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Plant-Order Saturated Output-Feedback Regional Controller Synthesis With
Sign-Indefinite Quadratic Forms

Santiago Pantano Calderón, Sophie Tarbouriech, Fellow, IEEE, Luca Zaccarian, Fellow, IEEE

Abstract— This note provides tools to design a dynamic plant-
order output-feedback controller for linear plants subject to
saturating input with measurable output. Based on Linear
Matrix Inequalities (LMIs), together with appropriate transfor-
mations and sector conditions, the proposed solution exploits
sign-indefinite quadratic forms to define a locally positive
definite piece-wise Lyapunov function providing non-ellipsoidal
estimates of the closed-loop basin of attraction. With guaranteed
local exponential stability, methods to ensure a prescribed local
exponential convergence rate and to maximize the estimates of
the region of attraction are also given.

Index Terms— Stability of nonlinear systems, LMIs, Lya-
punov methods, Saturation

I. INTRODUCTION

In the recent decades, the physical or technological limi-
tations of actuators have been progressively more considered
to construct control laws systems subject to input saturation.
Indeed, neglecting the existence of these intrinsic properties
may produce poor performance or undesirable behaviors
of dynamic controlled closed-loop systems, including over-
shoot, slow convergence or even, in some cases, stability loss.
This is especially critical in systems with fast dynamics, such
as aircrafts and rockets [16]. Restrictive solutions preventing
the actuators to reach saturation bounds, called low-gain
approaches, may limit the system operation to such an extent
that poor performance or instability is induced.

Under this scenario, different constructive control methods
considering actuator limitations in linear systems subject
to input saturation have been developed in the last years;
some of them based on Linear Matrix Inequalities (LMIs)
stemming from quadratic Lyapunov functions and adequate
sector conditions (see, for example, [17], [19] and references
therein). It is also worth to mention that the direct feedback
controller design, which considers the actuator saturation
during the synthesis of both dynamic output feedback con-
troller and anti-windup compensation, requires the controller
to have the same order as the plant [15] and the addition of a
static anti-windup term to allow performing factorizations in
[15] and transformations in [3], [6] leading to convex LMI-
based conditions.

Motivated by the discussions in [17, Example 3.4] and
[19, Section 4.4.1.1] suggesting that the use of common
quadratic Lyapunov functions may reveal some numerical
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conservatism (see also the parallel approaches in [8], [9] and
[18]), the current paper complements the existing dynamic
output feedback controller synthesis results by proposing
the use of the piece-wise nonquadratic Lyapunov Function
encompassing a sign-indefinite quadratic form already em-
ployed in [14] to address the stability analysis problem, and
in [11] and [13] to synthesize an anti-windup gain guar-
anteeing local and global exponential stability, respectively.
For regional stabilization, this paper proposes a dynamic
output feedback controller design procedure extending the
quadratic designs in [5] and [6] by using sign-indefinite
quadratic forms. This leads to sufficient and less conservative
LMI conditions ensuring regional exponential stability of
the origin of the closed-loop system, while considering the
size of the basin of attraction as a primary performance
indicator [7], [14]. Moreover, sufficient conditions are also
given to guarantee a desired convergence rate, understood as
a local property that holds only when the input saturation is
not active. Some preliminary results in the direction of this
paper are presented in [12], where the global stabilization
problem is addressed by proposing a global design that is
only applicable to exponentially stable plants, whereas the
construction presented here is applicable to any stabilizable
and detectable plant.

This paper is organized as follows. Section II introduces
the controller synthesis problem under consideration, to-
gether with the definitions of the plant and the dynamic
controller. The main results obtained leveraging the sign-
indefinite quadratic forms are presented in Section III. Sec-
tion IV shows two numerical examples and, finally, Section
V reports some concluding comments.

Notation: MT is the transpose of the matrix M and M−T

the transpose of the invertible matrix M−1. Define He(M) =
M +MT. Rm is the Euclidean space of dimensions m. Let
Dm (Dm

>0) be the set of diagonal (positive-definite) matrices
of dimensions m × m and Sm (Sm>0) the set of symmetric
(positive-definite) matrices of dimensions m×m. Given any
matrix M ∈ Rm×m, λ(M) is the set of eigenvalues of M ,
λmin(M) the minimum eigenvalue of M and λmax(M) is
the maximum eigenvalue of M . Finally, Im is the identity
matrix of dimensions m × m and 0 is the null matrix of
appropriate dimensions.

II. PRELIMINARY DEFINITIONS

Consider the linear plant subject to input saturation

ẋp = Apxp +Bpsat (u)
y = Cpxp

, (1)



with state xp ∈ Rn and output y ∈ Rm, while denoting
by u 7→ sat (u) the decentralized symmetric saturation
function, with components

sati(ui) := max{−ūi,min{ūi, ui}}

for all i = 1, · · · ,m, where ūi > 0 is the symmetric
saturation limit on the input ui, with ui and ūi being the
ith entry of the vectors u and ū, respectively. Introduce also
the deadzone function dz (u) := u − sat (u). Assuming that
(1) is stabilizable and detectable (a necessary condition for
output feedback stabilizability), the goal of this paper is
to design a dynamic output feedback controller with anti-
windup compensation

ẋc = Acxc +Bcy + Ecdz (u)
u = Ccxc +Dcy

, (2)

which has the same order as the plant, i.e. with state xc ∈ Rn

and output u ∈ Rm. Controller (2) is defined in such a way
that the anti-windup compensation is performed by the term
Ecdz (u). With these definitions, let Ac, Bc, Cc, Dc and
Ec be the controller state-space model and anti-windup gain
matrices to be synthesized.

Define also the extended state vector x :=
[
xT
p xT

c

]T
,

x ∈ R2n, and combine (1) and (2) to write the closed-loop
dynamics as

ẋ = Ax+Bdz (u)
u = Cx

, (3)

with A B

C —

 =

 Ap +BpDcCp BpCc −Bp

BcCp Ac Ec

DcCp Cc —

 .

This paper proposes sufficient and convex LMI design
conditions for (2) that ensure regional exponential stability
of the origin of (3). As a second aim, this note determines
the sufficient LMI conditions for guaranteeing a prescribed
spectral abscissa −α < 0 for matrix A in (3), which produces
a guaranteed local convergence rate of α in the closed-loop
response for any initial state in the basin of attraction of the
origin when the input saturation is inactive. In the same way,
sufficient LMI conditions limiting the spectral radius of A to
a prescribed radius ρ > α are given to improve the numerical
behavior of the convex optimization.

III. SIGN-INDEFINITE NONQUADRATIC CERTIFICATES

Construct the extended state vector

η =
[
xT dz (Cx)

T
]T

.

so that, according to [14], V is a locally Lipschitz sign-
indefinite quadratic form defined as

V (x) := ηTPη = ηT
[
P11 P12

P T
12 P22

]
η, (4)

where P11 = P T
11 > 0 and P22 = P T

22 may be sign-indefinite.
Notice that having P with nonpositive P22 may still ensure

local positive-definiteness and Lipschitz continuity for V in
(4) whenever P11 is positive definite, as it was shown in [14,
Proposition 1]. As a consequence, V encompasses a broad
class of Lyapunov functions since positive-definiteness of P
is not imperative, in contrast with the results in [6] and [3],
where positive-definiteness of P is actually required.

Following a similar procedure to [11], characterizing the
basin of attraction of the origin for (3) requires defining the
function x → h(x) as

h(x) := H1x+H2dz (Cx) (5)

with H1 ∈ Rm×2n, H2 ∈ Rm×m being both arbitrary design
parameters. With h in (5), introduce the subset

Sh := {x ∈ Rn : |h(x)|∞ ≤ 1} (6)

and impose the condition

V (x) ≥ |h(x)|2∞ (7)

for all x ∈ Sh so that the Lyapunov function candidate

W (x) :=

{
V (x) if x ∈ Sh

1 otherwise , (8)

is continuous and Lipschitz. Moreover, introducing the open
sublevel set

S(W ) := {x ∈ Rn : W (x) < 1}, (9)

it holds under (7) that

S(W ) = S(V ) ∩ Sh. (10)

To parameterize P , generalizing the approach in [15],
introduce the full-rank matrices X, Y, X̃ , Ỹ ∈ Sn>0, and
full-rank M, N ∈ Rn×n such that

P11 =

[
X M

MT X̃

]
, P−1

11 =

[
Y N

NT Ỹ

]
. (11)

Using (11) and the fact that P11P
−1
11 = P−1

11 P11 = I2n, the
symmetry of P11 is guaranteed by the identities

XY +MNT = YX+NMT = In,

MTY + X̃NT = YM+NX̃ = 0. (12)

Moreover, from (12) and the invertibility of N , note that

X̃ = −MTYN−T

= −N−1(Y −YXY)N−T. (13)

Generalizing also the derivations in [15], it is possible to
parameterize the controller matrices in (2) as

Ac = M−1
(
Âc −X

(
Ap +BpDcCp

)
Y

−MBcCpY −XBpCcN
T
)
N−T,

Bc = M−1
(
B̂c −XBpDc

)
,

Cc =
(
Ĉc −DcCpY

)
N−T,

Dc = D̂c,

Ec = M−1ÊcS
−1 +M−1XBp,

(14)



the remaining entries in (4) as

P12 =

[
Y In
NT 0

]−T [
Zp

Zc

]
S−1, P22 = S−1P̂22S

−1 (15)

and, finally, the parameters of (5) as

H1 =
[
Gp Gc

] [Y In
NT 0

]−1

, H2 = Ĥ2S
−1. (16)

With these parameterizations, matrices Âc ∈ Rn×n,
B̂c ∈ Rn×m, Ĉc ∈ Rm×n, D̂c ∈ Rm×m, Êc ∈ Rn×m,
Zp ∈ Rn×m, Zc ∈ Rn×m, P̂22 ∈ Sm, S ∈ Dm

>0,
Gp ∈ Rn×n, Gc ∈ Rn×n and Ĥ2 ∈ Rn×m are
the decision variables of the convex LMI-based synthesis
formulated in the next theorem.

Theorem 1: If there exist matrices X ∈ Sn>0, Y ∈ Sn>0,
Zp ∈ Rn×m, Zc ∈ Rn×m, P̂22 ∈ Sm, S ∈ Dm

>0,
Gp ∈ Rn×n, Gc ∈ Rn×n, Ĥ2 ∈ Rn×m, Âc ∈ Rn×n,
B̂c ∈ Rn×m, Ĉc ∈ Rm×n, D̂c ∈ Rm×m and Êc ∈ Rn×m

satisfying

Ψ1=He


1
2Y 0 Zp +GT

pŪ−ĈT
c 0

In
1
2X Zc+GT

c Ū−CT
p D̂

T
c 0

0 0 1
2 P̂22+ŪĤ2+S 0

Gp Gc Ĥ2
1
2Im

>0 (17)

and condition (18) at the bottom of this page, then function
W in (8) is Lipschitz continuous, inclusion S(W ) ⊂ Sh

holds and the origin of (3) with the controller state-space
model matrices Ac, Bc, Cc, Dc and Ec as selected in (14)
is locally exponentially stable from S(W ).

Proof: First, notice that selections (14)-(16) can be
uniquely inverted as

Âc = X (Ap +BcDcCp)Y +MBcCpY
+XBpCcN

T +MAcN
T,

B̂c = XBpDc +MBc, Ĉc = DcCpY + CcN
T,

D̂c = Dc, Êc = MEcS−XBpS,[
Zp

Zc

]
=

[
Y In
NT 0

]T

P12S, P̂22 = SP22S,[
Gp Gc

]
= H1

[
Y In
NT 0

]
, Ĥ2 = H2S. (19)

Together with selection (11), introduce the invertible matrix

Π :=

[
Y In
NT 0

]
(20)

that satisfies the properties

ΠTP11 =

[
In 0
X M

]
, ΠTP11Π =

[
Y In
In X

]
, (21)

which are easily verified by substitution using (12). Fur-
thermore, observe that W (x) > 0 for all x /∈ Sh and
W (x) = V (x) for all x ∈ Sh from definition (8).
Define the diagonal matrix Ū := diag{ū} and consider the
following facts proven in [7] and [4].

Local Sector Condition [7, Lemma 1]: For any T1 ∈ Dm
>0,

it holds that for all x ∈ Sh,

dz (Cx)
T
T1(Cx− dz (Cx)− Ūh(x)) ≥ 0. (22)

Derivative of the Deadzone [4, Fact 4]: For any T2 ∈ Dm,
T3 ∈ Dm and for all x ∈ R2n : |ui(x)| ≠ ūi,

dz (Cx)
T
T2(Cẋ− ḋz (Cx)) ≡ 0, (23)

ḋz (Cx)
T
T3(Cẋ− ḋz (Cx)) ≡ 0, (24)

where ẋ = Ax+Bdz (u) as in (3) and ḋz (Cx) denotes the
time-derivative of x → dz (Cx), which is well defined for
almost all values of x ∈ R2n.

Now, exploiting the invertibility of Π and considering
selections in (19), pre- and post-multiply Ψ1 in (17) byΠ 0 0

0 S 0
0 0 Im

−T

and its transpose to obtain the matrix

He

 1
2P11 P12 +HT

1 ŪS−1 − CTS−1 0
0 1

2P22 + S−1ŪH2 + S−1 0
H1 H2

1
2Im

 ,

which is positive-definite due to the hypothesis (17). Apply-
ing Schur complement, define

Ψ̄1 :=P − He
[
0 CTS−1−HT

1 ŪS−1

0 −S−1−S−1ŪH2)

]
−
[
HT

1

HT
2

] [
HT

1

HT
2

]T

>0,

(25)
which verifies that, for all x ∈ Sh,

V (x)− h(x)Th(x)

≥ V (x)− h(x)Th(x)

−2 dz (Cx)
T
S−1(Cx− dz (Cx)− Ūh(x))

= ηTΨ̄η ≥ λmin(Ψ̄1) |η|2 ≥ λmin(Ψ̄1) |x|2 , (26)

which results in W (x) = V (x) ≥ hT(x)h(x) > 0,
proving inclusion S(W ) ⊂ Sh, and ensures that V (x) ≥ 1

Ψ2 = He



ApY +BpĈc Ap +BpD̂cCp −BpS 0 0 Zp

Âc X̂Ap + B̂cCp Êc 0 0 Zc

Ĉc − ŪGp D̂cCp − ŪGc −S− ŪĤ2 ZT
p − Ĉc ZT

c − D̂cCp P̂22

ApY +BpĈc Ap +BpD̂cCp −BpS −Y −In 0

Âc X̂Ap + B̂cCp Êc −In −X 0

0 0 S Ĉc D̂cCp −S


< 0 (18)



in the boundary of Sh, implying Lipschitz continuity of
W (x). Moreover, since u = Cx is globally Lipschitz, using
|dz (Cx)| ≤ |Cx| ≤ L |x|, it can be stated that

W (x) = V (x) ≤ λmax(P ) |η|2 ≤ λmax(P )L |x|2 ,

which, together with property (26), implies positive-
definiteness of W for all x ∈ S(W ). Besides, since Ẇ (x)
coincides with V̇ (x) for almost all x ∈ S(W ), defining the
extended state vector υ and matrix K as

υ :=
[
xT dz (u)T

ẋT ḋz (u)T
]T

,

K :=
[
0 CTS−1 − P12 P11 −CTS−1

]T
,

due to continuity of (3), using [5, Section 2.2], stability of
the origin of (3) from S(W ) can be proven by showing that
Ẇ (x) = V̇ (x) < −ϵv|x|2 for some ϵv > 0 and for almost
all x ∈ S(W ) ⊂ Sh. To this end, with (19) and after some
extensive derivations, pre and postmultiplying Ψ2 in (18) by

Π 0 0 0
0 S 0 0
0 0 Π 0
0 0 0 S


T

and its transpose allows determining the symmetric matrix

Ψ̄2 :=He


P11A (C−ŪH1)

TS−1 0 P12

BTP11 −S−1(Im+ŪH2) P T
12 − S−1C P22

P11A P11B −P11 0
0 S−1 S−1C −S−1



=He



P11 P12

P T
12 P22

0 0
0 0

[
A B 0 0
0 0 0 Im

]

+ He




0
S−1

0
0

 [
C − ŪH1 −Im − ŪH2 0 0

]

+ He




0
−S−1

0
0

 [
CA CB 0 −Im

]

+ He




0
0
0

S−1

 [
CA CB 0 −Im

]

+ He




0
S−1C − P T

12

P11

−S−1C

 [
A B −I2n 0

] ,

which is negative-definite thanks to hypothesis (18). Exploit-
ing facts (22)-(24), the expression above implies

V̇ (x) ≤ V̇ (x) + 2 dz (Cx)
T
S−1(Cx−dz (Cx)−Ūh(x))

− 2 dz (Cx)
T
S−1(Cẋ−ḋz (Cx))

+ 2 ḋz (Cx)
T
S−1(Cẋ−ḋz (Cx))

+ 2 υTK(Ax+Bdz (Cx)−ẋ) = υTΨ̄2υ (27)

for almost all x ∈ Sh. Additionally, notice that selecting
ϵv = λmin(−Ψ̄2) > 0,

−υTΨ̄2υ ≥ λmin

(
−Ψ̄2

)
|υ|2 ≥ λmin

(
−Ψ̄2

)
|x|2 = ϵv|x|2

holds for almost all x ∈ S(W ), ensuring, due to [5], regional
exponential stability of the origin of (3) from S(W ). □

Remark 1: The preliminary statement (22) requires T1

to be positive-definite, while facts (23) and (24) admit
diagonal sign-indefinite multipliers. Hence, to preserve the
convexity and feasibility of (17) and (18), Theorem 1 takes
T1 = T3 = S−1 > 0 but, specifically for the examples
in Section IV, selecting T2 = −S−1 was observed to
produce more voluminous estimates of the basin of attraction
for (3). Moreover, since the gains T1, T2 and T3 rely on
the same decision variable S, some conservatism upcoming
from these selections may be expected in the design stage,
but the analysis tools of [14] may be used a posteriori to
recompute a less conservative nonquadratic estimate of the
basin of attraction.

With Theorem 1 ensuring local exponential stability of
(3), the resulting output feedback control system may have an
arbitrarily slow convergence rate or arbitrarily fast dynamics.
To address this fact, the next theorem allows ensuring a
prescribed spectral abscissa of A smaller than or equal to
−α < 0, which leads a minimum given convergence rate
α for dynamics (3) in the linear tail of the response, and a
spectral radius of A smaller than a given scalar ρ > α.

Theorem 2: Given a prescribed convergence rate α ≥ 0
and a prescribed spectral radius ρ > α, if there exist
matrices X ∈ Sn>0, Y ∈ Sn>0, Zp ∈ Rn×m, Zc ∈ Rn×m,
Gp ∈ Rn×n, Gc ∈ Rn×n, Ĥ2 ∈ Rn×m, P̂22 ∈ Sm,

Ψ3 = He


ApY +BpĈc + αY Ap +BpD̂cCp + αIn T̂pp −Y T̂pc − In

Âc + αIn XAp + B̂cCp + αX T̂T
pc − In T̂cc −X

ApY +BpĈc + αY Ap +BpD̂cCp + αIn −Y −In
Âc + αIn XAp + B̂cCp + αX −In −X

 < 0 (29)

Ψ4 = He


− 1

2ρY −ρIn ApY +BpĈc Ap +BpD̂cCp

0 − 1
2ρX Âc X̂Ap + B̂cCp

0 0 − 1
2ρY −ρIn

0 0 0 − 1
2ρX

 < 0 (30)



S ∈ Dm
>0, Âc ∈ Rn×n, B̂c ∈ Rn×m, Ĉc ∈ Rm×n,

D̂c ∈ Rm×m, Êc ∈ Rn×m, T̂pp ∈ Sn, T̂pc ∈ Rn×n

and T̂cc ∈ Sn such that conditions (17), (18) are satisfied
and, with

T̂ =

[
T̂pp T̂pc

T̂T
pc T̂cc

]
> 0, (28)

conditions (29) and (30) at the bottom of the previous page
also hold, then the origin of (3) with the controller state-
space model matrices Ac, Bc, Cc, Dc and Ec selected as
in (14) is locally exponentially stable from S(W ) and the
eigenvalues of A in (3) have real part smaller than −α and
a modulus smaller than ρ.

Proof: The proof of the local exponential stability of the
origin of (3) from S(W ) is proven in Theorem 1. To show
that λmax(A) < −α, introduce the matrix T := Π−TT̂Π−1,
with T̂ as defined in (28). Then, hypothesis (29) implies[
Π 0
0 Π

]−T

Ψ3

[
Π 0
0 Π

]−1

=He
[
P11(A+ αI2n) T − P11

P11(A+ αI2n) −P11

]
,

which is negative definite due to hypothesis (29) and pre- and
post-multiplied by

[
xT xT(A+ αI2n)

T
]

and its transpose
reads xTHe(T (A+ αI2n))x < 0, proving that the matrix
A+ αI2n is Hurwitz. Furthermore, exploiting the results of
[2] and the invertibility of Π in (20), to show that the spectral
radius of A is smaller than ρ, pre- and post-multiply Ψ4 by[

Π−T 0
0 Π−T

]
and its transpose. This product leads to

He
[
− 1

2ρP11 P11A
0 − 1

2ρP11

]
, (31)

which is negative-definite by assumption (30) and corre-
sponds to the characteristic LMI region of a disk of radius
ρ centered on the origin, ensuring that the eigenvalues of A
in (3) have modulus smaller than ρ. □

Remark 2: Following a similar approach to [17, Section
3.4.3], minimizing

trace{P11} = trace{X}+ trace{X̃} (32)

indirectly maximizes the volume of S(W ). Moreover, from
the definitions in (11), it can be found that

X̃ = MT (X−Y−1
)−1

M. (33)

Therefore, introducing a scalar τ > 0, inequality X̃ ≤ τ In
can be enforced (by a Schur complement) via the LMIτ In MT 0

M X In
0 In Y

 ≥ 0. (34)

As a consequence, the cost (32) can be replaced with
trace{X}+λmax

(
X̃
)
≤ trace{X}+τ under constraint (34),

which leads to the convex optimization problem

min
τ ,X,Y,Zp,Zc,P̂22,S,

Âc,B̂c,Ĉc,D̂c,Êc,

Gp,Gc,Ĥ2,T̂pp,T̂pc,T̂cc

trace{X}+ τ ,
Subject to
(17), (18), (29), (30).

(35)

Due to Theorem 2, problem (35) allows determining optimal
controller matrices Ac ∈ Rn×n, Bc ∈ Rn×m, Cc ∈ Rm×n,
Dc ∈ Rm×m and Ec ∈ Rn×m that maximize the
volume of S(W ) while ensuring a prescribed convergence
rate α and a spectral radius smaller that ρ for matrix A in
(3). Moreover, notice that whenever the optimization (35)
produces any P22 < 0, the volume of S(W ) increases since,
in such a case, trace{P11} > trace{P}.

IV. NUMERICAL EXAMPLES

In order to illustrate the effectiveness of the solution
presented in Theorem 1 and its reduced conservativeness
compared to results based on quadratic Lyapunov functions,
two numerical applications are presented in this section. Ad-
ditionally, for the following findings, the optimizer employed
was Mosek [1], executed with YALMIP [10].

A. Balancing pointer

Consider the balancing pointer SISO example in [17,
Example 3.4]. Thus let ū = 5, α = 0.5, ρ = 10 and

Ap =

[
0 1
1 0

]
, Bp =

[
0
−1

]
, Cp =

[
1 0

]
. (36)

For this plant, leveraging Theorem 2 and Remark 2, using
selections in (11), (13) and (14), the optimizer produces a
state-space model of the controller with

Ac=

[
−2.1075 0.5482
0.5258 −2.2020

]
, Bc =

[
−2.0303
2.1958

]
· 103,

Cc=
[
1.4809 −1.6369

]
· 10−3, Dc=3.8971,

Ec=
[
5.0368 −5.3993

]T · 102, (37)

and a sign-indefinite matrix P with eigenvalues
λ(P ) = {2.0800 · 10−1, 7.0724 · 10−2,−5.7345 · 10−2,
1.0860 · 10−12, 1.8044 · 10−7}.

Figure 1 shows, on the left, the solid red estimate S(W )
of the basin of attraction of the controlled closed-loop
system, obtained by running (35) to design the controller
matrices. For the synthesis phase, S(W ) is 27.5% larger
than the quadratic estimate found with the solution of [3].
Furthermore, leveraging the results in [14], the subsequent
stability analysis of the closed-loop system produces a more
voluminous non-ellipsoidal set S(W ), which is coherent with
Remarks 1 and 2. The right plot of Figure 1 shows the control

 Ac Bc Ec

Cc · 104 Dc · 10 —

 =


−2.8947 −0.0064 −0.8332 −0.0624 17.7281 −0.4332
0.0046 −2.8628 −0.3043 1.4487 −0.3013 3.9641
−0.0247 −0.0252 −5.7010 0.1093 —
0.6426 0.3646 0.26670 −1.7815

 (39)
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Fig. 1. Left: Set S(W ) found for the closed loop (36), (37) in the synthesis
phase (solid red) and in the analysis phase (dashed red). Right: controller
output response (37) from the initial state x0 = [1 3 0 0]T. Quadratic
estimate obtained using the solution of [3] in dotted blue.
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Fig. 2. Left: Set S(W ) found for the closed loop (38), (39) in the synthesis
phase (solid red) and in the analysis phase (dashed red). Right: controller
output response (39) from the initial state x0 = [250 0 0 0]T. In dotted
blue, results obtained with [17, Section 3.4.3].

output response u from the initial state x0 = [1 3 0 0]T,
which is observed to converge to 0 with the procedure in
Remark 2 and remains saturated with the solution of [3].

B. MIMO Academic Example

Consider the MIMO plant in [7, Example 2] with

Ap =

[
0.1 −0.1
0.1 −3

]
, Bp =

[
5 0
0 1

]
, Cp = I2, (38)

ū = [5 2]T, α = 2.5 and ρ = 100. In this case,
exploiting the proposed stability certificates and parameter-
izations (11) to (14), the optimizer returns the controller
state-space model matrices (39), at the bottom of the pre-
vious page. Further, the obtained matrix P has eigenvalues
λ(P ) = {−2.6336 · 10−4, 3.1426 · 10−5, 1.4229 · 10−5,
− 3.2326 · 10−6, 1.9984 · 10−9, 1.9913 · 10−9}.

It is worth to remark that, for this example, the approach
of [3] does not find any feasible solution maximizing the
estimate of the region of stability of the closed-loop dynam-
ics. Figure 2 reports, at left, on the estimate of the basin
of attraction of the controlled closed-loop system, which, in
the synthesis phase, is 15.9% larger if estimated with the
optimization criterion proposed in Section III, as compared
to the estimate obtained with solution in [17, Section 3.4.3]
using classic quadratic Lyapunov function. At the right side,
the faster response of the controller output u from the initial
state x0 = [250 0 0 0]T obtained with the solution in
Remark 2, as compared to the dynamics resulting from [17,
Section 3.4.3].

V. CONCLUDING COMMENTS

This paper addressed the synthesis of a dynamic output-
feedback controller that guarantees regional exponential sta-

bility of the closed-loop dynamics. The in-design controller
has the same order as the plant, which is not exponentially
stable and is subject to input saturation. The design condi-
tions are based on convex LMIs optimizations arising from
sign-indefinite quadratic forms and coherent factorization
inspired in [15], adequate variable changes and the use of
three sector conditions introduced in [14]. Future works may
include the external global and regional stability analysis
and the discrete-time global and regional stability analysis
of systems subject to input saturation using sign-indefinite
quadratic forms.
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