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INTRODUCTION

Sea surface temperature has been increasing by
0.13°C per decade over the last 50 yr, mainly due to
the increase of CO2 levels in the atmosphere (IPCC
2013). One-third of the atmospheric CO2 produced
by human activity has been absorbed by the oceans
in the past 200 yr, which has led to a reduction in the
pH of surface seawater by 0.1 units (Orr et al. 2005).

Oceans will be further acidified by 0.3 to 0.4 units by
2100 due to the expected rise in the atmospheric CO2

level to 800−1000 ppmv by the end of this century,
according to the ‘business-as-usual’ CO2 emission
scenario (Brewer 1997, Caldeira & Wickett 2003).
This ocean acidification process may significantly
change the water carbonate chemistry (Sabine et al.
2004, Pelejero et al. 2010) and may harm marine cal-
cifying organisms (Gao et al. 1993, Riebesell et al.
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ABSTRACT: Short-term effects of increasing pCO2; 380 ppm (LC) vs. 700 ppm (HC); at different
nitrogen levels; 5 µM nitrate (LN) vs. 50 µM (HN); on the contents of protein, mycosporine-like
amino acids (MAAs), phenolic compounds and total fatty acids, antioxidant activity, calcification
and C:N ratios were analyzed in 3 eulittoral Mediterranean macroalgae with different bio-optical
characteristics and carbon assimilation efficiencies: Cystoseira tamariscifolia (Heterokontophyta),
Ulva rigida (Chlorophyta) and Ellisolandia elongata (Rhodophyta). After acclimation to different
pCO2 and nitrogen conditions for 6 d, the algae were subjected to a 4°C temperature increase for
3 d. Increasing temperature and pCO2 produced alterations in the biochemical composition of the
3 macroalgae. Short-term variations of protein levels were observed in U. rigida, with clearly
decreased values in the HCLN treatment. In C. tamariscifolia, protein decreased after the temper-
ature increase but only under LC. The interaction of temperature and N affected phenolic com-
pounds only in U. rigida and the content of MAAs in E. elongata. The functional patterns of the
3 macroalgae in response to the pCO2, nitrogen and temperature regimes may be explained in
terms of their bio-optical characteristics and antioxidant activity. The vulnerability and acclima-
tion of the 3 species to the expected variations of climate change factors are discussed.

KEY WORDS:  Acidification · Climate change · Cystoseira tamariscifolia · Ellisolandia elongata ·
Nitrate · Short-term experiment · Temperature · Ulva rigida

Contribution to the Theme Section ‘Environmental forcing of aquatic primary productivity’ OPENPEN
 ACCESSCCESS



Aquat Biol 22: 177–193, 2014

2000). Ocean acidification has been consistently re -
lated to reduced growth rates in calcified macroalgae
(Kroeker et al. 2010). Reductions in calcification rate
at elevated pCO2 have been demonstrated for crus-
tose and articulated coralline red algae, as well for
the calcified green algae of the genus Halimeda (Gao
et al. 1993, Büdenbender et al. 2011, Price et al.
2011). However, reduced calcification at increased
pCO2 did not emerge as a general pattern in a meta-
analysis of multiple seaweed studies (Kroeker et al.
2010). This may partly be because the effects of
ocean acidification on calcification vary among sea-
weeds due the diversity of calcification strategies
amongst macroalgae, e.g. many species are able to
create microclimates of chemistry favorable for cal -
cification regardless of ambient conditions (Price et
al. 2011, Roleda et al. 2012a). Reduced pH may have
important consequences for non-calcifying taxa as
well (Roleda et al. 2012b), although the cumulative
effects of climatically realistic, CO2-driven pH change
on non-calcifying seaweeds remain poorly under-
stood (Kroeker et al. 2010). Studies on the ecological
and physiological impacts of elevated CO2 con -
centrations on macroalgae were initiated in the early
1990s: growth of Pyropia (Porphyra) yezoensis juve-
niles was significantly enhanced in cultivation en -
riched with CO2 up to 1000 ppmv (Gao et al. 1991,
1993). The photosynthetic carbon fixation rate of
some intertidal macroalgal species increased during
low-tide periods when they were exposed to air
 containing high CO2 concentration (Gao et al. 1991,
Zou & Gao 2002). Macroalgae are a highly diverse
group with complex functional morphologies and var-
ied ecological roles. Thus, morphological plasticity in
addition to physiological mechanisms may determine
their capacity to acclimate to global climate changes
(Falkenberg et al. 2013).

In recent years, there has been a significant effort
to predict the future impact of climate change on
 seaweed communities (Graham et al. 2007, Halpern
et al. 2008, Wernberg et al. 2010). Two main ap -
proaches have been followed: (1) experimental ap -
proaches designed as factorial experiments, incu -
bating macroalgae for days or months at different
growth temperatures according to the future pre-
dicted scenarios, and evaluating the interactive re -
sponses with other variables, such as acidification,
UV radiation (UVR), and nutrient availability, amongst
others (Baulch et al. 2003, Hoppe et al. 2008, Porzio et
al. 2011); and (2) field studies of seaweeds growing at
their temperature limit for growth and reproduction,
while monitoring the temporal and spatial variation
of temperature and other variables (Viejo et al. 2011,

Martínez et al. 2012). Most investigations have been
conducted on individual species separately, rather
than communities (Olabarria et al. 2013), although it
has been reported that community-level impacts
might be less noticeable (Kroeker et al. 2010). More-
over, studies on the effect of global climate changes
on aquatic organisms have mostly been conducted
with 1 or 2 variables, and interactions between multi-
ple factors have scarcely been studied (Franklin &
Foster 1997, Gordillo et al. 2001, Bischof et al. 2006a,
Häder et al. 2007). For example, the effect of in -
creased UVR, temperature and CO2 on photosyn-
thetic metabolism, nutrient incorporation and growth
has been studied in algae from Medi terranean and
Atlantic waters off the southern Iberian Peninsula
(reviewed in Häder & Figueroa 1997, Figueroa &
Gómez 2001), but also in algae from the North Sea
(Hanelt et al. 1997b) and the Arctic region (Hanelt et
al. 1997a, Hanelt 1998, Roleda 2009). Investigations
have been conducted in the field (in situ) and
in experimentally controlled conditions under solar
radiation (outdoor) and under artificial conditions
(indoor). Mechanisms for acclimation to global cli-
mate changes have been evaluated as the effect on
photoinhibition, photoprotection, nutrient uptake
systems and patterns of growth, reproduction and
morphogenesis of different developmental stages
of macroalgae (Häder & Figueroa 1997, Gómez &
Figueroa 1998, Figueroa et al. 2003b, Villafañe et al.
2003, De la Coba et al. 2009).

To date, few short-term (<1 yr) algal manipulation
experiments have been performed. Previous studies
have revealed mixed responses depending on the
algal species and the culture conditions applied
(Porzio et al. 2011, Zou et al. 2011, Cornwall et al.
2012). In macroalgae, doubling the CO2 level caused
an increase in photosynthetic activity of 52 to 130%,
depending on the species (Gao et al. 1993, Kübler et
al. 1999, Riebesell et al. 2007). Overall, the sensitivity
of algae to acidification is expected to be complex,
due to interactions between the effects of pH and
CO2 on the enhancement of photosynthesis. Al -
though increasing ocean CO2 concentration may
enhance rates of photosynthesis and growth, particu-
larly in species without carbon concentrating mecha-
nisms (CCMs), such increases may be limited by the
availability of other limiting nutrients (Raven et al.
2005). Mercado et al. (1998) reported a relationship
between CCMs and light energy availability in inter-
tidal macroalgae, but not with inorganic carbon
availability: intertidal algae with emersion periods
presented higher photosynthetic rates (Mercado et
al. 1998) and carbon uptake (Flores-Moya et al. 1998)
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due to the higher availability of CO2 compared to
submerged algae. Seasonal changes in temperature,
nutrient availability and light are also likely to inter-
act with the effect of CO2 on metabolic processes in
algae (Tyrell et al. 2008, Martin & Gattuso 2009, Mer-
cado & Gordillo 2011, Hofmann et al. 2013). As cal -
cification, photosynthesis, nutrient uptake, growth,
and other metabolic processes are affected by tem-
perature, light and nutrient availability, changes in
these para meters are likely to have a strong influence
on the enzymatic response of macroalgae to increas-
ing CO2. Therefore, outdoor mesocosm studies are
useful for monitoring CO2 effects over time during
natural temperature, nutrient and light fluctuations.

The aim of this study was to evaluate the short-
term (6 d) vulnerability and acclimation to increas-
ing pCO2 (low CO2, LC: 380 ppm vs. high CO2, HC:
700 ppm), under different nitrogen levels through
nitrate pulses: high nitrate level (HN, 50 µM) vs. low
nitrate level (LN, 5 µM) on 3 common eulittoral macro -
algal species from the coastal area of Málaga in the
Alborán Sea (Mediterranean Sea). In this region, ni -
trate concentrations are decreasing as a consequence
of the weakening of wind-induced up welling; thus,
oligotrophication is becoming more recurrent (Mer-
cado et al. 2012). The Mediterranean Sea is a priority
area for studies on climate change due to the well-
recognized increase in average seawater tempera-
tures and the 200 to 500% increase in the number of
days with heat extremes (Miesz kowska et al. 2006,
Diffenbaugh et al. 2007, Louanchi et al. 2009).

The vulnerability of seaweeds to climate change
factors in the short-term was evaluated by using
physiological indicators including stoichiometry (C:N),
quality of biomass (soluble proteins, photoprotectors
and lipids) and antioxidant substances ac cording
to Figueroa & Korbee (2010) and Figueroa et al.
(2014b). The experiments were conducted in the
framework of the International Workshop of the
Group on Aquatic Primary Productivity (GAP 9)
hosted in September 2012, in Málaga. In addition to
this study, the results of the experiments on these
macroalgae have been presented in other reports
(Stengel et al. 2014, Figueroa et al. 2014a, Parages et
al. 2014; all this Theme Section).

MATERIALS AND METHODS

Algae and experimental design 

Macroalgae from different morpho-functional groups
defined according to Littler et al. (1983) were col-

lected in La Araña (36° 45’N, 4°18’ W) on the Málaga
coastline (Alborán Sea, southern Iberian Peninsula)
characterized by a good ecological status of coastal
waters as defined by the European Water Framework
Directive (2000/60/EC) (Mercado et al. 2012, Bermejo
et al. 2013).

Ulva rigida C. Agardh (Chlorophyta) is a distro-
matic laminar alga consisting of 2 cell layers, charac-
terized by rapid growth and a nitrophilic pattern; the
leathery Cystoseira tamariscifolia (Hudson) Papen-
fuss (Phaeophyceae) displays a complex parenchy-
matic morphology with a thick, non-calcareous thal-
lus with cortical and medullar cells, and presents a
low growth rate. Both U. rigida and C. tamariscifolia
contain phenolic compounds. Finally, the calcareous
Ellisolandia elongata (J. Ellis & Solander, K. R. Hind
& G. W. Saunders), formerly Corallina elongata J.
Ellis et Solander (Rhodophyta) according to Hind &
Saunders (2013), presents a complex pseudoparen -
chymatic morphology with a thick calcareous thallus,
cortical and medullar cells, slow growth rate, and
contains mycosporine-like amino acids (MAAs), as
do other red algae. These macroalgal species were
selected since they are dominant species on the
Mediterranean coast of the southern Iberian Penin-
sula and possess different morphologies, bio-optical
properties and carbon ac quisition efficiencies; in
addition, their ecophysiological responses have been
extensively studied in these or similar species (Mer-
cado et al. 1998, Figueroa & Viñegla 2001, Gordillo
et al. 2001, Abdala-Díaz et al. 2006, Cabello-Pasini
et al. 2011, amongst others).

The collected algae were transported to the labora-
tory in an icebox, cleaned of epibiota and acclimated
for 4 d to low C and low N conditions prior to ex -
perimental treatment conditions. The experimental
design is described in detail by Stengel et al. (2014).
Briefly, the 3 species were cultivated in a mesocosm
system, with either high or low C and N conditions:
high CO2 (HC): 700 ppm vs. low CO2 (LC): 380 ppm;
high nitrate level (HN): 50 µM vs. low nitrate level
(LN): 5 µM. The level of 380 ppm used in the experi-
ment as ambient level (LC) of CO2 is the range sur-
face pCO2 of the Alborán Sea (367 to 394 ppm of
pCO2) according to Takahashi et al. (2011) and Mc -
Elhany & Busch (2013). This region can be character-
ized as oligotrophic (Ramírez et al. 2005, Mercado et
al. 2012). The level of 5 µM nitrate is the highest
range of the natural levels found during certain peri-
ods of the year (Ramírez et al. 2005). Thus, the LCLN
treatment can be considered a control treatment
because it was closest to natural conditions. In addi-
tion to the different C and N conditions, the algae
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were subjected to a 4°C temperature increase for 3 d
after a 6 d acclimation to the different carbon and
nitrogen conditions. As a result, temperature fluctu-
ated between 19°C (08:00 h GMT min.) and 24.5°C
(17:00 h GMT max.) during the acclimation phase,
and between 24°C (08:00 h GMT min.) and 29°C
(17:00 h GMT max.) during the +4°C treatment.
Detailed hourly temperature fluctuations can be
found in Stengel et al. (2014). Orthophosphate at
2 µM was included in both LN and HN treatments.

Biochemical composition

Variables including accumulation of secondary
metabolites, antioxidant capacity and stoichiometry
were used as physiological indicators and were esti-
mated at different time periods (morning, noon, and
evening) (Figueroa & Korbee 2010, García-Sánchez
et al. 2012, Figueroa et al. 2014b) as follows.

Soluble proteins (SPs). Total SPs were extracted in
a mortar from 50 mg dry weight (DW) of macroalgae
in a 0.1 M phosphate buffer (pH 6.5). After centrifu-
gation at 13 000 rpm (15493 g), 50 µl of supernatant
was mixed with 750 µl of 0.1 M phosphate buffer
(pH 6.5) and 200 µl of assay mix (Bio-Rad Protein
Assay). The absorbance at 595 nm was determined
using a spectrophotometer (UVMini-1240 model,
Shimadzu) after 15 min of in cubation at room tem-
perature (Bradford 1976). Concentrations were cal-
culated by means of standards prepared with bovine
serum albumin (Sigma).

Total Fatty Acids (Total FAs). Total FA content was
determined by gas chromatography-flame ionization
detector (GC/FID) after direct transmethylation of
the freeze-dried biomass as described previously by
Schmid et al. (2014). For quantification, pentadeca -
noic acid 15:0 (99%, Alfa Aesar) was added as an
internal standard.

MAAs. MAAs of E. elongata were determined
using HPLC (Waters 600) as described in Korbee-
Peinado et al. (2004). Total MAAs were expressed
in mg g−1 DW, and the different MAAs identified as
shinorine, palythine, asterina-330 and palythinol as
% of total MAAs.

Phenolic compounds and antioxidant activity
(DPPH method). Phenolic compounds of U. rigida
and C. tamariscifolia were extracted using 0.25 g
fresh weight (FW) of macroalga and 2.5 ml of 80%
methanol (80% MeOH:20% H2O). After being kept
overnight, the mixture was centrifuged at 4000 rpm
(2253 g) for 15 min at 4°C and the supernatant was
collected. Total phenolic compounds were determined

colorimetrically using the Folin-Ciocalteu reagent
(Folin & Ciocalteu 1927). Phloroglucinol (1,3,5-tri -
hydroxybenzene, Sigma) was used as a standard.
Finally, the absorbance was read at 760 nm using a
spectrophotometer (UVMini-1240 model, Shimadzu).
Phenolic concentrations were expressed as mg g−1 DW.

The antioxidant activity was measured on the
 phenolic compound extracts using the reduction of
the stable free radical DPPH (2,2-diphenyl-1-picryl -
hydrazyl) according to Blois (1958): 150 µl of DPPH
(1.27 mM) prepared in 90% methanol (90%
MeOH:10% H2O) was added to each extract. The re-
action was completed after 30 min in the dark at room
temperature (~20°C), and the absorbance was read at
517 nm using a spectrophotometer (UVMini-1240
model). The calibration curve made with DPPH was
used to calculate the remaining concentration of
DPPH in the reaction mixture after incubation. Values
of DPPH concentration (mM) were plotted against
 algal extract concentration (mg DW ml−1) in order to
obtain the oxidation index EC50, which represents the
concentration of algal extract required to scavenge
50% of the DPPH in the reaction mixture. Ascorbic
acid was used as positive control (Connan et al. 2006).

Calcification. Samples of E. elongata were kept at
40°C until desiccated. Initial dry weight (DWI) was
obtained and then 10% HCl was added in order to
initiate CaCO3 dissolution, main taining the same
weight/volume ratio. After complete CaCO3 removal,
samples were washed with distilled water, dried
again at 40°C and final dry weight (DWF) was meas-
ured. CaCO3 content (%) was calculated according to
the formula:

CaCO3 = [(DWI − DWF) / DWF] × 100 (1)

Carbon (C) and nitrogen (N) content. Seaweed
samples were dried for 24 h at 60°C and kept desic-
cated until analyses. Total internal C and N contents
on a DW basis were determined using a CNHS-
932elemental analyzer (Leco Corporation).The molar
ratio between C and N was obtained by dividing total
internal C by total internal N content.

FW/DW ratio. To acquire the FW:DW ratio, 15 to 20
samples with known FW of each algal species col-
lected at each sampling time and under each treatment
were dried at 60°C for 24 h, reaching  constant DW.

Statistical analyses. After visually checking for nor-
mality, data were tested for homogeneity of vari-
ances using Cochran’s test. Logarithm transforma-
tions were used when the assumptions were not
achieved. Multi-factorial ANOVAs were performed
including temperature (ambient and high), nitrogen
(low and high), CO2 (low and high) and time of sam-
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pling (morning, noon, evening), all considered fixed
crossed factors, and tank as a random factor nested in
the interaction of N × C and crossed with the other 2
factors. Tank (alone or in interactions) was not signif-
icant (p > 0.25) and thus this factor was not included
in the final models (Underwood 1997). When signifi-
cant differences were detected, post hoc tests were
performed using a Student-Newman-Keuls (SNK)
test. The significance level was set to α = 0.05. Data
sets of the  different variables corresponded to 2
measurement days (n = 6). In addition, Pearson corre-
lation coefficients were calculated and tested between
all measured dependent variables.

RESULTS

SPs

In the ‘initial’ samples after 6 d of acclimation, SP
concentrations were similarly high in Ulva rigida and
Cystoseira tamariscifolia, and about 3 times higher
than that of Ellisolandia elongata (Table 1). During
the experimental period, the highest protein levels
were reached in C. tamariscifolia (15.02 ± 1.48 mg g−1

DW), followed by U. rigida (9.27 ± 0.57 mg g−1 DW)
and E. elongata (5.91 ± 0.30 mg g−1 DW) (Fig. 1). In C.
tamariscifolia, the interactive effect of the 4 factors
was significant (Table 2). C and N treatments also
produced a significant effect as did C and time
(Table 2). In general, SP values were lower at noon
and in the evening under the HCHN treatment
(Fig. 1a). In U. rigida, 2 significant interactions
were observed: time and temperature, and C and N
(Table 3). For both the ambient and increased tem-
perature, we found the highest SP contents in the
morning and at noon respectively (Fig. 1b). The low-
est value was observed in HCLN, and it was lower at
LCLN than at HCHN (Fig. 1c). Finally, in E. elongata,
N and temperature and the interaction of time × tem-
perature had significant effects on protein levels
(Table 4). As was expected, the lowest content of SP
was observed at LN and for the interactive effect, the
highest value was detected at ambient temperature
and during the evening (Fig. 1d).

Total FAs

The average levels of total FAs were 0.94 ± 0.01 and
1.07 ± 0.03% g−1 DW in C. tamariscifolia, 1.03 ± 0.02
and 0.90 ± 0.03% g−1 DW in U. rigida and 0.24 ± 0.01
and 0.11 ± 0.005% g−1 DW in E. elongata under ambi-

ent and ambient + 4°C temperatures respectively.
Temperature produced significant effects on total FA
contents in the 3 species (Tables 2−4). The increased
temperature caused a decrease of total FAs in C.
tamariscifolia and E. elongata, whereas in U. rigida
it resulted in an increase in FAs (data not shown).

MAAs

E. elongata contained 0.23 mg total MAAs g−1 DW
at the initial time period (Table 1). The interactive
effects of N × temperature, time × temperature and
the triple interaction of C × time × temperature were
significant (Table 5); at ambient temperature, no
 significant differences through the day between LC
and HC treatments were found except in the evening
(Fig. 2). No differences were found at ambient tem-
perature +4°C amongst treatments nor over time.
Shinorine was the dominant MAA in general, with
proportions higher than 40%. Palythine was also
present (>25%) and palythinol (around 10 to 20%).
Asterina-330 presented the lowest proportion (2 to
5%, data not shown). Asterina-330 and palythine
presented a similar pattern with the most double (5
for both) and triple (4 and 3 respectively) interactions
among variables, whereas in shinorine, only the dou-
ble interactions C × time, N × time and time × tem-
perature, and the triple interactions C × N × time and
C × time × temperature were found (Table 5). Finally,
the palythinol level was significantly affected by the
double interaction N × temperature, and the triple
interaction C × N × temperature (Table 5).

Phenolic compounds and antioxidant activity
(DPPH scavenger capacity)

Phenolic contents in C. tamariscifolia at the initial
time were about 4 times higher than in U. rigida
(Table 1). For C. tamariscifolia, an interactive effect
of C × temperature was found (Table 2), with pheno-
lic compounds (plentics) being highest at ambient
temperature and LC (Fig. 3a). EC50 values presented
a complex pattern (Fig. 3b), with a significant inter-
active effect between C, N time and temperature
(Table 2). At ambient temperature, the maximal
 values (lowest antioxidant activity) were reached at
HCLN in the morning and HC at noon, whereas the
maximal antioxidant ac tivity was reached under
LCLN in the morning (Fig. 3b). Under ambient +4°C,
the minimal value of EC50 was reached at noon under
the LCHN treatment (Fig. 3b).
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In U. rigida, phenolic contents were significantly
affected by the interactions C × time, C × tempera-
ture, N × temperature, time × temperature and the
triple interaction C × time × temperature (Table 3),
with the lowest values found in the LC treatments in
the morning and the LN treatments at noon (Fig. 4).
In this species, no antioxidant activity of methanolic
extracts was found as EC50 values were below the
detection limit of the DPPH method.
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Calcification

CaCO3 content of E. elongata was greater
than 70% of the total algal DW in all treat-
ments both under ambient and increased tem-
perature. No effect of C and N treatments
were found (data not shown).

Total internal C and N

In the ‘initial’ samples (after 6 d acclimatisa-
tion) C content was higher in C. tamariscifolia
than that in U. rigida, followed by E. elongata
(Table 1). In C. tamariscifolia, C content was
significantly affected by the interactions of C
× N and N × time × temperature (Table 2). The
internal C content was significantly higher in
the LCHN treatment than in HCHN or LCLN
(Fig. 5b). Among the triple interactions, signif-
icantly higher values for both temperature
treatments during the evening were found for
the N treatment (Fig. 5a, Table 2). In U. rigida,
total internal C did not vary as a function of
time. It was only impacted significantly by C
and temperature as single factors (Table 3).
Under ambient temperature, the C content
was 278 mg g−1 DW, and 286 mg g−1 DW
under increased tem perature. C content in -
creased under the HCHN treatment (Fig. 5c).
Finally, in E. elongata, C content was signifi-
cantly affected by time, temperature and the
interaction of C × temperature (Table 4); the
values were maintained close to 150 mg C g−1

DW (Fig. 5d,e). Under HC, the C content was
higher at ambient than at increased tempera-
ture (Fig. 5d), and higher in the evening than
in the morning or at noon (Fig. 5e).

In C. tamariscifolia, internal N content was
affected by the interactive effects of N × tem-
perature and N × time × tem perature (Table
2). No significant variations in N content
throughout the time and treatments were
observed, except in the evening under ambi-
ent temperature (Fig. 5f). In U. rigida, the
interaction of C × N had a significant effect on
the internal level of N (Table 3). The lowest
value was detected at the HCLN treatment
followed by LCLN; N levels were similar
under LCHN and HCHN (Fig. 5g). Finally, in
E. elongata, although an interactive effect of
C × time was detected by the ANOVA for
internal N content, the SNK test did not detect
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the differences among data (Table 4); all N data were
around 7 mg N g−1 DW (Fig. 5h).

Relationships among the variables (Pearson
 correlation)

SP content was positively related with phenolic
content in both C. tamariscifolia and U. rigida, and
with antioxidant activity in C. tamariscifolia (Table 6)
and N content in U. rigida (Table 7). Total C content
was related to total N content in C. tamariscifolia

(Table 6) and U. rigida (Table 7). In C. tamariscifolia,
phenolic content and antioxidant activity were posi-
tively related (Table 6), whereas MAAs in E. elon-
gata were negatively correlated to N content (Table
8); however when each MAA is analyzed separately,
a negative correlation with N was found for paly-
thine. A positive correlation for shinorine and aster-
ina-330 with N was also found (Table 8). Total FA
content was positively related to phenolic content
only in C. tamariscifolia (Table 6). In E. elongata,
total FA content was positively related to total SP and
C contents (Table 8).
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Source SPs C N Phenolics FAs
df MS F p MS F p MS F p MS F p MS F p

C (1) 1 7.44 0.84 0.36 7194.92 20.77 <0.001 13.82 4.41 0.04 7.90 10.02 <0.001 0.04 1.25 0.27
N (2) 1 212.70 24.14 <0.001 906.28 2.62 0.11 387.66 123.67 <0.001 0.86 1.09 0.30 0.00 0.10 0.75
Time (3) 2 24.14 2.74 0.07 51.84 0.15 0.86 2.14 0.68 0.51 4.05 5.14 0.01
Temperature (4) 1 0.83 0.09 0.76 1897.94 5.48 0.02 6.98 2.23 0.14 9.86 12.51 <0.001 0.25 7.02 0.01
(1) × (2) 1 74.23 8.42 <0.001 2235.46 6.45 0.01 45.24 14.43 <0.001 0.37 0.46 0.50 0.00 0.06 0.80
(1) × (3) 2 10.38 1.18 0.31 180.87 0.52 0.59 3.74 1.19 0.31 6.62 8.40 <0.001
(1) × (4) 1 9.31 1.06 0.31 13.20 0.04 0.85 0.09 0.03 0.87 13.66 17.32 <0.001 0.03 0.82 0.37
(2) × (3) 2 9.57 1.09 0.34 854.50 2.47 0.09 2.06 0.66 0.52 1.09 1.38 0.26
(2) × (4) 1 3.44 0.39 0.53 47.86 0.14 0.71 3.22 1.03 0.31 3.61 4.58 0.04 0.01 0.16 0.69
(3) × (4) 2 127.67 14.49 <0.001 890.59 2.57 0.08 3.88 1.24 0.30 29.46 37.36 <0.001
(1) × (2) × (3) 2 11.17 1.27 0.29 178.01 0.51 0.60 7.29 2.33 0.10 0.94 1.19 0.31
(1) × (2) × (4) 1 20.68 2.35 0.13 6.95 0.02 0.89 1.79 0.57 0.45 0.05 0.06 0.80 0.04 1.04 0.31
(1) × (3) × (4) 2 13.04 1.48 0.23 11.85 0.03 0.97 0.33 0.11 0.90 8.49 10.77 <0.001
(2) × (3) × (4) 2 5.76 0.65 0.52 411.68 1.19 0.31 1.61 0.52 0.60 0.10 0.13 0.88
(1) × (2) × (3) × (4) 2 14.56 1.65 0.20 186.46 0.54 0.59 0.72 0.23 0.80 0.19 0.25 0.78
Residual 8.81 346.49 3.13 0.79 0.04

Table 3. ANOVA results for Ulva rigida, details as in Table 2

Source SPs C N FAs
df MS F p MS F p MS F p MS F p

C (1) 1 5.93 3.45 0.07 5.07 0.17 0.68 0.08 0.09 0.77 0.01 2.13 0.15
N (2) 1 6.76 3.93 0.05 32.18 1.08 0.30 1.89 2.11 0.15 0.00 0.35 0.56
Time (3) 2 4.34 2.53 0.08 1785.58 59.70 <0.001 0.67 0.75 0.47
Temperature (4) 1 24.03 13.99 <0.001 139.40 4.66 0.03 2.12 2.37 0.13 0.29 47.81 <0.001
(1) × (2) 1 0.53 0.31 0.58 50.64 1.69 0.20 0.73 0.81 0.37 0.01 1.67 0.20
(1) × (3) 2 3.69 2.15 0.12 48.62 1.63 0.20 5.00 5.57 0.01
(1) × (4) 1 1.23 0.72 0.40 124.16 4.15 0.04 1.31 1.46 0.23 0.00 0.02 0.90
(2) × (3) 2 1.25 0.73 0.49 75.38 2.52 0.09 0.59 0.66 0.52
(2) × (4) 1 1.77 1.03 0.31 66.98 2.24 0.14 0.05 0.05 0.82 0.01 1.17 0.28
(3) × (4) 2 12.31 7.17 <0.001 6.68 0.22 0.80 0.56 0.62 0.54
(1) × (2) × (3) 2 1.05 0.61 0.55 18.42 0.62 0.54 1.05 1.17 0.32
(1) × (2) × (4) 1 1.74 1.01 0.32 3.26 0.11 0.74 0.39 0.44 0.51 0.00 0.34 0.56
(1) × (3) × (4) 2 1.67 0.97 0.38 5.98 0.20 0.82 0.74 0.83 0.44
(2) × (3) × (4) 2 0.07 0.04 0.96 11.75 0.39 0.68 0.87 0.97 0.38
(1) × (2) × (3) × (4) 2 1.33 0.77 0.46 43.78 1.46 0.24 1.86 2.07 0.13
Residual 1.72 29.91 0.90 0.01

Table 4. ANOVA results for Ellisolandia elongata, details as in Table 2
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DISCUSSION

In this study, the results of short-term effects of
pCO2, nitrate and temperature increases on the
physiology of 3 abundant eulittoral Mediterranean
macroalgae with different morphological, bio-optical
and physiological characteristics (Mercado et al.
1998, Figueroa et al. 2003a, 2014b, Abdala-Díaz et al.
2006) are presented. Combined effects of CO2 (LC
and HC) and nitrogen (LN and HN nitrate concen-
tration through morning pulses) under 2 temperature
conditions were tested (6 d at ambient temperature
followed by 3 d after a 4°C increase). Most studies
on the effects of global climate change on aquatic
organisms have been conducted with 1 or 2 experi-
mental variables, and studies on the inter action of
multiple factors are very scarce (Gao & Zheng 2010,
Cornwall et al. 2012, Koch et al. 2013, Yildiz et al.
2013).

N levels and the interaction C × N in Ulva rigida
had significant effects on protein concentration, as
previously reported (Gordillo et al. 2001, 2003). How-
ever, in Cystoseira tamariscifolia, N levels did not
affect the protein level in contrast to C, temperature
and the interaction of C × N, whereas in Ellisolandia
elongata, only N and temperature as single factors
influenced the protein level. Burkhardt & Riebesell
(1997) observed a decrease in the C:N ratio at high
CO2 in different phytoplankton species. However,
this ratio increased in the macroalgae U. rigida and
Pyropia (Porphyra) leucostica grown under high CO2

(Mercado et al. 1999, Gordillo et al. 2001). Algae
grown at a high inorganic C concentration (5% CO2)

displayed a higher soluble carbohydrate concentra-
tion and maximum photosynthesis rate but had a
lower photosynthetic affinity for inorganic C, and
lower phycobiliprotein and Rubisco contents than
those algae cultured at low inorganic C levels (air
CO2) (Andría et al. 1999). Inorganic C enrichment
also affected N uptake and assimilation in Gracilaria
sp., causing a decrease in N uptake rate even under
N-replete conditions (Andría et al. 1999).

In C. tamariscifolia, the temperature increase pro-
duced a decrease in total FAs and phenolic com-
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Source Total MAAs % Shinorine % Asterina % Palythine % Palythinol
df MS F p MS F p MS F p MS F p MS F p

C (1) 1 0.01 2.96 0.09 1002.80 6.76 0.01 18.32 26.53 <0.001 1808.40 20.67 <0.001 201.33 3.07 0.08
N (2) 1 0.00 0.01 0.92 133.36 0.90 0.35 0.29 0.41 0.52 75.74 0.87 0.36 1.85 0.03 0.87
Time (3) 2 0.00 0.66 0.52 828.71 5.59 0.01 2.38 3.45 0.04 415.05 4.74 0.01 754.90 11.50 <0.001
Temperature (4) 1 0.00 0.22 0.64 0.01 0.00 0.99 0.55 0.80 0.37 197.62 2.26 0.14 194.99 2.97 0.09
(1) × (2) 1 0.00 0.01 0.94 2.12 0.01 0.91 0.72 1.04 0.31 54.34 0.62 0.43 49.38 0.75 0.39
(1) × (3) 2 0.01 1.52 0.23 653.58 4.41 0.02 2.88 4.17 0.02 324.50 3.71 0.03 51.98 0.79 0.46
(1) × (4) 1 0.00 1.13 0.29 132.35 0.89 0.35 9.81 14.20 <0.001 419.20 4.79 0.03 124.38 1.89 0.17
(2) × (3) 2 0.00 0.74 0.48 1511.60 10.19 <0.001 10.63 15.39 <0.001 1631.99 18.65 <0.001 54.08 0.82 0.44
(2) × (4) 1 0.01 4.09 0.05 128.52 0.87 0.36 6.35 9.20 <0.001 1450.05 16.57 <0.001 801.67 12.21 <0.001
(3) × (4) 2 0.02 5.52 0.01 683.38 4.61 0.01 10.36 15.00 <0.001 1454.15 16.62 <0.001 202.28 3.08 0.05
(1) × (2) × (3) 2 0.00 1.06 0.35 670.92 4.52 0.01 6.42 9.30 <0.001 1141.30 13.05 <0.001 96.26 1.47 0.24
(1) × (2) × (4) 1 0.00 0.05 0.83 512.66 3.46 0.07 6.46 9.36 <0.001 1383.90 15.82 <0.001 260.86 3.97 0.05
(1) × (3) × (4) 2 0.02 6.36 <0.001 586.23 3.95 0.02 3.45 5.00 0.01 984.94 11.26 <0.001 182.48 2.78 0.07
(2) × (3) × (4) 2 0.00 1.06 0.35 210.27 1.42 0.25 2.55 3.69 0.03 200.89 2.30 0.11 28.78 0.44 0.65
(1) × (2) × (3) × (4) 2 0.00 0.39 0.68 358.12 2.41 0.10 1.59 2.30 0.11 265.77 3.04 0.05 36.85 0.56 0.57
Residual 0.00 148.35 0.69 87.49 65.64

Table 5. ANOVA results for Ellisolandia elongata (for details see Table 2), testing for effects on total mycosporine-like amino acids (MAAs), 
% shinorine, % asterina, % palythine and % palythinol
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Fig. 2. Total mycosporine-like amino acid (MAA) content of
Ellisolandia elongata exposed to combined conditions of C
(HC and LC), N (HN and LN), and temperature (see Fig. 1
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noon (N) and evening (E). Data are pooled means ± SE, in
accordance with significant effects obtained by ANOVA,
considering interactive significant effects of carbon, time
and temperature (n = 12). Different letters above the histo-
grams indicate significant differences (p < 0.05, SNK post 
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pound levels and an increase in protein content (at
noon and under HN). In E. elongata, a decrease in
total FAs and SPs (in the evening) was observed. In
contrast, in U. rigida, total FAs, SPs and phenolic
compounds (at noon) increased under ambient + 4°C
temperature. Thus, in U. rigida the internal biochem-
ical compounds seem to be accumulated under
stress, as has been previously shown under different
stress conditions in algae (Abdala-Díaz et al. 2006,
Stengel et al. 2011, Sharma et al. 2012). The effect of
increased temperature in this study took into account
the day/light fluctuations including the decrease in
temperature during the night compared to the day
period. Temperature is a major factor controlling the
rate of photosynthesis in algae (Davison 1991). Tem-
perature affects the availability of inorganic C (Surif
& Raven 1989) and the rate of C fixation by Rubisco
(Sukenik et al. 1987). Several primary sites of tem-
perature sensitivity have been proposed to initiate
the process of photoinhibition, including damage to
PSII, in particular degradation of D1 protein (Warner
et al. 1999), disintegration of the thylakoid mem-
brane (Tchernov et al. 2004), generation of reactive
oxygen species concomitant to photooxidative dam-
age to the photosynthetic apparatus (Lesser 2006),
and impairment of the Calvin-Benson cycle (Jones et
al. 1998). Overall, the mechanisms of thermal toler-
ance are not well understood in macrophytes, but
studies indicate comparable responses to heat stress
amongst temperate marine macrophytes and terres-
trial plants.

The different responses amongst the species to C,
N and temperature treatments could be explained by
the different bio-optical pattern: i.e. C. tamariscifolia
and E. elongata have a very high absorptance (0.8 or
0.9) due to their thickness and complex morphology
and structure, whereas the absorptance of U. rigida
thalli, with just 2 cell layers, ranges from 0.40 to 0.65
(Salles et al. 1996). In addition, the reflectance is high
in E. elongata (15 to 20%). In this study, the effect of
increased CO2 and temperature under different N
supply was very different in thin and laminar species
(U. rigida) compared to the shrubby macroalga C.
tamariscifolia, or the jointed calcareous alga E. elon-
gata. Additionally, different biochemical constituents
were affected to different degrees by the 4 treat-
ments. Biochemical composition of C. tamariscifolia
responded (directly or in interaction) mainly to tem-
perature for nearly all variables; effects of CO2 in -
crease were also detected, whereas composition was
hardly affected by nutrient supply. In contrast, the
biochemical composition of U. rigida was affected by
increases in temperature, CO2 and nutrient supply
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and their interactions, although the
responses were different for each
variable. In addition, the light cli-
mate in the tanks depended on the
positioning of the species. U. rigida,
with its freely moving thalli in the
tank’s water flow, presented more
variable canopy episodes than C.
tamariscifolia (fixed position) or
than E. elongata, which was located
at the bottom (see Stengel et al.
2014). Thus, in addition to the bio-
optical characteristic of the thalli,
the canopy effect in the tanks must
be taken into account to explain
light ab sorption. Field studies on
mats and canopies confirm this con-
clusion; for example, Malta et al.
(2003) re ported strong vertical
 heterogeneity in physio logical
char acteristics of Ulva sp. organ-
ized in mats. Bischof et al. (2006b)
also showed the photo acclimation
within mats of the filamentous
green macroalga Chaetomorpha
lin um, presenting much less pho-
toinhibition than the first layers of
thalli with high light exposure.
Falkenberg et al. (2013) reported
that turf algae responded to enrich-
ment of CO2 and nutrients, whereas
canopy-forming species responded
only to nutrient enrichment; they
concluded that the identification of
how these conditions modify re -
source availability may help predict
to what extent such major ecosys-
tem components and the communi-
ties they support may adapt to
future conditions.

According to morphology, thickness
and reflectance, U. rigida may be ex-
pected to be more vulnerable to
high solar irradiance than C. tama -
riscifolia and E. elongata. Algal phe-
nolic compounds are photo pro tec -
tive due to their UV-screen and
antioxidant ca pacities (Connan et al.
2006). In this study, C. tamariscifolia
not only presented much higher lev-
els of phenolic compounds and an-
tioxidant capacity than U. rigida, but
also the release of phenolic com-
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pounds into the seawater in the case of C. tama -
riscifolia considerably reduced the UVR in the experi-
mental tanks (Stengel et al. 2014). In this study, the
concentration of phenolic compounds (expressed as
phloroglucinol equivalent) in the seawater (experi-
mental vessel) under ambient tem perature was higher
than under increased temperature. The release of
phenolic compounds from C. tamariscifolia thalli at
noon has been suggested to be a photoprotective
mechanism under high irradiance conditions (Ab-
dala-Díaz et al. 2006, Celis-Plá et al. 2014). In the
green macroalga Dasycladus vermi cu laris, phenolic
compounds (trihydroxycoumarins) with antioxidant
capacity are released under stressful conditions, re-
ducing photoinhibition and increasing the recovery
capacity of the photosynthetic yield and productivity
(Pérez-Rodríguez et al. 1998, 2001, 2003). Thus, the
combination of thallus thickness, phenolic compounds
(and their positive response to temperature increase),
antioxidant activity and the reduction in UV penetra-
tion by the release of phenolic compounds might give
C. tamariscifolia an advantage over U. rigida in high
light environments that could even result in a higher
production of the first species, especially with in -
creasing temperatures. An indication of the relation-
ship between phenolic  compounds and the good
physiological status of C. tamariscifolia and U. rigida
is the linear and positive relationship of their phenolic
content with the SP content. The increase in total FA
content was also related to phenolic content only in C.
tamariscifolia. These results indicate a link between
primary meta bolism, i.e. protein or lipid accumulation,
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C** N** Phenolics* EC50* FAs***

SPs* −0.018 0.093 0.206 −0.203 −0.062
p = 0.845 p = 0.312 p = 0.013 p = 0.015 p = 0.603

C** 0.565 0.185 0.032 0.188
p <0.001 p = 0.043 p = 0.725 p = 0.114

N** −0.023 −0.031 0.122
p = 0.807 p = 0.736 p = 0.308

Phenolics* −0.211 0.244
p = 0.011 p = 0.039

EC50* 0.117
p = 0.330

Table 6. Pearson correlation values between dependent variables
in Cystoseira tamariscifolia. Values in bold show significant rela-
tionships (p < 0.05). (*) n = 144; (**) n = 120; (***) n = 72. SPs =
total soluble proteins; phenolics = phenolic compounds; FAs =
fatty acids; EC50 = concentration of the methanolic extract re-

quired to scavenge 50% of the DPPH

C*** N*** Phenolics** FAs***

SPs* −0.1699 0.2517 0.2274 −0.0069
p = 0.064 p = 0.006 p = 0.018 p = 0.958

C** 0.4015 −0.0695 0.3412
p < 0.001 p = 0.530 p = 0.008

N** −0.0648 0.0692
p = 0.558 p = 0.599

Phenolics −0.0852
p = 0.621

Table 7. Pearson correlation values between dependent variables
in Ulva rigida. Values in bold show significant relationships 

(p < 0.05). (*) n = 144; (**) n = 120; (***) n = 72

C** N** Total MAAs*** % Palythine*** % Shinorine*** % Asterina*** % Palythinol*** % FAs****

SPs* 0.1659 0.0656 0.0917 −0.2452 0.1025 0.1382 0.2264 0.5334
p = 0.070 p = 0.476 p = 0.374 p = 0.016 p = 0.320 p = 0.179 p = 0.027 p < 0.001

C** 0.0477 −0.0795 −0.252 0.2383 0.2393 0.0035 0.2483
p = 0.605 p = 0.441 p = 0.013 p = 0.019 p = 0.019 p = 0.973 p = 0.037

N** −0.2446 −0.3915 0.3883 0.3011 −0.0305 −0.1618
p = 0.016 p < 0.001 p < 0.001 p = 0.003 p = 0.768 p = 0.178

Total MAAs*** 0.2826 −0.5196 −0.4311 0.4425 0.1318
p = 0.005 p < 0.001 p < 0.001 p < 0.001 p = 0.273

% Palythine*** −0.8271 −0.8112 −0.1928 0.0638
p < 0.001 p < 0.001 p = 0.060 p = 0.597

% Shinorine*** 0.8918 −0.3896 0.0141
p < 0.001 p < 0.001 p = 0.907

% Asterina*** −0.2526 0.0054
p = 0.013 p = 0.964

% Palythinol*** −0.1515
p = 0.207

Table 8. Pearson correlation values between dependent variables in Ellisolandia elongata. Values in bold show significant relation 
(p < 0.05). (*) n = 144; (**) n = 120; (***) n = 72. SPs = total soluble proteins; FAs = fatty acids; MAAs = mycosporine-like amino acids 
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and secondary metabolism, i.e. accumulation of phe-
nolic compounds.

E. elongata also contains UV-absorbing com-
pounds involved in photoprotection, i.e. MAAs. C
and N internal contents were positively related to
some MAAs (i.e. shinorine and asterina-330) but
negatively to palythine, indicating that the C and N
enrichment favored the accumulation of only some
MAAs. This can be advantageous under stressful
conditions, since asterina-330 presented a high anti -
oxidant activity against hydrosoluble radicals (ABTS
assay) and lipid peroxidation (β-carotene oxidation
assay) (De la Coba et al. 2009). N enrichment in -
creases the accumulation of MAAs in different  species
of red macroalgae of the genus Porphyra (Pyropia)
(Korbee-Peinado et al. 2004, Korbee et al. 2005),
Gracilaria (Zheng & Gao 2009, Figueroa et al. 2010)
and Grateloupia (Huovinen et al. 2006). In spite of
the fact that MAAs are N-containing compounds, no
significant effect of N as a single factor was found for
the accumulation of MAAs, except for the double
interaction of N × time for all MAAs except paly -
thinol, and the double interaction N × temperature
for all MAAs except shinorine. MAAs are synthe-
sized from mycoporine−glycine and they are inter-
converted between them under the influence of light
quality and N availability (Carreto & Carignan 2011).
The accumulation of photoprotectors as MAAs and
phenolic compounds and the high antioxidant
 capacity of methanolic extracts are useful indicators
of the capacity of the algae to acclimate to increased
UV-B radiation or other stressful conditions (Pérez-
Rodríguez et al. 2003, Connan et al. 2004, Abdala-
Díaz et al. 2006, Carreto & Carignan 2011, García-
Sánchez et al. 2012, Figueroa et al. 2014b).

In conclusion, the 3 algal species investigated here
displayed high biochemical plasticity in response to
changes in nutrient concentration and temperature.
Responses were species-specific and could, in part,
be related to differences in their bio-optical proper-
ties and ecological strategies. Links between primary
(productivity, protein production) and secondary meta -
bolisms (antioxidant production) were established for
Ulva and Cystoseira.
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