a CRT
G 12.36% higher than

the one quantized with global parameters. Nevertheless, the classification

performance shows that using global quantization parameters yields models

that are useless in practice as each time that they achieve better compres-

sion and energy performance, their classification performance is relatively

lower than that of the FP and locally quantized models.

4.3.4. Experiment 5: Influence of training the pruning thresholds

One important characteristic of pTTQ is that the two hyperparameters

controlling the pruning thresholds, tmin and tmax, are learnable. In this

experiment, we investigate the influence of learning these hyperparameters

on compression, energy consumption, and classification performance. To

this end, we trained different models on the three datasets using pTTQ,

both with and without learning the hyperparameters tmin and tmax. In the

case where the hyperparameters were not trained, we performed a grid search

in the range [−4, 4] and selected those that yielded the highest classification

performance. The training parameters for the pTTQ quantized models with

trained thresholds are the same as those used in Experiment 1, while the

parameters for models without trained thresholds are listed in Table 7. The

results of these experiments are presented in Table 8.
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Table 7: Experiment 5: Training parameters for the different models based on the dataset,

using fixed tmin and tmax hyperparameters for pTTQ. Here, lr denotes the learning rate

employed during training.

Dataset Model tmin tmax lr Epochs

HITS
2D CNN −4 0 10−4 150

1D CNN-Trans. −2 1.5 5× 10−5 100

ESR
2D CNN −3 1 10−3 200

1D CNN-Trans. −2 1 5× 10−4 100

MNIST 2D MNIST CNN −1 0.5 10−3 200

Table 8: Results of Experiment 5, in %. Trained thresholds specifies whether the hyperpa-

rameters tmin and tmax, which control the pruning thresholds, were trained or kept fixed.

CRT
G and ECT

G , defined in Section 3.4, assess the compression and energy performance of

each quantization method. Values in bold represent the highest values.

Dataset Model Trained thresholds CRT
G↑ ECT

G ↑ MCC ↑

HITS

2D CNN
No 42.98± 0.23 44.04± 0.19 86.14± 3.37

Yes 75.54± 3.39 75.53± 1.53 89.33± 4.45

1D CNN-Trans.
No 13.94± 0.02 7.64± 0.11 81.66± 4.17

Yes 8.37± 0.05 2.01± 0.05 85.12± 1.94

ESR

2D CNN
No 88.48± 0.44 84.49± 0.33 92.41± 2.22

Yes 93.35± 0.96 90.32± 0.69 92.23± 2.32

1D CNN-Trans.
No 21.02± 0.15 5.37± 0.04 95.34± 0.79

Yes 23.86± 0.04 6.04± 0.01 96.35± 0.95

MNIST 2D MNIST CNN
No 28.98± 1.26 4.97± 0.22 93.62± 0.96

Yes 33.92± 1.02 6.10± 0.15 91.01± 0.61

We observe that for almost all datasets and models, training tmin and

tmax results in higher compression and energy efficiency, achieving improve-

ments in CRT
G and ECT

G of up to 32.56% and 31.49%, respectively. The

only exception is the HITS dataset with the 1D CNN-Transformer, where

not training tmin and tmax yields a marginal benefit in compression and
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energy efficiency, with CRT
G and ECT

G improvements of 5.57% and 5.63%,

respectively. However, in this case, classification performance declines com-

pared to the FP model, whereas using pTTQ with trained tmin and tmax

enhances classification performance.

Regarding classification performance, both strategies yield similar re-

sults, with pTTQ using trained thresholds often outperforming its non-

trained counterpart. On average, models quantized with trained thresholds

surpass those with fixed thresholds by a margin of 0.97% in terms of MCC.

In cases where models with fixed thresholds outperform those with trained

thresholds in terms of MCC, their compression and energy consumption

performance is inferior. However, the opposite is not necessarily true. This

demonstrates that training the pruning thresholds tmin and tmax allows for

a better trade-off between compression, energy consumption, and classifica-

tion performance.

5. Discussion

5.1. Experiment 1: Comparison with state-of-the-art extreme quantization

methods

The results of this experiment showed the value of our method in terms of

trade-off between compression, energy, and classification performance com-

pared to other state-of-the-art extreme quantization methods.

In terms of energy consumption, pTTQ outperforms DoReFa and TTQ

for all the datasets and models. This is an important property of our method,

as it is of significant importance in certain applications, especially consid-

ering the increasing energy constraints imposed by environmental factors.

In specific scenarios, devices may possess limited energy resources or must
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adhere to predetermined energy consumption constraints. This limitation

discourages the use of alternative models that cannot meet these specified

constraints. Our pTTQ approach achieves energy saving of up to 90.32%

compared to FP models, with only a small drop in classification performance

(at most −3.38% MCC), and often improves the MCC. The excellent energy

efficiency of our quantization approach can be attributed to several factors.

First, we applied asymmetric pruning based on the statistics of the weights

before ternarization, which allows us to meticulously eliminate weights that

deviate significantly from the mean in each quantized layer. Conversely,

in TTQ, weights are removed by maintaining values relatively close to the

maximum of the absolute value, (following a symmetric approach), which

raises the following concern: the maximum absolute value could sometimes

be an outlier in the distribution of the weights. Secondly, thanks to the

employed pruning technique, pTTQ eliminates a significant number of pa-

rameters. This enables a substantial reduction in the number of non-zero

operations, which in turn reduces lowering energy consumption.

On the other hand, in terms of energy consumption, DoReFa does not

perform as well as pTTQ or TTQ, yielding smaller energy consumption

gains. This is due to the nature of the DoReFa approach, which involves

binarizing the weights (with a scaling factor), excluding zero as a possible

quantized value. As a result, pruning is not applied in this process. Thus,

DoReFa can barely save energy through efficient sparse operations, as it

performs similarly to the FP model in terms of mult-adds, but is more

efficient than the FP model in terms of data transfers. Nevertheless, in

terms of compression, DoReFa tends to give better results than the other

methods. This is to be expected, since binary DoReFa is a more aggressive

quantization method than pTTQ and TTQ, where only one bit is needed to
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encode the binarized weights (plus 32 bits for the scaling factors), whereas

pTTQ and TTQ require 2 bits (plus the 32 bits of the scaling factors). This

means that, ignoring sparsity, DoReFa should offer compression rates that

are at least twice as high. Nevertheless, pTTQ is able to achieve similar

or even better compression rates (for the 1D CNN-Transformer on the ESR

dataset) than DoReFa, despite using an extra bit to store the quantized

weights. This is due to the high sparsity rates achieved by pTTQ, which

allows a reduction in the memory requirements when only the non-zero

weights are stored (e.g., by COO sparse coding). This property of our

method is interesting as the incorporation of the additional bit in pTTQ

(compared to DoReFa) introduces asymmetry, which enlarges the function

search space. This expansion facilitates achieving a more favorable trade-off

between compression, energy consumption, and classification performance.

Finally, in terms of classification, our pTTQ approach yields more con-

sistent results across datasets and models, with results relatively close to

the FP models, making it easier to use in different heterogeneous applica-

tions. In some cases, classification can be improved, which can be justified

by three factors. First, sparsity itself serves as a form of regularization,

a fact supported by several studies [10]. Second, the process of quantiza-

tion also aids in regularization since deep neural networks tend to be highly

over-parameterized and contain redundancies. Lastly, the quantized models

are derived from pre-trained FP models, with the specific layers selected for

quantization on the basis of a Hessian-based quantization sensitivity metric.

As a result, the fine-tuning quantization step plays a role in guiding the

models towards a local minimum, as the loss landscape is relatively flat for

the chosen layers undergoing quantization.
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5.2. Ablation study

5.2.1. Experiment 2: Influence of pruning on weight statistics

This experiment demonstrated the value of employing asymmetric prun-

ing based on weight statistics during ternarization, enhancing the balance

between compression, energy efficiency, and classification performance.

As discussed in Experiment 1, employing asymmetric pruning based on

weight statistics enables the preservation of important weights, namely those

that are relatively close to the mean of the distribution of the weights.

Therefore, by carefully choosing the weights to be removed, it is possible

to generally achieve better energy consumption and compression with only

a small drop in classification performance. What is more, we also observe

that, even though in some cases ternarization based on the statistics of the

weights leads to smaller compression rate gains, a lower energy consumption

is achieved. This can be attributed to the fact that, in contrast to ternariza-

tion without weight statistics pruning, our approach eliminates weights used

in computationally more intensive operations (convolutions). This results

in greater energy consumption gains, although the compression rate gains

are comparatively smaller.

Lastly, in terms of the compression/energy/classification trade-off, our

approach achieves better results, as it generally outperforms ternarization

without pruning based on the statistics of the weights in terms of energy

consumption and classification, while achieving similar compression rates.

This is important because our objective is to maintain the highest classifi-

cation performance while reducing energy and memory requirements. This

should improve the usability of the models in a wide range of applications.
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5.2.2. Experiment 3: Influence of asymmetric pruning

This experiment confirmed that asymmetry has a positive influence on

the compression/energy/classification trade-off.

We saw that asymmetry can produce more consistent classification re-

sults across models and datasets, with similar and even better compression

rates and energy consumption gains. This can be explained by two factors.

First, asymmetry allows us to increase the function search space, allowing for

a more accurate approximation of a global/local minimizer of the loss func-

tion. Second, positive and negative weight values within a neural network

may not have an equivalent impact on the final classification performance,

therefore there is no reason to process them under a symmetry constraint.

Lastly, the trade-off obtained with asymmetry is better than that ob-

tained with symmetry as, globally, the classification performance is better,

for similar (or even better) compression and energy consumption perfor-

mance. This is particularly interesting for applications where the three

factors (compression, energy, and classification) are crucial, such as medical

applications (e.g., HITS classification using portable TCD devices).

5.2.3. Experiment 4: Global vs. local threshold parameters

This last experiment also confirmed that working with local quantization

parameters (one set of tmin, tmax, and α per layer) instead of global ones

yields a better compression/energy/classification trade-off.

In fact, we observed that local quantization parameters always give bet-

ter classification performance. The cases where CRT
G and ECT

G are higher

for models quantized with global quantization parameters are not valuable,

as they often reach a useless classification performance. This phenomenon

can be attributed to the different distributions and characteristics of the
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different layers, indicating that each layer does not follow a uniform pat-

tern. This implies that each layer does not employ the same information

for feature extraction or classification purposes. Consequently, the quan-

tization parameters should be adapted to each quantized layer to obtain

optimal results (which is shown in this experiment by the poor classification

performance of the models quantized with global quantization parameters).

Finally, following on from last point, it is important to note that high

compression and energy consumption performance are not relevant if the

classification performance (which determines whether the model can be used

in practice) is not acceptable for the desired task. For instance, medical

applications typically require high classification performance. Hence, if a

model falls short in classification performance, it may not find practical

usage. However, the opposite scenario should also be avoided: even if a

model demonstrates outstanding classification performance, its impractical-

ity arises if it exceeds memory constraints, exhibits slow inference times or

high energy consumption).

5.2.4. Experiment 5: Influence of training the pruning thresholds

This experiment highlights the benefits of training the threshold parame-

ters tmin and tmax in achieving a better trade-off among compression, energy

consumption, and classification performance. On average, trained thresh-

olds yield improvements of 7.93%, 6.70%, and 0.97% over their non-trained

counterparts in terms of CRT
G, ECT

G, and MCC, respectively. One possible

explanation for this phenomenon is that training these parameters allows for

the automatic adaptation of thresholds to the specific data distribution and

model, which is a crucial advantage as none of the other methods compared

in this work offer this level of adaptability.
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Furthermore, it is interesting to note that pTTQ with fixed pruning

thresholds alone can achieve remarkable results, often surpassing other state-

of-the-art methods such as binary DoReFa or TTQ from Experiment 1. This

underscores the significance of pruning based on weights’ statistics before

ternarization, in contrast to TTQ, where implicit pruning occurs through

the maximum weight value in the layer being quantized. Our approach is

more robust to outliers, as the maximum value can be easily affected by

them.

5.2.5. Limitations

Although our proposed approach offers an interesting trade-off between

compression, energy consumption, and classification performance, some lim-

itations must be highlighted.

First, in the different experiments conducted here, some of the layers and

parameters of the model were not quantized, which means that in practice

we can compress the different models even further. The main inconvenience

with this is that, since we are working with extreme quantization methods,

a complete quantization of the models will tend to considerably reduce the

classification performance of the model. One solution is to use mixed quan-

tization approaches, such as those in [22, 23, 24], which can help reduce

memory, energy, and computational resources without significantly degrad-

ing of the classification performance.

Second, even though we studied our approach on several datasets and

models, further experimentation can be performed on more models and

datasets to validate the generality of the approach.

Thirdly, in our approach, all the quantization parameters are learned,

but they still need to be initialized with good values in order to avoid small
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compression and energy gains or a significant drop in classification perfor-

mance. Further experimentation is needed to propose a general initialization

strategy, more efficient than random or grid search.

Fourthly, in this work we presented an energy consumption metric allow-

ing us to easily compare different quantized models from an energy perspec-

tive. The advantage of this metric is that it is not hardware dependent and

does not require manual measurements, which can be difficult to perform

without any bias. However, this metric is based on some theoretical assump-

tions and has not been empirically validated7. Such a validation could help

us to obtain an order of magnitude of the approximation error committed

by our metric.

Lastly, despite the fact that our quantization approach offers interesting

compression, energy, and compression properties, it is not straightforward

to highlight them in practice. Indeed, in order to truly take advantage of

our method, specialized hardware should be developed to take advantage

of sparse operations and low bit-width operations combined with high bit-

width operations (32 or 64 bits).

6. Conclusion and future work

In this work, we presented a new extreme quantization (ternarization)

approach that directly incorporates asymmetric pruning into the ternariza-

7The assumptions that we have made are reasonable, especially since dedicated hard-

ware can be designed to leverage quantized and sparse models (pertaining to the first and

third assumptions). The second assumption does not pose a significant problem, as we err

on the side of caution by overestimating the total energy consumption, recognizing that

multiplication operations typically consume more energy than addition operations.
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tion mechanism, allowing us to achieve a better compression/energy/classification

trade-off than other state-of-the-art methods such as TTQ or DoReFa. To

do so, we proposed a novel quantization heuristic using an asymmetric dif-

ferentiable pruning function, based on the weights’ statistics of the layers to

be quantized.

Extensive experimentation was performed to study and compare our

method with other state-of-the-art methods, achieving improvements of up

to 4% in MCC, with energy consumption gains of over 71% and compression

rate gains of over 50%.

In our upcoming research, we intend to focus on designing dedicated

hardware optimized for the operations required by our quantized models.

This hardware will enhance the inference efficiency and substantially lower

energy consumption in practical applications.
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by the Auvergne-Rhône-Alpes region, within the Pack Ambition Recherche

program. This work was performed within the framework of the LABEX

CELYA (ANR-10-LABX-0060) and PRIMES (ANR-11-LABX-0063) of Uni-

versite de Lyon, within the program ”Investissements d’Avenir” (ANR-11-

IDEX-0007) operated by the French National Research Agency (ANR). This

work was performed using HPC resources from GENCI-IDRIS (Grant 2022-

AD011013616)

38



Declaration of Generative AI and AI-assisted technologies in the

writing process

During the preparation of this work the authors used ChatGPT, Copilot,

and Deepl in order to improve the readability and language. After using this

tools, the authors reviewed and edited the content as needed and take full

responsibility for the content of the publication.

References

[1] Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou, A survey of convolutional neu-

ral networks: Analysis, applications, and prospects, IEEE Transactions

on Neural Networks and Learning Systems 33 (12) (2022) 6999–7019.

doi:10.1109/TNNLS.2021.3084827.

[2] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,

T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,

J. Uszkoreit, N. Houlsby, An image is worth 16x16 words: Transformers

for image recognition at scale, ICLR (2021).

[3] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cis-

tac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von

Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger,

M. Drame, Q. Lhoest, A. Rush, Transformers: State-of-the-art nat-

ural language processing, in: Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing: System Demon-

strations, Association for Computational Linguistics, Online, 2020, pp.

38–45. doi:10.18653/v1/2020.emnlp-demos.6.

[4] S. Karita, N. Chen, T. Hayashi, T. Hori, H. Inaguma, Z. Jiang,

M. Someki, N. Yalta, R. Yamamoto, X. fei Wang, S. Watanabe,

39

https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.18653/v1/2020.emnlp-demos.6


T. Yoshimura, W. Zhang, A comparative study on transformer vs rnn

in speech applications, 2019, pp. 449–456.

[5] A. Tjandra, C. Liu, F. Zhang, X. Zhang, Y. Wang, G. Synnaeve,

S. Nakamura, G. Zweig, Deja-vu: Double feature presentation and iter-

ated loss in deep transformer networks, in: ICASSP 2020 - 2020 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2020, pp. 6899–6903.

[6] C. Che, P. Zhang, M. Zhu, Y. Qu, B. Jin, Constrained transformer

network for ecg signal processing and arrhythmia classification, BMC

Medical Informatics and Decision Making 21 (2021).

[7] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, F. Kawsar, An

early resource characterization of deep learning on wearables, smart-

phones and internet-of-things devices, in: Proceedings of the 2015 In-

ternational Workshop on Internet of Things towards Applications, IoT-

App ’15, Association for Computing Machinery, New York, NY, USA,

2015, p. 7–12. doi:10.1145/2820975.2820980.

[8] Y. Cheng, D. Wang, P. Zhou, T. Zhang, Model compression and ac-

celeration for deep neural networks: The principles, progress, and

challenges, IEEE Signal Processing Magazine 35 (1) (2018) 126–136.

doi:10.1109/MSP.2017.2765695.

[9] A. Gholami, S. Kim, D. Zhen, Z. Yao, M. Mahoney, K. Keutzer, A

Survey of Quantization Methods for Efficient Neural Network Inference,

2022, pp. 291–326. doi:10.1201/9781003162810-13.

[10] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, A. Peste, Sparsity in

deep learning: Pruning and growth for efficient inference and training

in neural networks, J. Mach. Learn. Res. 22 (1) (jul 2022).

40

https://doi.org/10.1145/2820975.2820980
https://doi.org/10.1109/MSP.2017.2765695
https://doi.org/10.1201/9781003162810-13


[11] T. Elsken, J. H. Metzen, F. Hutter, Neural architecture search: A sur-

vey, J. Mach. Learn. Res. 20 (1) (2021) 1997–2017.

[12] L. Lu, B. Lyu, Reducing energy consumption of neural architecture

search: An inference latency prediction framework, Sustainable Cities

and Society 67 (2021) 102747. doi:https://doi.org/10.1016/j.scs.

2021.102747.

[13] C. Zhu, S. Han, H. Mao, W. J. Dally, Trained ternary quantization,

in: 5th International Conference on Learning Representations, ICLR

2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,

OpenReview.net, 2017.

[14] F. Manessi, A. Rozza, S. Bianco, P. Napoletano, R. Schettini, Auto-

mated pruning for deep neural network compression, in: 2018 24th In-

ternational Conference on Pattern Recognition (ICPR), 2018, pp. 657–

664. doi:10.1109/ICPR.2018.8546129.

[15] Y. Gong, L. Liu, M. Yang, L. D. Bourdev, Compressing deep convolu-

tional networks using vector quantization, CoRR abs/1412.6115 (2014).

arXiv:1412.6115.

URL http://arxiv.org/abs/1412.6115

[16] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep

neural network with pruning, trained quantization and huffman cod-

ing, in: Y. Bengio, Y. LeCun (Eds.), 4th International Conference on

Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,

2016, Conference Track Proceedings, 2016.

[17] K. Ullrich, E. Meeds, M. Welling, Soft weight-sharing for neural

network compression., in: ICLR (Poster), OpenReview.net, 2017.

URL http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#

41

https://doi.org/https://doi.org/10.1016/j.scs.2021.102747
https://doi.org/https://doi.org/10.1016/j.scs.2021.102747
https://doi.org/10.1109/ICPR.2018.8546129
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#UllrichMW17
http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#UllrichMW17
http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#UllrichMW17
http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#UllrichMW17


UllrichMW17

[18] A. Dubey, M. Chatterjee, N. Ahuja, Coreset-based neural network

compression, in: Computer Vision – ECCV 2018: 15th European

Conference, Munich, Germany, September 8–14, 2018, Proceedings,

Part VII, Springer-Verlag, Berlin, Heidelberg, 2018, p. 469–486. doi:

10.1007/978-3-030-01234-2_28.

[19] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut,

ALBERT: A lite BERT for self-supervised learning of language repre-

sentations, in: 8th International Conference on Learning Representa-

tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, OpenRe-

view.net, 2020.

[20] G. Prato, E. Charlaix, M. Rezagholizadeh, Fully quantized trans-

former for machine translation, in: Findings of the Association for

Computational Linguistics: EMNLP 2020, Association for Computa-

tional Linguistics, Online, 2020, pp. 1–14. doi:10.18653/v1/2020.

findings-emnlp.1.

[21] Y. Xu, Y. Wang, A. Zhou, W. Lin, H. Xiong, Deep neural network

compression with single and multiple level quantization, in: Proceed-

ings of the Thirty-Second AAAI Conference on Artificial Intelligence,

AAAI’18/IAAI’18/EAAI’18, AAAI Press, 2018.

[22] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, K. Keutzer, Hawq:

Hessian aware quantization of neural networks with mixed-precision, in:

Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV), 2019.

[23] Z. Dong, Z. Yao, D. Arfeen, A. Gholami, M. W. Mahoney, K. Keutzer,

Hawq-v2: Hessian aware trace-weighted quantization of neural net-

42

http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#UllrichMW17
http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#UllrichMW17
https://doi.org/10.1007/978-3-030-01234-2_28
https://doi.org/10.1007/978-3-030-01234-2_28
https://doi.org/10.18653/v1/2020.findings-emnlp.1
https://doi.org/10.18653/v1/2020.findings-emnlp.1


works, in: Advances in Neural Information Processing Systems, Vol. 33,

Curran Associates, Inc., 2020, pp. 18518–18529.

[24] Z. Yao, Z. Dong, Z. Zheng, A. Gholami, J. Yu, E. Tan, L. Wang,

Q. Huang, Y. Wang, M. Mahoney, K. Keutzer, Hawq-v3: Dyadic neural

network quantization, in: M. Meila, T. Zhang (Eds.), Proceedings of

the 38th International Conference on Machine Learning, Vol. 139 of

Proceedings of Machine Learning Research, PMLR, 2021, pp. 11875–

11886.

[25] J. L. McKinstry, S. K. Esser, R. Appuswamy, D. Bablani, J. V.

Arthur, I. B. Yildiz, D. S. Modha, Discovering low-precision networks

close to full-precision networks for efficient embedded inference, CoRR

abs/1809.04191 (2018).

[26] Q. Jin, L. Yang, Z. Liao, Adabits: Neural network quantization with

adaptive bit-widths, in: 2020 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR), IEEE Computer Society, Los

Alamitos, CA, USA, 2020, pp. 2143–2153. doi:10.1109/CVPR42600.

2020.00222.

[27] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural

network, in: NIPS Deep Learning and Representation Learning Work-

shop, 2015.

[28] A. Polino, R. Pascanu, D. Alistarh, Model compression via distillation

and quantization, CoRR abs/1802.05668 (2018). arXiv:1802.05668.

[29] W. Zhang, L. Hou, Y. Yin, L. Shang, X. Chen, X. Jiang, Q. Liu,

Ternarybert: Distillation-aware ultra-low bit bert, in: Conference on

Empirical Methods in Natural Language Processing, 2020.

[30] H. Bai, W. Zhang, L. Hou, L. Shang, J. Jin, X. Jiang, Q. Liu,

43

https://doi.org/10.1109/CVPR42600.2020.00222
https://doi.org/10.1109/CVPR42600.2020.00222
http://arxiv.org/abs/1802.05668


M. Lyu, I. King, BinaryBERT: Pushing the limit of BERT quanti-

zation, in: Proceedings of the 59th Annual Meeting of the Association

for Computational Linguistics and the 11th International Joint Confer-

ence on Natural Language Processing (Volume 1: Long Papers), As-

sociation for Computational Linguistics, Online, 2021, pp. 4334–4348.

doi:10.18653/v1/2021.acl-long.334.

[31] P. Yin, J. Lyu, S. Zhang, S. J. Osher, Y. Qi, J. Xin, Understanding

straight-through estimator in training activation quantized neural nets,

in: International Conference on Learning Representations, 2019.

[32] D. Zhang, J. Yang, D. Ye, G. Hua, Lq-nets: Learned quantization

for highly accurate and compact deep neural networks, in: Computer

Vision – ECCV 2018: 15th European Conference, Munich, Germany,

September 8-14, 2018, Proceedings, Part VIII, Springer-Verlag, Berlin,

Heidelberg, 2018, p. 373–390. doi:10.1007/978-3-030-01237-3_23.

[33] Y. Bhalgat, J. Lee, M. Nagel, T. Blankevoort, N. Kwak, Lsq+: Im-

proving low-bit quantization through learnable offsets and better ini-

tialization, in: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR) Workshops, 2020.

[34] J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang, X.-s. Hua,

Quantization networks, in: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2019.

[35] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,

D. Kalenichenko, Quantization and training of neural networks for effi-

cient integer-arithmetic-only inference, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),

2018.

44

https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.1007/978-3-030-01237-3_23


[36] O. Zafrir, G. Boudoukh, P. Izsak, M. Wasserblat, Q8BERT: quantized

8bit BERT, in: Fifth Workshop on Energy Efficient Machine Learning

and Cognitive Computing - NeurIPS Edition, EMC2@NeurIPS 2019,

Vancouver, Canada, December 13, 2019, IEEE, 2019, pp. 36–39. doi:

10.1109/EMC2-NIPS53020.2019.00016.

[37] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, K. Keutzer, I-bert:

Integer-only bert quantization, International Conference on Machine

Learning (Accepted) (2021).

[38] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, Y. Zou, Dorefa-net: Training

low bitwidth convolutional neural networks with low bitwidth gradients,

CoRR abs/1606.06160 (2016). arXiv:1606.06160.

[39] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: Imagenet

classification using binary convolutional neural networks, in: B. Leibe,

J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision – ECCV 2016,

Springer International Publishing, Cham, 2016, pp. 525–542.

[40] X. Lin, C. Zhao, W. Pan, Towards accurate binary convolutional neural

network, in: I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information

Processing Systems, Vol. 30, Curran Associates, Inc., 2017.

[41] L. Hou, J. T. Kwok, Loss-aware weight quantization of deep networks,

in: 6th International Conference on Learning Representations, ICLR

2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference

Track Proceedings, OpenReview.net, 2018.

[42] S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. W. Mahoney,

K. Keutzer, Q-bert: Hessian based ultra low precision quantization of

bert, in: AAAI Conference on Artificial Intelligence, 2019.

45

https://doi.org/10.1109/EMC2-NIPS53020.2019.00016
https://doi.org/10.1109/EMC2-NIPS53020.2019.00016
http://arxiv.org/abs/1606.06160


[43] A. Fan, P. Stock, B. Graham, E. Grave, R. Gribonval, H. Jégou,

A. Joulin, Training with quantization noise for extreme model com-

pression, CoRR abs/2004.07320 (2020). arXiv:2004.07320.

[44] T. Liang, J. Glossner, L. Wang, S. Shi, X. Zhang, Pruning and quanti-

zation for deep neural network acceleration: A survey, Neurocomputing

461 (2021) 370–403. doi:https://doi.org/10.1016/j.neucom.2021.

07.045.

[45] T. Ji, S. Jain, M. Ferdman, P. Milder, H. A. Schwartz, N. Balasubra-

manian, On the distribution, sparsity, and inference-time quantization

of attention values in transformers, ArXiv abs/2106.01335 (2021).

[46] M. Zhu, S. Gupta, To prune, or not to prune: Exploring the efficacy

of pruning for model compression, in: 6th International Conference on

Learning Representations, ICLR 2018, Vancouver, BC, Canada, 2018,

Workshop Track Proceedings, 2018.

[47] Z. Mariet, S. Sra, Diversity networks: Neural network compression

using determinantal point processes, in: International Conference on

Learning Representations (ICLR), 2016.

[48] J.-H. Luo, J. Wu, W. Lin, Thinet: A filter level pruning method for deep

neural network compression, in: 2017 IEEE International Conference on

Computer Vision (ICCV), 2017, pp. 5068–5076. doi:10.1109/ICCV.

2017.541.

[49] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, S. Han, Amc: Automl for

model compression and acceleration on mobile devices, in: V. Ferrari,

M. Hebert, C. Sminchisescu, Y. Weiss (Eds.), Computer Vision – ECCV

2018, Springer International Publishing, Cham, 2018, pp. 815–832.

[50] K. Xu, D. Zhang, J. An, L. Liu, L. Liu, D. Wang, Genexp: Multi-

46

http://arxiv.org/abs/2004.07320
https://doi.org/https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.1109/ICCV.2017.541
https://doi.org/10.1109/ICCV.2017.541


objective pruning for deep neural network based on genetic algorithm,

Neurocomputing 451 (2021) 81–94. doi:https://doi.org/10.1016/

j.neucom.2021.04.022.

[51] M. S. Park, X. Xu, C. Brick, Squantizer: Simultaneous learning for

both sparse and low-precision neural networks, CoRR abs/1812.08301

(2018). arXiv:1812.08301.

[52] F. Tung, G. Mori, Deep neural network compression by in-parallel

pruning-quantization, IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 42 (3) (2020) 568–579. doi:10.1109/TPAMI.2018.

2886192.

[53] M. Horowitz, 1.1 computing’s energy problem (and what we can do

about it), in: 2014 IEEE International Solid-State Circuits Conference

Digest of Technical Papers (ISSCC), 2014, pp. 10–14. doi:10.1109/

ISSCC.2014.6757323.

[54] D. Molka, D. Hackenberg, R. Schöne, M. S. Müller, Characterizing the
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