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STOCHASTIC MONOTONE INCLUSION WITH CLOSED LOOP DISTRIBUTIONS

HAMZA ENNAJI∗, JALAL FADILIc,♯, AND HEDY ATTOUCH⋄

Dedicated to the memory of Hedy Attouch, outstanding mathematician and beloved collaborator.

Abstract. In this paper, we study in a Hilbertian setting, first and second-order
monotone inclusions related to stochastic optimization problems with decision dependent
distributions. The studied dynamics are formulated as monotone inclusions governed by
Lipschitz perturbations of maximally monotone operators where the concept of equilibrium
plays a central role. We discuss the relationship between the W1-Wasserstein Lipschitz
behavior of the distribution and the so-called coarse Ricci curvature. As an application,
we consider the monotone inclusions associated with stochastic optimisation problems
involving the sum of a smooth function with Lipschitz gradient, a proximable function
and a composite term.
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1. Introduction

Recently, many problems in machine learning and risk management come in form of
stochastic optimisation problems. Such problems aim to learn a decision rule from a data
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sample. This can be formulated in terms of optimization problems of the form

min
x

Eξ∼m f(x, ξ) + g(x), (1)

where m is a probability measure, f(x, ξ) is a loss function of the decision x at data point ξ
and g is a convex regularizer. In this work, we are interested in (1) in the case where the
distribution m depends itself on the decision x, i.e., problems of the form

min
x

Eξ∼mx
f(x, ξ) + g(x), (2)

In this case, one tries to learn a decision rule from a decision-dependent data distribution
mx. Problems of the form (2) were addressed in the framework of performative prediction
proposed in [43, 47] and discussed with further algorithmic aspects in [35]. A typical example
concerns prediction of loan default risks, that is the chance that a borrower won’t be able
to repay their loan. More precisely, banks take into account several parameters, including
the default risk, to decide whether to accept a consumer’s loan application and, if so, what
interest rate will apply. It is clear that a high default risk implies a high interest rate, but a
high interest rate increases the consumer’s default risk. Thus, the predictive performance
of the bank’s model is not calibrated with respect to future results obtained by acting on
the model. Another example concerns navigation apps, such as Google Maps (see, e.g.,
[33, 41], which suggest routes with low travel time to users. This influences users’ decisions
to pick such routes and consequently, increases traffic on these routes, impacting travel times.
Further applications and illustrations can be found in [47, Appendix A].

In general, problems of the form (2) are difficult to solve. However, a natural approach
consists in performing a repeated minimization procedure, i.e., throughout iterations, one
solves

xt+1 = argmin
x

Eξ∼mxt
f(x, ξ) + g(x), (3)

and then updates the distribution mxt+1 . Under suitable assumptions that will be specified
later, the sequence (xt)t generated by the repeated minimization procedure (3) admits a
fixed point x̄. Such a point turns out to be an equilibrium with respect to the distribution
m(.) in the following sense:

x̄ = argmin
x

Eξ∼mx̄
f(x, ξ) + g(x), (4)

that is, x̄ solves (2) for the induced distribution mx̄. So instead of solving (2), we look at an
equilibrium point in the sense of (4). Notice that in terms of operators, (4) can be written
(formally, for instance) as a monotone inclusion:

A(x̄) +G(x̄) ∋ 0 (5)

with A(x) = ∂g(x) and G(x) = Eξ∼mx̄
∇xf(x, ξ). That is x̄ is a zero of the sum of two

monotone operators. One strategy to solve problems of the form (5) is to consider some
continuous and discrete dynamical systems whose trajectories may converge, under suitable
assumptions, to an element in (A+B)−1(0), the zero set of the sum A+B. For instance,
when B ≡ 0 and A = ∇h where h is a given convex lower semicontinuous function on Rn, it
is well known since the works of Brézis, Baillon and Bucker [21, 29], that each trajectory of
the gradient flow

ẋ(t) = −∇h(x) with x(0) = x0 ∈ Rn, (6)
converges to a minimizer of h, and thus a zero of ∇h, provided argminh ̸= ∅.

Designing algorithms and dynamical systems with rapid convergence properties to solve
monotone inclusions is at the core of many fields in modern optimization, partial differential
equation, game theory, etc. The literature is extensive, and to name only a few, the reader
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is referred to [1, 2, 7, 9, 17, 25, 38, 40, 52] and the references therein.

In this work, we address monotone inclusions of the form

ẋ(t) +A(x(t)) + Eξ∼mx(t)
(B(x(t), ξ)) ∋ 0, (7)

where A is a maximally monotone operator, and B is a single valued mapping. The particu-
larity of such a dynamic is, of course, the presence of the random operator Eξ∼m(.)

(B(., ξ))
where the random variable ξ has a trajectory-dependent distribution mx(t). Thus, it is not
straightforward how to address (7) within the classical framework (see, e.g., [22, 27]). Yet,
a clever reformulation of (7), based on the notion of equilibrium, as a monotone inclusion
governed by a Lipschitz perturbation of a maximally monotone operators will allow us to
tackle this issue. Then we investigate inertial dynamics related to (7). Indeed, since the
work of Polyak [48], who considered a system of the form

ẍ(t) + γẋ(t) +∇f(x(t)) = 0, (HBF)

where γ > 0 is called the viscous damping coefficient, the introduction of inertial dynamics to
accelerate optimization methods has gained a lot of attention and led to many developments
(see, e.g., [3, 10, 15, 18, 19, 52] and the references therein).

In this paper, we then consider second-order dynamics of the form

ẍ(t) + γ(t)ẋ(t) +∇fmx̄(x(t)) + ω∇2fmx̄(x(t))ẋ(t) + ex̄(x(t)) = 0, (8)

were ω is the so-called Hessian-driven damping coefficient. When γ(t) ≡ γ, fmx̄
= f (i.e.,

without a stochastic structure) and ex̄ = 0, systems of the form (8) were first studied in [3].
Later, this system was combined with an asymptotic vanishing damping γ(t) = α

t , for α > 0
in [19]. Several recent studies has been devoted to this topic (see, e.g., [9, 25, 38, 40, 51]).

1.1. Statement of the problem. Throughout, H is a real Hilbert space and Ξ is a Polish
metric space, i.e., separable and completely metrizable. Given a maximal monotone operator
A : H → 2H such that int(dom(A)) ̸= ∅, a single-valued mapping B : dom(A)× Ξ → H, and
consider the closed-loop inclusion{

ẋ(t) +A(x(t)) + Eξ∼mx(t)
(B(x(t), ξ)) ∋ 0, a.e t > t0 > 0

x(t0) = x0 ∈ dom(A),
(SMI)

where mx is a family of probability distributions on Ξ indexed by x ∈ H, such that mx(C) is
a measurable function on H for each fixed C ∈ B, where B is the Borel σ-algebra of Ξ.

We call the above dynamic (SMI), which stands for Stochastic Monotone Inclusion.

▶ Example 1.1. (1) Typically, (SMI) covers the case of stochastic optimization problems
with a state-dependent distribution studied in [35, 47] by taking A = ∂g and B = ∇f

for g ∈ Γ0(H) and f(., ξ) ∈ C1,1
β (H) ∩ Γ0(H).

(2) Taking A = NC the normal cone of convex set C of admissible decisions, we recover
the framework of variational inequalities addressed recently in [32].

Notation. To simplify the presentation, we set, for any measure m ∈ P(Ξ)

Bm(x) = Eξ∼m (B(x, ξ)) and Fm(x) = A(x) +Bm(x) (9)

where Eξ(.) is the expectation with respect to the random variable ξ.
Using this notation, the system (SMI) can be simply rewritten as{

ẋ(t) + Fmx(t)
(x(t)) ∋ 0, a.e t > t0,

x(t0) = x0 ∈ dom(A).
(SMI)

In the sequel, we need one of the following assumptions.
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Assumption 1. We suppose that ξ 7→ B(x, ξ) is measurable for any x ∈ H and that
x 7→ B(x, ξ) is β-Lipschitz continuous for all ξ.

The following assumption is essential for the convergence analysis. It describes the
sensitivity of the distribution to shifts in the index (here trajectory). It is widely used in the
literature (see, e.g., [35, 43, 47, 54]). We will discuss how it closely relates to the so-called
coarse Ricci curvature in Section 5.

Assumption 2 (Lipschitz distributions). There exists τ > 0 such that

W1(mx,my) ≤ τ∥x− y∥, for all x, y ∈ H.

The last two assumptions are standard monotonicity assumptions essential to the well-
posedness of the dynamics and for the existence and uniqueness of equilibria.

Assumption 3 (Strong monotonicity). Fmx
is µ-strongly monotone for all x ∈ H, for µ > 0.

Rather than using Assumption 3, one can use uniform monotonicity in the sense of
Definition 3 below.

Assumption 4 (Uniform monotonicity). For all x ∈ H, Fmx
is uniformly monotone with a

modulus ϕ such that
ϕ(t) > βτt, ∀t > 0.

Finally, define the following parameter ρ := βτ
µ . As we will see, (see also [35, 47]), the

parameter regime ρ < 1 will play a crucial role in the analysis of the convergence of the
trajectories.

1.2. Organization of the paper. The paper is organized as follows. In Section 3 we address
first-order monotone inclusions with closed-loop distributions. We prove the existence of
equilibria as well as the well-posedness of the dynamics and convergence properties of the
trajectories. In Section 4 we study asymptotic convergence properties of the trajectories of
second-order dynamics with closed-loop distributions via Hessian damping. This allows us in
particular to cover problems of the form (2). Section 5 contains a discussion concerning the
Lipschitz behavior of the family (mx)x with respect to W1-distance and some consequences
in the framework of Markov chains on metric random walk spaces. In Section 6 we discuss
the inertial primal-dual algorithm as an application of our results. Finally, Section 7 contains
some conclusions and discusses some future works.

2. Notation and preliminaries

In this section we fix some notation and present some notions and results that will be
used. Throughout this paper, H is a real Hilbert space, ⟨., .⟩ is the scalar product on H and
∥·∥ is the induced norm.

2.1. Convex analysis. We denote by Γ0(H) the class of proper, l.s.c and convex function
on H with values in R ∪ {∞}. Given g ∈ Γ0(H), its domain is defined by dom(g) = {x ∈
H : g(x) < ∞}. We say that α-strongly convex, for α > 0, if g − α

2 ∥.∥
2 is convex.

The subdifferential of g is defined as

∂g : x ∈ H 7→ {v ∈ H : g(y) ≥ g(x) + ⟨v, y − x⟩}.

We recall the following Fermat’s optimality condition for g ∈ Γ0(H),

0 ∈ ∂g(x⋆) ⇔ x⋆ ∈ argmin g(H).
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Definition 1 (Differentiability). Let g : H → R∪ {∞} and x ∈ int(dom(g)). We say that g is
differentiable at x if there exists v ∈ H such that

lim
h→0

g(x+ h)− g(x)− ⟨v, h⟩
∥h∥

= 0.

The unique vector v satisfying this condition is the gradient of g at x and is denote by ∇g(x).

This being said, we recall the following

Definition 2 (L-smoothness). Let L ≥ 0 and g : H → R ∪ {∞}. We say that g is L-smooth
over D ⊂ H if it is differentiable over D and

∥∇g(x)−∇g(y)∥≤ L∥x− y∥ for any x, y ∈ D.

We denote by C1,1
L (D) the class of L-smooth functions over D.

Given a function g : H → R ∪ {∞}, it proximal mapping is defined through

proxf (x) = argmin
y

{
g(y) +

1

2
∥y − x∥2

}
for any x ∈ H.

When g = ιK the indicator function of a nonempty closed convex set K ⊂ H, then
proxf = prK . For further details and notion, we refer the reader to [23].

2.2. Operator theory. We write A : H ⇒ H to denote that A is a set-valued operator on
H, its domain is defined as dom(A) = {x ∈ H : A(x) ̸= ∅}, its graph as gra (A) = {[x, u] ∈
H ×H : u ∈ Ax} and its zeros set as: zer(A) = {x ∈ H : 0 ∈ A(x)} := A−1(0). A selection
of A is an operator T : domA → H such that, Tx ∈ Ax for any x ∈ domA. We write
A : H → H to indicate that A is single-valued. In the following, we gather some main
properties that are essential for the rest of the paper.

Definition 3. • We say that A is β-Lipschitz continuous if it is single-valued over domA
and

∥Ax−Ay∥≤ β∥x− y∥ ∀x, y ∈ domA. (10)
• We say that A : H ⇒ H is monotone if

⟨x− y, u− v⟩ ≥ 0 ∀[x, u], [y, v] ∈ gra A. (11)

• We say that A is maximal monotone if there exists no monotone operator B, i.e.,
satisfying (11), such that gra A ⊂ gra B.

• We say that A is uniformly monotone with modulus ϕ : [0,∞) → [0,∞) if ϕ is increasing,
ϕ(0) = 0, limt→∞ ϕ(t) = ∞ and

⟨x− y, u− v⟩ ≥ ∥x− y∥ϕ (∥x− y∥) ∀[x, u], [y, v] ∈ gra A. (12)

• We say that A is µ-strongly monotone, with µ > 0, if

⟨x− y, u− v⟩ ≥ µ∥x− y∥2 ∀[x, u], [y, v] ∈ gra A. (13)

Remark 2.1. • Note that if A is µ-strongly montone is equivalent to saying that A− µId
is monotone.

• The definition of uniform monotonicity is slightly different from the one in [23, Definition
22.1].

• If A is µ-strongly monotone, then it is uniformly monotone with modulus ϕ(t) = µt.

▶ Example 2.1. • The typical example of a maximal monotone operator is the subdiffer-
ential ∂g of a function g ∈ Γ0(H). We usually refer to such an operator as a subpotential
maximal monotone operator.
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2.3. Monotone inclusions. Let A be an operator on H such that int(domA) ̸= ∅ and single-
valued mapping D : [0,∞)× dom(A) → H and consider the following differential inclusion{

ẋ(t) +A(x(t)) +D(t, x(t)) ∋ 0, t ∈ [0, T ]
x(0) = x0 ∈ dom(A).

(14)

Definition 4. A strong solution to (14) is a function x ∈ W 1,1((0, T ];H) ∩ C([0, T ];H) such
that

−ẋ(t) ∈ A(x(t)) +D(t, x(t)), a.e. t ∈ (0, T ), x(0) = x0.

Here, W 1,1((0, T ];H) =
{
x ∈ L1(0, T ;H); ẋ ∈ L1(ϵ, T ;H),∀ϵ ∈ (0, T )

}
.

A trajectory x : [0,∞) → H is a strong global solution of (14) if it is a strong solution on
[0, T ] for any T > 0.

For further details, we refer the reader to the classical monograph [27] or [22].

2.4. Transportation distance. For m1,m2 ∈ P(Ξ), the W1-Wasserstein distance is defined by

W1(m1,m2) = sup
u∈Lip1

Eξ∼m1
u(ξ)− Eζ∼m2

u(ζ), (15)

where Lip is the set of Lipschitz continuous function on Ξ.

3. First-order monotone inclusions

In this section we perform the analysis of the first-order monotone inclusion (SMI). More
precisely, we discuss the existence and uniqueness of solutions as well as the convergence of
trajectories. Recall that the dynamic (SMI) is governed by the operator Fmx = A+ Bmx .
We first prove the existence of an equilibrium point x̄ which will allow us to reformulate
(SMI) in a suitable form.

3.1. Existence and uniqueness of equilibira.

Definition 5. (Equilibrium point) We say that x̄ ∈ H is at equilibrium with respect to the
distribution m(.) if

0 ∈ Fmx̄
(x̄). (16)

In case A = ∂g and B = ∇f where g ∈ Γ0(H) and f(., ξ) ∈ C1,1
β (H) ∩ Γ0(H), this

definition is to be compared to the one introduced in [47] (see also [35]). Indeed, (16) reduces
to:

x̄ ∈ argmin
x

Eξ∼mx̄
f(x, ξ) + g(x). (17)

Solutions of (17) are exactly the fixed points of the repeated minimization procedure, that
is, starting from some x0, we generate the following sequence for t ≥ 0

xt+1 = S(xt) := argmin
x

Eξ∼mxt
f(x, ξ) + g(x). (18)

In [47, Theorem 3.5] it is shown that if f is C1 in both variables, ξ 7→ ∇f(x, ξ) is
β−Lipschitz and Eξ∼mx

f(., ξ) is µ-strongly convex for all x ∈ H with ρ < 1, then, under
Assumption 2, the iterates of (18) converge to a unique stable point. Their proof is
essentially based on a fixed point argument. In [47, Propostion 4.1], they show the existence
of equilibrium points under weaker assumptions on the loss f . Specifically, they demonstrate
that if f is convex and jointly continuous, then equilibrium points exists provided dom(g) is
compact. However, in this case the equilibrium is not necessarily unique. In the following
lemma, we show the existence of equilibrium in the sense of (16).
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Theorem 1 (Existence and uniqueness of equilibrium point). Under Assumption 4, the map

S : x ∈ H 7→ zer(Fmx
) = {u ∈ H : 0 ∈ Fmx

(u)}

is a contraction. In particular, the equilibrium is unique. If moreover, Assumption 3 holds
instead, i.e., Fmx is µ-strongly monotone for µ > 0, the mapping S is ρ-Lipschitz.

Proof. First, we see that S is well defined. Indeed, for any x ∈ H, zer(Fmx
) is nonempty,

and is in fact a singleton due to Assumption 4. To see this, we argue as in [23, Proposition
22.11]. Fix [y0, u0] ∈ gra Fmx . We have for any [y, u] ∈ gra Fmx :

∥y − y0∥∥u∥≥ ⟨y − y0, u⟩ = ⟨y − y0, u− u0⟩+ ⟨y − y0, u0⟩
≥ ∥y − y0∥ϕ (∥y − y0∥)− ∥y − y0∥∥u0∥.

(19)

Since limt→∞ ϕ(t) = ∞ we infer that infu∈gra Fmx (y)
∥u∥→ ∞ as ∥y∥→ ∞ and thus Fmx

is surjective (see [23, Corollary 21.25]. Moreover, in view of strict monotonicity of Fmx ,
zer(Fmx) is a singleton (see, e.g., [23, Proposition 23.35]).

Now, pick x, y ∈ H. We have that 0 ∈ Fmx(S(x)) and 0 ∈ Fmy(S(y)). In particular,
−Bmy

(S(y)) ∈ A(S(y)), which gives that Bmx
(S(y)) − Bmy

(S(y)) ∈ Fmx
(S(y)). We get,

thanks to Assumption 4

∥S(x)−S(y)∥ϕ
(
∥S(x)−S(y)∥

)
≤ ⟨u−v, S(x)−S(y)⟩, for any (u, v) ∈ Fmx

(S(y))×Fmx
(S(x)).

Then, taking u = Bmx(S(y))−Bmy (S(y)) and v = 0, we get, using Cauchy-Schwarz inequality

ϕ
(
∥S(x)− S(y)∥

)
≤ ∥Bmx(S(y))−Bmy (S(y))∥,

We get, using Corollary 1 below

ϕ
(
∥S(x)− S(y)∥

)
≤ βτ∥x− y∥. (20)

Since ϕ is strictly increasing, the last inequality gives thanks to Assumption 4

∥S(x)− S(y)∥≤ ϕ−1
(
βτ∥x− y∥

)
< ∥x− y∥,

and by Banach’s fixed-point theorem (see Theorem 6), S has a unique fixed point x̄.
Now if Fmx is µ-strongly monotone, it is in particular uniformly monotone with modulus

ϕ(t) = µt. Equation-(20) gives

∥S(x)− S(y)∥≤ ρ∥x− y∥,

with βτ
µ := ρ. Again, we conclude using Assumption 4 and Theorem 6. ■

Remark 3.1. In the strongly monotone case, Assumption 4 incorporates the parameter regime
ρ < 1 which appears in particular in [47, Theorem 3.5].

Remark 3.2. Since zer(Fmx̄
) = {x̄}, we clearly see that x̄ ∈ zer(Fmx̄

+ ex̄). Indeed, taking
into account (23), we have that ex̄(x̄) = 0 so that 0 ∈ (Fmx̄

+ ex̄) (x̄).

Notation 1. Before stating the main result of this section, let us fix the following notation.
Assume that Assumption 4 holds, and denote by

φ(t) = ϕ(t)− βτt, (21)

where ϕ is the modulus of uniform monotonicity of Fmx̄
.

We prove the following
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Lemma 1. Let a > 0 and define

θ(z) :=

∫ a

z

ds

φ(s)
. (22)

Then θ is nonincreasing and limz→0+ θ(z) = ∞.

Proof. Indeed, we have θ̇(z) = −1/φ(z) < 0 since ϕ satisfies Assumption 4. Moreover, since
ϕ(t) ≥ φ(t), and limz→0+

∫ a

z
ds
ϕ(s) = ∞, the result follows.

■

Remark 3.3. In the literature of ordinary differential equations, the above lemma is related
to the fact that φ is somhow an Osgood modulus of continuity (see, e.g., [20, Definitions
2.108 and 3.1]). If φ(s) = s, which corresponds to Lipschitz regularity, and a = 1 then
θ(z) = log+(z) = max{0, log(1/z)}. If a = 1/e and φ(s) = s log(1/s), which corresponds to
log-Lipschitz regularity, then θ(z) = log log+(z). More generally, φ(s) = s (log(1/s))

r for
r ≤ 1 are admissible choices.

3.2. Well-posedness and convergence. Now let us define the following gap

ex̄(x) = Bmx(x)−Bmx̄(x). (23)

Using the notation in (9), we may rewrite (SMI) in the following form{
ẋ(t) + Fmx̄(x(t)) + ex̄(x(t)) ∋ 0, a.e t > t0

x(t0) = x0,
(p-SMI)

One advantage of this formulation is that the mapping x 7→ ex̄(x) exhibits Lipschitz behaviour,
and the operator Fm depends only on mx̄ instead of mx(t). This allows us to treat (p-SMI)
within the framework of evolution equations governed by Lipschitz perturbations of maximal
monotone operators (cf. [27, Chapter III]). This is behind the notaiton (p-SMI), which
stands for perturbed stochastic monotone inclusion. This being said, our aim is to use [27,
Proposition 3.13] and show the existence of a unique strong solution (cf. Definition 4) to
(p-SMI) (see also [27, Definition 3.1]). To this end we begin with the following lemmas.

Lemma 2. The operator Fmx̄
is maximally monotone.

Proof. Since A is maximal monotone, and B(., ξ) is β-Lipschitz continuous for all ξ, the
result is a direct consequence of [27, Lemma 2.4]. ■

For completeness of the presentation, we also recall the following elementary results.

Lemma 3. Under Assumption 1, we have, for any m, ν ∈ P(Ξ)

sup
x∈H

∥Bm(x)−Bν(x)∥≤ βW1(m, ν).

Proof. By Assumption 1, B is β-Lipschitz continuous. We then have from the definition of
the W1-Wasserstein distance (15)

Bm(x)−Bν(x) = Eξ∼mB(x, ξ)− Eζ∼νB(x, ζ) ≤ βW1(m, ν).

Taking the supremum over x ∈ H yields the result. ■

Combining Lemma 3 and Assumption 2 we get the following.

Corollary 1. Under Assumption 1 and Assumption 2, for all y, z ∈ H
sup
x∈H

∥Bmy
(x)−Bmz

(x)∥≤ βτ∥y − z∥.

Lemma 4. Under Assumption 1, we have for any x, y ∈ H and m ∈ P(Ξ)

∥Bm(y)−Bm(x)∥≤ β∥x− y∥.
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Proof. Let m ∈ P(Ξ) and x, y ∈ H. Since B(., ξ) is β-Lipschitz continuous, we have

Bm(x)−Bm(y) = Eξ∼m (B(x, ξ)−B(y, ξ)) ≤ β∥x− y∥.

The result follows immediately. ■

The key ingredient to use [27, Proposition 3.13] is the Lipschitz continuity of the pertur-
bation ex̄(.). This is the content of the following statement.

Lemma 5. Suppose that Assumption 1 and Assumption 2 hold, then ex̄(.) is β(2+τ)-Lipschitz
continuous.

Proof. Let x, z ∈ dom(Fmx̄). We then have

ex̄(x)− ex̄(z) = (Bmx
(x)−Bmx̄

(x))− (Bmz
(z)−Bmx̄

(z))

= (Bmx
(x)−Bmx

(z)) + (Bmx̄
(z)−Bmx̄

(x)) + (Bmx
(z)−Bmz

(z))

≤ β∥x− z∥+β∥x− z∥+βτ∥x− z∥
= β(2 + τ)∥x− z∥,

(24)

where we have used Corollary 1 and Lemma 4 in the inequality. ■

Proposition 1. Assume Assumption 1 and Assumption 2 hold. Then, given x0 ∈ dom(Fmx̄),
the dynamic (p-SMI), and hence (SMI), admits a unique solution x ∈ W 1,1(t0, T ;H).

Proof. Thanks to Lemma 2 and Lemma 5 Fmx̄
is maximal monotone and ex̄ is Lipschitz

continuous. Since t 7→ ex̄(x) is trivially in L∞(t0, T ;H), we deduce, thanks to [27, Proposition
3.13] the existence of a unique solution x ∈ W 1,1(t0, T ;H) to (SMI). ■

Remark 3.4. Let us point that evolution problems of the form (p-SMI) were also addressed in
[13] with a possibly multivalued operator ex̄ and without requiring that x 7→ ex̄ is Lipschitz
continuous.

Theorem 2. Let x be the solution of (SMI), and assume that Assumption 4 holds. We then
have for all t ≥ t0

∥x(t)− x̄∥≤ θ−1
(
t− t̂

)
, (25)

where θ is defined in Lemma 1 and t̂ = 2t0 − θ (∥x0 − x̄∥).
Moreover, if Assumption 3 holds instead, we have

∥x(t)− x̄∥≤ Ce−2µ(1−ρ)t for all t ≥ t0, (26)

with C = ∥x0 − x̄∥e2µ(1−ρ)t0 and ρ := βτ
µ .

Proof. Let y ∈ H, we observe that

1

2

d

dt
∥x(t)− y∥2= ⟨ẋ(t), x(t)− y⟩.

We then have, for any selection u(t) of Fmx̄(x(t))

1

2

d

dt
∥x(t)− y∥2= ⟨ẋ(t), x(t)− y⟩ = −⟨u(t), x(t)− y⟩ − ⟨ex̄(x(t)), x(t)− y⟩. (27)

Taking y ∈ zer(Fmx̄
) = {x̄}, we get by Assumption 3

⟨u(t)− 0, x(t)− x̄⟩ ≥ ∥x(t)− x̄∥ϕ (∥x(t)− x̄∥) .
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Then, thanks to Lemma 3 and Assumption 2, equation (27) gives

1

2

d

dt
∥x(t)− x̄∥2 = −⟨u(t)− 0, x(t)− x̄⟩ − ⟨ex̄(x(t)), x(t)− x̄⟩

≤ −∥x(t)− x̄∥ϕ (∥x(t)− x̄∥) + ∥ex̄(x(t))∥∥x(t)− x̄∥
≤ −∥x(t)− x̄∥ϕ (∥x(t)− x̄∥) + βτ∥x(t)− x̄∥2

= −∥x(t)− x̄∥φ (∥x(t)− x̄∥) ,

(28)

where φ(t) = ϕ(t)− βτt is as introduced in (21). Hence, dividing by h(t) := ∥x(t)− x̄∥≠ 0
in both sides of (28), we get

ḣ(t) ≤ −2φ (h(t)) . (29)

We infer from (28) and (29) that

d

dt
θ (h(t)) =

−1

φ (h(t))
ḣ(t) ≥

(
1

φ (h(t))

)(
2φ (h(t))

)
= 2. (30)

Integrating (30) between t0 and t > 0, we get

θ(h(t))− θ(h(t0)) ≥ 2 (t− t0) .

Using Lemma 1, we deduce that

h(t) ≤ θ−1(2t− t̂), (31)

where t̂ = 2t0 − θ(h(t0)). This proves (25), as desired.
To prove the second claim, we observe that if Fmx̄

is µ-strongly monotone, ϕ(t) = µt so that
φ(t) = (µ−βτ)t. Assuming that µ ̸= βτ , we get θ(s) = − log(s)

µ−βτ . So that θ−1(s) = e−(µ−βτ)s.
Plugging this in (31) we obtain

h(t) ≤ ∥x0 − x̄∥e−2(µ−βτ)(t−t0), (32)

as desired. ■

Remark 3.5. Observe that one can obtain (26) from (28) using Gronwall’s Lemma 9. Indeed,
taking ϕ(t) = βµt, we infer from (28)

1

2

d

dt
∥x(t)− x̄∥2≤ −(µ− βτ)∥x(t)− x̄∥2.

As a consequence of Assumption 2 and Theorem 2, we obtain a rate of convergence, as
t → ∞ of the measure mx(t) to mx̄ in W1.

Corollary 2. Let x : [t0,∞) → R be the solution of (SMI), and assume that Assumption 4
then for all t ≥ t0

W1(mx(t),mx̄) ≤ τθ−1
(
t− t̂

)
,

where θ is defined in Lemma 1 and t̂ = 2t0 − θ (∥x0 − x̄∥). If Assumption 3 holds instead,
we have

W1(mx(t),mx̄) ≤ Ce−2µ(1−ρ)t,

with C = ∥x0 − x̄∥e2µ(1−ρ)t0 .
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4. Second-order monotone inclusions via Hessian damping

This section is devoted to the analysis of the following second-order monotone inclusion{
ẍ(t) + γ(t)ẋ(t) + Fmx(t)

(x(t)) ∋ 0, a.e t ∈ [t0, T ]

x(t0) = x0 ∈ dom(Fmx(t)
),

(ISMI)

where γ : R+ → R+ is a continuous function, usually referred to as the viscous damping
coefficient. We refer to this dynamic as an Inertial Stochastic Monotone Inclusion, (ISMI)
for short. In a smooth deterministic setting, i.e.,, Fmx

= ∇f where f is a smooth, strongly
convexe function, systems of the form (ISMI) were first studies by Polyak in [48] with a fixed
viscous damping coefficient. Later on, this kind of systems were studied by [15] and then [52]
where the authors establish the link between the continuous dynamics with γ(t) = 3

t and the
Nesterov’s methods [44]. Further results and extensions followed (see, e.g., [5, 11, 16, 39]
and the references therein).

Now, coming back to our setting, we reformulate (ISMI) using the notations of Section 3,
as follows {

ẍ(t) + γ(t)ẋ(t) + Fmx̄(x(t)) + ex̄(x(t)) ∋ 0, a.e t ∈ [t0, T ]

x(t0) = x0 ∈ dom(Fmx̄).
(p-ISMI)

One of the drawbacks of the perturber stochastic inertial monotone inclusion (p-ISMI) is
that it cannot be written as a dynamical system governed by Lipschitz perturbations of
monotone operators. This being said, we shall consider (p-ISMI) with the presence of the so
called Hessian damping. To avoid technicalities, we restrict ourselves to the smooth case,
i.e., A = ∇g for g ∈ Γ0(H) ∩ C1(H) so that

Fmx̄
= ∇Gmx̄

with Gmx̄
= g + Eξ∼mx̄

f(x, ξ). (33)

In this case the perturbation defined in (23) is given by

ex̄ = Eξ∼mx
∇f(x, ξ)− Eξ∼mx̄

∇f(x, ξ), (34)

and it measure the gradient deviation. This being said, (p-ISMI) reduces to an inertial
gradient system

ẍ(t) + γ(t)ẋ(t) +∇Gmx̄(x(t)) + ex̄(x(t)) = 0, (35)
which, when γ(t) ≡ γ, is essentially a Polyak’s heavy ball (HBF) system [48] with the
presence of the perturbation ex̄. The Hessian-driven damped system we shall consider reads

ẍ(t) + γ(t)ẋ(t) +∇Gmx̄(x(t)) + ω∇2Gmx̄(x(t))ẋ(t) + ex̄(x(t)) = 0, (ISEHDm,γ)

where ω : [0,∞) → R+ is a continuous function usually refered to as the Hessian-driven
damping coefficient, and which will be taken to be constant, i.e., ω(t) ≡ ω > 0. We call the
above dynamic an Inertial System with Explicit Hessiang Damping, (ISEHDm,γ,ω) for short.
The subscript m is here to emphasize the stochastic structure of the problem. Here, the
Hessian damping is said to be explicit since since, when Gmx̄ is of class C2, we have

d

dt
(∇Gmx̄

(x(t))) = ∇2Gmx̄
(x(t))ẋ(t).

One of the main advantages of considering dynamics with Hessian-driven damping is the to
attenuate the oscillation that might occur with (HBF)-like dynamics or more generally with
inertial dynamics with viscous damping as was observed in [3]. Variants and generalizations
were studied by multiple authors (see, e.g., [9, 18, 19]). The study of the effect of perturbed
Hessian-driven damping, i.e., problems of the form (ISEHDm,γ,ω) was carried in the recent
work [14].
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In particular, this will allow us to proceed as in Section 3 to prove the well-posedness
of the dynamics. As for convergence properties, this setting will allow us to exploite some
techniques from [14].

4.1. Well-posedness.

4.1.1. Equivalent formulation.

Proposition 2. Suppose that γ(t) ≥ 0, ω > 0. For any initial conditions (x0, v0) ∈ H ×H,
the dynamics (ISEHDm,γ,ω) admits an equivalent formulation of the form

ẋ(t) + ω
(
∇Gmx̄x(t) + ex̄(x(t))

)
−
(
1

ω
− γ(t)

)
x(t) +

1

ω
y(t) = 0

ẏ(t)−
(
1

ω
− γ(t)− γ̇(t)ω

)
x(t) +

1

ω
y(t) = 0,

(36)

with initial conditions x(t0) = x0, y(t0) = −ω (v0 + ω∇Gmx̄
(x0))+(1− ωγ(t0))x0−ω2ex̄(x0).

Proof. Let (x, y) be a solution of (36). By differentiation of the first equation in (36), we get

ẍ(t) + ω∇2Gmx̄
(x(t))ẋ(t) + γ̇(t)x(t)−

( 1
ω

− γ(t)
)
ẋ(t) +

1

ω
ẏ(t) = 0.

Replacing ẏ by its expression from the second equation in (36), we obtain:

(37)
ẍ(t) + ω∇2Gmx̄

(x(t))ẋ(t) + γ̇(t)x(t)−
( 1
ω

− γ(t)
)
ẋ(t)

+
1

ω

(( 1
ω

− γ(t)− γ̇(t)ω
)
x(t)− 1

ω
y(t)

)
= 0,

using again the first equation in (36) to eliminate y(t), we get:

(38)
ẍ(t) + ω∇2Gmx̄(x(t))ẋ(t) + γ̇(t)x(t)−

( 1
ω

− γ(t)
)
ẋ(t) +

1

ω

(( 1
ω

− γ(t)

− γ̇(t)ω
)
x(t) + ẋ(t) + ω

(
∇Gmx̄

x(t) + ex̄(x(t))
)
−
( 1
ω

− γ(t)
)
x(t)

)
= 0,

and after simplifications, we recover (ISEHDm,γ,ω). Conversely, let x be a trajectory solution
to (ISEHDm,γ,ω) with initial conditions (x0, v0) ∈ H ×H and define

y(t) = −ω

(
ẋ(t) + ω

(
∇Gmx̄x(t) + ex̄(x(t))

)
−
( 1
ω

− γ(t)
)
x(t)

)
.

By differentiating the previous formula and using (ISEHDm,γ,ω), we recover the second
equation of (36), as desired. ■

4.1.2. Well-posedness. Thanks to Proposition 2, one can also consider (36) in the case where
Gmx̄ ∈ Γ0(H). In fact, we have the following

Definition 6. Suppose that γ(t) ≥ 0, ω > 0. For any initial conditions (x0, v0) ∈ dom(Gmx̄
)×

H, the dynamics (ISEHDm,γ,ω) admits an equivalent formulation of the form
ẋ(t) + ω

(
∂Gmx̄x(t) + ex̄(x(t))

)
−
(
1

ω
− γ(t)

)
x(t) +

1

ω
y(t) ∋ 0

ẏ(t)−
(
1

ω
− γ(t)− γ̇(t)ω

)
x(t) +

1

ω
y(t) = 0,

(39)

with initial conditions x(t0) = x0, y(t0) = v0.
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One of the main advantages of (39) is that it can be easily recast as a monotone inclusion
governed by Lipschitz perturbation of a maximal monotone operator on the product space
H×H. Indeed, setting Z(t) = (x(t), y(t)), A(x, y) = (ω∂Gmx̄

(x), 0) and

E(t, x, y) =
(
ωex̄(x(t))−

( 1
ω

− γ(t)
)
x(t) +

1

ω
y(t),−

( 1
ω

− γ(t)− γ̇(t)ω
)
x(t) +

1

ω
y(t)

)
,

we immediately see that (39) can be written as

Ż(t) +A(Z(t)) + E(t, Z(t)) ∋ 0H×H, Z(0) = (x0, v0). (40)

Then (39) can be written as monotone inclusion in the product space H×H{
Ż(t) +A(Z(t)) + E(t, Z(t)) ∋ 0H×H, a.e t ∈ [t0, T ]

Z(0) = (x0, v0) ∈ H ×H,
(MIS)

which fits in the framework of Lipschitz perturbations of maximal monotone operators as in
Section 3. Notice that this formulation is different from the classical Hamiltonian one.

Before stating the main result, let us recall that we endow the product space with the
scalar product ⟨(u, v), (u∗, v∗)⟩H×H = ⟨u, u∗⟩+ ⟨v, v∗⟩, and the induced norm ∥(u, v)∥H×H=√
∥u∥2+∥v∥2. We have the following auxiliary results

Lemma 6. Under Assumption 3, the operator E is Lipschitz continuous.

Proof. Let u, v, u∗, v∗ ∈ H and set p = ( 1
ω − γ(t)), q = ( 1

ω − γ(t) − γ̇(t)ω). We have, for
t ∈ [t0, T ]

∥E(t, u, v)− E(t, u∗, v∗)∥H×H =
∥∥∥(ω(ex̄(u)− ex̄(u∗) + p(u∗ − u) +

1

ω
(v − v∗),

1

ω
(v − v∗) + q(u∗ − u)

)∥∥∥
H×H

=

√
∥(ω(ex̄(u)− ex̄(u∗) + p(u∗ − u) +

1

ω
(v − v∗)∥2+∥ 1

ω
(v − v∗) + q(u∗ − u)∥2

=

√
2ω2∥ex̄(u)− ex̄(u∗)∥2+(4p2 + 2p2)∥u− u∗∥2+ 6

ω2
∥v − v∗∥2

=

√
(2ω2β2(2 + τ)2 + 4p2 + 2p2)∥u− u∗∥2+ 6

ω2
∥v − v∗∥2

≤
(√

2ωβ(2 + τ) + 2|p|+
√
2|q|+

√
6

ω

)
∥(u, v)− (u∗, v∗)∥H×H

= K(ω, β, τ, γ)∥(u, v)− (u∗, v∗)∥H×H

where we have used Young’s inequality and Lemma 5 for the Lipschitz continuity of the
operator ex̄. ■

Proposition 3. Assume that Assumption 3 and Assumption 4 hold. Then, for any initial
data x0 ∈ dom(Gmx̄) and v0 ∈ H, there exists a unique global solution x ∈ C2([t0,∞[,H) to
(MIS) such that x(t0) = x0 and ẋ(t0) = v0. Moreover, the solution Z = (x, y) satisfies the
following properties

(i) y is continuously differentiable on [t0,+∞ [ , and ẏ(t)−
(
1
ω − γ(t)− ωγ̇(t)

)
x(t) +

1
ωy(t) = 0, for all t ≥ t0;

(ii) x is absolutely continuous on [t0, T ] and ẋ ∈ L2 (t0, T ;H) for all T > t0;
(iii) x(t) ∈ dom(∂Gmx̄) for all t > t0;
(iv) x is Lipschitz continuous on any compact subinterval of ]t0,+∞[;

(v) the function t ∈ [t0,+∞ [7→ Gmx̄(x(t)) is absolutely continuous on [t0, T ] for all
T > t0;
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(vi) there exists a function ξ : [t0,+∞[→ H such that
(a) ξ(t) ∈ ∂Gmx̄(x(t)) for all t > t0;
(b) ẋ(t) + ωξ(t)−

(
1
ω − γ(t)

)
x(t) + 1

ωy(t) = 0 for almost every t > t0;
(c) ξ ∈ L2 (t0, T ;H) for all T > t0;
(d) d

dtϕ(x(t)) = ⟨ξ(t), ẋ(t)⟩ for almost every t > t0.

Proof. Thanks to Assumption 4 and Moreau’s theorem (see, e.g., [23, Theorem 20.25]) A
is maximal monotone and E is Lipschitz continuous thanks to Lemma 6. We conclude
again the existence of a strong global solution Z = (x, y) : [t0, T ] → H ×H of (MIS) via
[27, Proposition 3.12]. The verification of items (i)-(vi) can be done by following the main
arguments of [19, Theorem 4.4] ■

As a consequence, we have the following

Corollary 3. Suppose that Gmx̄
: H → R is a convex C2 function. For any t0 > 0, and any

Cauchy data (x0, v0) ∈ H×H, there exists a unique classical global solution x : [t0,+∞[→ H
to

ẍ(t) + γ(t)ẋ(t) +∇Gmx̄
(x(t)) + ω∇2Gmx̄

(x(t))ẋ(t) + ex̄(x(t)) = 0, (ISEHDm,γ,ω)

with x (t0) = x0, ẋ (t0) = v0.

Proof. We have thanks to (36) that

ẋ(t) + ω
(
∇Gmx̄

x(t) + ex̄(x(t))
)
−
(
1

ω
− γ(t)

)
x(t) +

1

ω
y(t) = 0,

so thanks to Proposition 3 Item (i)-Item (ii), we have ẋ ∈ C1([t0,∞)), and thus x ∈
C2([t0,∞)) ■

4.2. Convergence properties. Now let us examine the convergence properties of (ISEHDm,γ,ω).
Recall that we restrict ourselves here to the smooth case, that is, we assume that Fmx̄

= ∇Gmx̄

satisfies Assumption 3, i.e., Gmx̄
is µ-strongly monotone for µ > 0. Moreover, we tune the

viscous damping function to the modulus of strong convexity µ of Gmx̄
, by taking γ(t) ≡ 2

√
µ.

From now on, we focus on the following system

ẍ(t) + γ(t)ẋ(t) +∇Gmx̄
(x(t)) + ω∇2Gmx̄

(x(t))ẋ(t) + ex̄(x(t)) = 0, (ISEHDm,2
√
µ)

To perform Lyapunov analysis, let us define the following function V : [t0,∞[→ R+ by

V(t) := Gmx̄(x(t))−G∗
mx̄

+
1

2
∥v(t)∥2, where v(t) :=

√
µ (x(t)− x̄) + ẋ(t) + ω∇Gmx̄(x(t)).

Following the main ideas of [9, 14] we prove the following result.

Theorem 3. Assume that Gmx̄
satisfies Assumption 3 and let x : [t0,∞[→ R be the solution

of (ISEHDm,2
√
µ). Suppose that 0 ≤ ω ≤ 1

2
√
µ and that ρ and the damping coefficient ω

satisfy

8ρ2 + ω < 1. (41)
We then have:

• for all t ≥ t0

V(t) ≤ Ce−
√

µ

4 t, where C = V(t0)e
√

µ

4 t0 .

In particular
µ

2
∥x(t)− x̄∥2≤ Gmx̄

(x(t))−G∗
mx̄

≤ V(t0)e−
√

µ

4 (t−t0).
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• There exists C1 > 0 such that,

e
√
µt

∫ t

t0

e
√
µs∥∇Gmx̄

(x(s))∥2ds ≤ C1e
−

√
µ

4 t, ∀t ≥ t0.

Proof. We have

V̇(t) = ⟨∇Gmx̄
(x(t)), ẋ(t)⟩+ ⟨v(t),√µẋ(t) + ẍ(t) + ω∇Gmx̄

(x(t))ẋ(t)⟩
= ⟨∇Gmx̄(x(t)), ẋ(t)⟩+ ⟨v(t),−√

µẋ(t)−∇Gmx̄(x(t))− ex̄(x(t))⟩.
(42)

We get from (ISEHDm,2
√
µ) after some simplifications

(43)V̇(t) + µ⟨ẋ(t), x(t)− x̄⟩+√
µ∥ẋ(t)∥2 +√

µ⟨∇Gmx̄
(x(t)), x(t)− x̄⟩

+ ω
√
µ⟨∇Gmx̄(x(t)), ẋ(t)⟩+ ω∥∇Gmx̄(x(t))∥2 = −⟨v(t), ex̄(x(t))⟩.

Using µ-strong convexity of Gmx̄
, we have

⟨∇Gmx̄
(x(t)), x(t)− x̄⟩ ≥ Gmx̄

(x(t))−G∗
mx̄

+
µ

2
∥x(t)− x̄∥2, (44)

and using this in (76), we get

V̇(t) +√
µΘ(t) ≤ ∥v(t)∥∥ex̄(x(t))∥, (45)

where

Θ(t) := Gmx̄
(x(t))−G∗

mx̄
+
µ

2
∥x(t)−x̄∥2+√

µ⟨ẋ(t), x(t)−x̄⟩+∥ẋ(t)∥2+ω⟨∇Gmx̄
(x(t)), ẋ(t)⟩+ ω

√
µ
∥∇Gmx̄

(x(t))∥2.

Using the definition of V(t), we may rewrite Θ(t) as

Θ(t) = V(t) + 1

2
∥ẋ(t)∥2−ω

√
µ⟨∇Gmx̄

(x(t)), x(t)− x̄⟩+
(

ω
√
µ
− ω2

2

)
∥∇Gmx̄

(x(t))∥2.

Consequently, (45) becomes

V̇(t)+√
µV(t)+

√
µ

2
∥ẋ(t)∥2+

((
ω
√
µ
− ω2

2

)
∥∇Gmx̄

(x(t))∥2−ω
√
µ⟨∇Gmx̄

(x(t)), x(t)−x̄⟩

)
≤ ∥v(t)∥∥ex̄(x(t))∥,

Using strong convexity we obtain again

V(t) = 1

2
V(t) + 1

2
V(t) ≥ 1

2
V(t) + µ

4
∥x(t)− x̄∥2,

and observing that ω
2
√
µ ≤ ω√

µ − ω2

2 for 0 ≤ ω ≤ 1√
µ . We end up with

V̇(t) +
√
µ

2
V(t) +

√
µ

2
∥ẋ(t)∥2

+

(
µ

4
∥x(t)− x̄∥2+ ω

2
√
µ
∥∇Gmx̄

(x(t))∥2−ω
√
µ∥∇Gmx̄

(x(t))∥∥x(t)− x̄∥

)
≤∥v(t)∥∥ex̄(x(t))∥.

(46)

Now let us treat the right hand side of this inequality. Since V(t) ≥ 1
2∥v(t)∥

2, we have, using
Young’s inequality

∥v(t)∥∥ex̄(x(t))∥≤
√
µ

8
∥v(t)∥2+ 2

√
µ
∥ex̄(x(t))∥2≤

√
µ

4
V(t) + 2β2τ2

√
µ

∥x(t)− x̄∥2. (47)

Using Lemma 5, we get after rearranging the terms

V̇(t) +
√
µ

4
V(t) +

√
µ

2
∥ẋ(t)∥2+√

µ Ψ(t) ≤ 0, (48)
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where

Ψ(t) =

(
µ

4
− 2β2τ2

µ

)
∥x(t)− x̄∥2+ ω

2
√
µ
∥∇Gmx̄

(x(t))∥2−ω
√
µ∥∇Gmx̄

(x(t))∥∥x(t)− x̄∥.

Setting

a =
µ

4
− 2β2τ2

µ
, b =

ω

2
√
µ
, c = −

ω
√
µ

2

and X = ∥x(t) − x̄∥ and Y = ∥∇fmx̄
(x(t))∥, we see that Ψ can be written as a quadratic

form Q : H×H → R with Q(X,Y ) = a∥X∥2+2c⟨X,Y ⟩+ d∥Y ∥2. By assumption a,b ≥ 0,
and the discriminant c2 − ab of Q is nonpositive. Indeed, since 0 ≤ ω ≤ 1

2
√
µ

c2−ab =
ω2µ

4
− ω

2
√
µ

(
µ

4
− 2β2τ2

µ

)
≤

ω2√µ

8
−

ω
√
µ

2

(
1

4
− 2ρ2

)
=

ω
√
µ

8
(ω−1+8ρ2) ≤ 0.

Hence Ψ(t) ≥ 0 and

V̇(t) +
√
µ

4
V(t) +

√
µ

2
∥ẋ(t)∥2≤ 0,

which gives after integration
V(t) ≤ V(t0)e

−√
µ

4 (t−t0). (49)
Therefore, limt→∞ V(t) = 0 and in particular

lim
t→∞

Gmx̄
(x(t))−G∗

mx̄
= 0 and lim

t→∞
∥v(t)∥= 0. (50)

This implies, using strong convexity of Gmx̄

lim
t→∞

∥x(t)− x̄∥= 0,

which gives that
lim
t→∞

∥∇Gmx̄
(x(t))∥= 0.

We deduce from (50) that limt→∞∥ẋ(t)∥= 0.
Coming back to (49), we have, by definition of V, that

Gmx̄(x(t))−G∗
mx̄

≤ V(t0)e−
√

µ

4 (t−t0) and ∥v(t)∥2≤ 2V(t0)e−
√

µ

4 (t−t0). (51)

Developing in (51) we have

(52)µ∥x(t)− x̄∥2 + ∥ẋ(t)∥2 + ω2∥∇Gmx̄
(x(t))∥2 + 2ω

√
µ⟨∇Gmx̄

(x(t)), x(t)− x̄⟩

+ 2ω⟨∇Gmx̄
(x(t)), ẋ(t)⟩+ 2

√
µ⟨ẋ(t), x(t)− x̄⟩ ≤ Ce−

√
µ

4 t,

where C = 2V(t0)e
√

µ

4 t0 .
Since ⟨∇Gmx̄

(x(t)), x(t)− x̄⟩ ≥ Gmx̄
(x(t))−G∗

mx̄
, we deduce from (52) that

U̇(t) +
√
µU(t) + ω2∥∇Gmx̄

(x(t))∥2≤ Ce−
√

µ

4 t, (53)

where U(t) :=
√
µ∥x(t) − x̄∥2+2ω

(
Gmx̄

(x(t))−G∗
mx̄

)
. Integrating (53), we obtain after

elementary computation

e
√
µt

∫ t

t0

e
√
µs∥∇Gmx̄

(x(s))∥2ds ≤ C1e
−

√
µ

4 t,

as desired. ■

Remark 4.1. Notice that contrary to [17], no assumption on the integrability of ex̄ is made
in Theorem 3. In fact, thanks to Lemma 4, the norm of the error term ex̄ can be absorbed
in the righthandside of (45).
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Remark 4.2. Notice that in case ω = 0, i.e., when the inertial dynamic is considered only
with the viscous damping coefficient, the condition (41) reduces to ρ <

√
2
4 . This contrasts

with the convergence condition for first-order dynamics (cf. Theorem 2), where convergence
is ensured in parameter regime ρ < 1. One possible explanation for this difference, is the
potential occurrence of oscillations, which may necessitate a stricter compatibility condition
between the parameters τ, β, µ.

We end this section with a similar result to Corollary 2, which is a direct consequence of
Assumption 2 and Theorem 3-3.

Corollary 4. Let x : [t0,∞) → R be the solution of (ISEHDm,2
√
µ), then ∀t ≥ t0

W1(mx(t),mx̄) ≤ Ce−
√

µ

8 t,

with C = τ
√

2
µV(t0)e

√
µ

8 t0 .

5. On coarse Ricci curvature

In this section we discuss some dynamical and geometrical properties of the family
(mx)x, particularly the notion of Ollivier-Ricci curvature and how it it tightly related to
Assumption 2. In fact, the family of probabilities m = (mx)x∈H and its Lipschitz behavior
with respect to the W1-Wasserstein distance, reveals that a natural setting to address
monotone inclusions of the form (SMI), and thus stochastic optimization problems with
decision-dependent distributions is the framework of metric random walk spaces (see, e.g.,
[42, 45]). All definitions of this section can be found in [36, 42].

5.1. Metric random walk spaces. Before going further, let us recall the following definitions
to introduce a couple of probabilistic notions.

Definition 7 (Random walks [45]). Given a Polish space (X,d). A family of probabilities
m = (mx)x∈X is a random walk on X if mx ∈ P(Ξ) for each x ∈ X and

• mx depends measurably on x ∈ X,
• Each mx has finite first-order moment, i.e., for some xo ∈ X, Ey∼mx

d(y, xo) < ∞.
Then (X,d) equipped with a random walkfirst-order m is a metric random walk space
(m.r.w.s for short), and we denote it by [X,d,m].

Let us recall the notion of invariant and ergodic measures.

Definition 8 (Invariance). Let ν be a σ-finite measure on X and m a random walk on (X,B).
We say that ν is invariant with respect to m if ν ⋆m = ν, where ν ⋆m is the convolution of ν
by the random walk m and is defined by

ν ⋆m(A) =

∫
X

mx(A)dν(x) for all A ∈ B.

As pointed out in [45], each measure mx can be seen as a replacement of a sphere around
x. While in a probabilistic framework one think about a Markov chain whose transition
kernel from x to y in n steps is defined by

dm∗n
x (y) =

∫
z∈X

dm∗(n−1)
x (z)dmz(y), (54)

with m1
x = mx and m0

x = δx.

In the sequel, we assume that (H,d) is a separable real Hilbert space, and thus a Polish
space, where d(x, y) = ⟨x− y, x− y⟩1/2.
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5.2. Feller Property. Let us recall the following definition.

Definition 9. We say that m := (mx)x has the weak-Feller property if and only if for every
sequence xn → x0 ∈ H we have mxn ⇀ mxo , i.e.,

∫
fdmxn →

∫
fdmxo for any f ∈ Cb(H).

It turns that Assumption 2 implies directly that the family m is weak-Feller.

Proposition 4. Under Assumption 2, m has the weak-Feller property. Moreover, for each
x ∈ H, mx has finite first-order moment.

Proof. Let xo ∈ H and (xn)n a sequence of H such that xn → xo as n → 0. Then
Assumption 2 gives

W1(mxn
,mxo) ≤ τ∥xn − xo∥,

and thus limn→∞W1(mxn
,mxo) = 0. Thanks to [4, Proposition 7.1.5], (mxn

) has uniformly
integrable p-moments with p ≥ 1 and narrowly converges towards mxo . In particular m is
weak-Feller and each mx has finite first-order moments. ■

Remark 5.1. We already know that mx ∈ P(Ξ) for each x ∈ H and that x 7→ mx(C) is
measurable for each C ∈ B. Moreover, thanks to Proposition 4, we have finiteness of first-
order moments of each mx, so that the family m satisfies the requirements of Definition 7.
This shows that a natural setting to address dynamics of the form (SMI) is the metric
random walk space [H,d,m]. Many diffusion and variational problems has been studies
within this framework, with allows in particular consider nonlocal continuum problems or
problems on weighted graphs (see, e.g., [42] and the references therein).

Remark 5.2. Let us point out that if υ is an invariant measure with respect to m then it is
also and invariant measure with respect to m∗n for every n ∈ N, where m∗n is the n-step
transition probability function given by (54). It turns out that weak-Feller property implies
that every weak−∗ limit υ of (m∗n)n is an invariant measure of m cf. [36, Proposition
7.2.2] (see also [34, Proposition 12.3.4]). However, without assuming at first the existence
of an invariant measure with respect to m, the measure υ may be trivial. Without further
compactness assumptions on the metric space (see, e.g., [36, Theorem 7.2.3]) one needs some
Lyapunov like condition to ensure the existence of an invariant measure υ of the weak-Feller
family m (see, e.g., [36, Theorem 7.2.4] or [34, Theorem 12.3.3]). As we will se in Corollary 6,
another way to obtain the existence of invariant measures is having a positive lower bound
on the coarse Ricci curvature of [H,d,m].

5.3. Ollivier-Ricci curvature. Let us discuss here the connexion between Assumption 2 and
the so-called coarse or Olliver-Ricci curvature (ORC for short). The results can be found in
[45] or [46]. A more recent presentation can be found in [42].

Definition 10 (Ollivier-Ricci curvature [45]). Let [H, d,m] be a m.r.w.s. Then, for any distinct
points x, y ∈ H, the ORC along (x, y) is defined as:

κm(x, y) = 1− W1(mx,my)

d(x, y)
, (55)

The ORC of [H,d,m] is defined as

κm := inf
x ̸=y

κm(x, y). (56)

We clearly see from (55) that κm(x, y) ≤ 1. Moreover, rearranging the terms, we have

W1(mx,my) = (1− κm(x, y)) d(x, y). (57)

Consequently, having some lower bound κm(x, y) ≥ c ∈ R for any x, y ∈ H gives

W1(mx,my) ≤ (1− c)d(x, y), (58)



STOCHASTIC MONOTONE INCLUSION 19

x

y

mx

W1(mx,my)

= (1− κ)d(x, y)

my

Figure 1: Illustration of the ORC.

which describes a Lipschitz behavior of the random walk m. This has to be compared to
Assumption 2. Indeed, we see from Assumption 2 that, for x ̸= y

1− τ ≤ κm(x, y) ≤ 1, (59)

so according to the values of τ we have different regimes on the ORC κm (cf. Table 1).

Table 1: Relation between the values of τ and κm.

Values of τ 0 < 1 ≤ 1
Values of κm 1 (0, 1] [0, 1]

Notice that Assumption 2 excludes both the cases κm ≡ 1 and κm < 0. Typically, τ = 0,
would give that κm = 1 in other words W1(mx,my) = 0 for any x, y ∈ H, i.e., the distribution
m is contant.

Moreover, it turns that there is equivalence between the lower bound on κm in (59) and
the Lipschitz behavior (58). This is directly related to a W1-contraction property cf. [45,
Proposition 20].

Proposition 5. Let m be a random walk on (H, d) and assume that mx has finite moment for
all x ∈ H. Then

κm(x, y) ≥ c ∈ R, ∀x ̸= y ⇐⇒ W1(ν1 ⋆m, ν2 ⋆m) ≤ (1− c)W1(ν1, ν2) ∀ν1, ν2 ∈ P1(Ξ).

In view of Proposition 5, taking ν1 = δx and ν2 = δy for x ̸= y, and c = 1− τ , we get

W1(mx,my) =W1(δx ⋆m, δy ⋆m) ≤ τW(δx, δy) = τd(x, y)

which is exactly Assumption 2 since the above inequality is trivial for x = y.

In the case of positive curvature, this contraction result implies the existence of a unique
invariant measure for the random walk m when the ORC is positive.

Corollary 5 ([42]). Assume that κm(x, y) ≥ c > 0 for all x ̸= y. Then, the random walk m
has a unique invariant measure υ ∈ P1(Ξ). Moreover, for any ν ∈ P1(Ξ)

(1) W1(ν ⋆m∗n, υ) ≤ (1− c)nW1(ν, υ), ∀n ∈ N.

(2) W1(m
∗n, υ) ≤ (1−c)n

c W1(δx, υ), ∀n ∈ N,∀x ∈ H.

In our setting, the parameter regime τ < 1 would define a positive ORC. Consequently,
we have the following

Corollary 6. Assume that m satisfies Assumption 2 with τ < 1. Then, there exists a unique
invariant measure υ ∈ P1(Ξ) with respect to m.
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6. Application: Inertial primal-dual algorithm

This section is devoted to the application of the developed results in Section 3 and
Section 4 to the following class of optimization problems

min
x

fmx
(x) + g(x) + h(Kx). (60)

In what follows, we make the following assumptions.

Assumption 5. (a) fmx(x) = Eξ∼mx f(x, ξ), with f(., ξ) ∈ C1,1
βf

(H)∩ Γ0(H) and f(., ξ) is
µ-strongly convex for all ξ ∈ Ξ, and ξ ∈ Ξ 7→ f(x, ξ) is measurable for any x ∈ H,

(b) h ∈ C1,1
βh

(H) ∩ Γ0(H), g ∈ Γ0(H) and K ∈ L(H,H),
(c) 0 ∈ sri(Kdom(g)− dom(r)),

where µ, βf , βh are positive constants and sri(Kdom(g)− dom(r)) is the strong relative
interior of (Kdom(g)− dom(r)) (see, e.g., [23, Definition 6.9]).

Assumption 5-(a) is to be compared to Assumption 1. In particular, it ensure that for
any measure ν ∈ P(Ξ), fν is differentiable with ∇fν(x) = Eξ∼ν∇f(x, ξ), moreover, strong
convexity of f(., ξ) for all ξ ∈ Ξ implies strong convexity of fmx

for all x ∈ H. While
Assumption 5(b) and (c) are classical for strong duality as discussed below.
Thanks to Fenchel-Rockafellar duality (see, e.g., [23, Chapter 15]) the dual problem of (60)
reads

min
y

f∗mx
□ g∗(−K∗y) + h∗(y), (61)

where f∗mx
□ g∗ is the infimal convolution of f∗mx

and g∗ given by

f∗mx
□ g∗(z) = (fmx

+ g)∗ (z) = inf
y∈H

f∗mx
(y) + g∗(z − y),

and K∗ is the adjoint operator of K. Notice that the dual problem (61) is difficult to tacle
directly since f∗mx

cannot be computed explicitly due to the dependence of both the loss
function f and the measure mx on the state x.

Problems of the form (60) arise in many fields such as image and signal processing,
machine learning and partial differential equations. In the deterministic case, i.e., f does
not depend on the distribution m and g ≡ 0, such problems were studied in [30]. Later
on, extensions were addressed in several works (see, e.g., [31, 49, 53]). In [24], the authors
studied a fully stochastic variant of (60), i.e., fmx(x) = Eξ∼m f(x, ξ), g(x) = Eξ∼m g(x, ξ)
and K(x) = Eξ∼m K(x) for some suitable functions f, g and K. Yet, the distribution m does
not depend on the state x. To the best of our knowledge composite problems of the form
(60) with state-dependent distributions have not been addressed in the literature.

6.1. Formulation as a monotone inclusion. As seen in Section 3, the appropriate notion of
solutions of (60) is that of equilibria. Thus, our aim is to find an equilibrium point x̄, i.e., a
solution of the static problem

x̄ ∈ argmin
x

fmx̄
(x) + g(x) + h(Kx). (62)

Problems (62) and (61) can be written in an inf-sup form

inf
x∈H

sup
y∈H

fmx̄(x) + g(x) + ⟨Kx, y⟩ − h∗(y), (63)

and (x̄, ȳ) is optimal for (63) if and only if the following optimality condition holds{
0 ∈ K∗ȳ +∇fmx̄

(x̄) + ∂g(x̄)

0 ∈ −Kx̄+ ∂h∗(ȳ).
(64)
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Notice that the problem (63) is a saddle point problem

inf
x∈H

sup
y∈H

Lmx̄
(x, y), (65)

of the Lagrangian functional: Lmx̄
: dom(∂g)× dom(∂h∗) → R defined by

Lmx̄
(x, y) = fmx̄

(x) + g(x) + ⟨Kx, y⟩ − h∗(y).

For any pair (x0, y0) ∈ dom(∂g) × dom(∂h∗) we define the following restrictions of the
Lagrangian functional

Ly0
mx̄

(x) =

{
Lmx̄

(x, y0) if x ∈ dom(∂g),
∞ otherwise Lx0

mx̄
(x0, y) =

{
Lmx̄(y) if y ∈ dom(∂h∗)

−∞ otherwise .

Then, the optimality system (64) can be written as a monotone inclusion

0H×H ∈ Tmx̄(x̄, ȳ), (66)

where
Tmx

(x, y) =
(
∂Ly

mx
(x),−∂Lx

mx
(y)
)
. (67)

Notice that Tmx can be split into the sum of two operators: Tmx = A+Bmx where

A : (x, y) 7→
(
∂g(x) + K∗(y), ∂h∗(y)− K(x)

)
, Bmx

: (x, y) 7→
(
∇fmx

(x), 0
)
. (68)

Remark 6.1. Similar problems to (65) where addressed in [54] where the authors studied
problems of the form

min
x∈X

max
y∈Y

Eξ∼m(x̄,ȳ)
ϕ(x, y, ξ), (69)

where X,Y are compact sets and ϕ is a convex-concave function that plays the role of
the Lagrangian in our case. Such problems fall into the scope of (65). Indeed, changing
the Lagrange functional in (65) to Lm(x̄,ȳ)

(x, y) + δX(x) − δY (x), where δX and δY are
the indicator functions of the sets X and Y respectively, and considering a distribution m
depending on both the primal and dual variables (x, y) allows recovering (69).

First, let us recapitulate some facts in the following lemma.

Lemma 7. Under Assumption 5(a)(b)(c), the following properties hold
(i) The operator A is maximally monotone,
(ii) The operator Bmx

(., .) is maximally monotone and βf-Lipschitz continuous for any
x ∈ H,

(iii) For any y, z ∈ H
sup

(x′,y′)∈H×H
∥Bmy (x

′, y′)−Bmz (x
′, y′)∥≤ βfτ∥y − z∥.

(iv) The operator Tmx
is maximally monotone and µ̃-strongly monotone with µ̃ =

min(µ, β−1
h ).

Proof. First, we see that A is the sum of the maximally monotone operator (x, y) 7→
(∂g(x), ∂h∗(y)) (see, e.g., [23, Theorem 21.2 and Proposition 20.23]) and a skew-symmetric
operator (x, y) 7→ (K∗(y),−K(x)), which is maximally monotone (see, e.g., [23, Example
20.35]), this proves (i). The operator Bmx̄

is the gradient of the function Φ(z) = fmx
(x) and

thus is maximally monotone. Now take (x, y), (x′, y′) ∈ H. We have

∥Bmx(x, y)−Bmx′ (x
′, y′)∥H×H =

∥∥∥(∇fmx(x)−∇fmx′ (x
′), 0

)∥∥∥
H×H

= ∥∇fmx(x)−∇fmx(x
′)∥

≤ β∥x− x′∥≤ β∥(x, y)− (x′, y′)∥H×H,
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this proves (ii). The proof of (iii) can be directly deduced from Corollary 1. Indeed, let us
fix y, z ∈ H, we then have, for any (x′, y′) ∈ H ×H

∥Bmy (x
′, y′)−Bmz (x

′, y′)∥H×H =
∥∥∥(0,∇fmy (x

′)−∇fmz (x
′)
)∥∥∥

H×H

= ∥∇fmy
(x′)−∇fmz

(x′)∥
≤ βf W(my,mz) ≤ τβf∥y − z∥,

where the last inequality follows from Assumption 2 and Assumption 5. As for (iv), we see that
A is maximally monotone, and by (iii), Bmx is Lipschitz continuous, we conclude again using
[27, Lemma 2.4]. Now take (x, y), (x′, y′) ∈ H×H and (u, v) ∈ gra Tmx

(x, y)×gra Tmx
(x′, y′)

with u = (u1, u2), v = (v1, v2). Since by Assumption 5(a) ∇fmx
is µ-strongly monotone and

by Assumption 5(b) ∂h∗ is β−1
h -strongly monotone (see, e.g., [23, Theorem 18.15]), we get

⟨u− v, (x, y)− (x′, y′)⟩ = ⟨∇fmx
(x)−∇fmx′ (x

′), x− x′⟩+ ⟨u1 − v1, y − y′⟩+ ⟨u2 − v2, x− x′⟩
+ ⟨K(x′ − x), y − y′⟩+ ⟨K∗(y − y′), x− x′⟩
≥ µ∥x− x′∥2+β−1

h ∥y − y′∥2

≥ min(µ, β−1
h )∥z − z′∥2H×H,

(70)
which proves min(µ, β−1

h )−strong monotonicity of Tmx
. ■

6.2. Existence and uniqueness of equilibrium point. We are now in a position to prove the
existence and uniqueness of an equilibrium to the problem (63)

Theorem 4 (Existence and uniqueness of equilibrium point). Under Assumption 2 and
Assumption 5, the map

S : (x, y) ∈ H 7→ zer(Tmx
) = {(u, v) ∈ H : (0, 0)H×H ∈ Tmx

(u, v)}

is ρ̃-Lipschitz with

ρ̃ =
τβf

µ̃
,

and µ̃ = min(µ, β−1
h ). In particular, if ρ̃ < 1, the equilibrium (x̄, ȳ) is unique.

Proof. Following the same lines as in Theorem 1 and using Lemma 7(i), we conclude. ■

Remark 6.2. Theorem 4 is to be compared to [54, Theorem 2.6]. Notice that the monotone
inclusion (66) defining the equilibrium in [54] becomes a variational inequality due to the
presence of constraints on x and y ([50, Example 12.50] for details).

Following the main steps of Sections-3-4, let us define the following gap function

Ex̄(x, y) = Bmx
(x, y)−Bmx̄

(x, y). (71)

Mimicking the proof of Lemma 5 and using Lemma 7, we prove a similar result

Lemma 8. Under Assumption 2 and Assumption 5, Ex̄(.) is β(2 + τ)-Lipschitz continuous.

6.3. Related first and second-order dynamics.
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6.3.1. First ordre system. To simplify the presentation, we set again Z(t) = (x(t), y(t)).
Then, given an initial data Z(t0) = (x(t0), y(t0)) ∈ dom(∂g) × dom(∂h∗), we consider the
following first-order system associated to the monotone inclusion (66):

Ż(t) + Tmx̄
(Z(t)) + Ex̄(Z(t)) ∋ 0H×H (72)

Or more explicitly{
ẋ(t) + K∗y(t) +∇fmx̄

(x(t)) + ∂g(x(t)) + ex̄(x(t)) ∋ 0

ẏ(t)− Kx(t) + ∂h∗(y(t)) ∋ 0
(SPDS)

with ex̄(x(t)) = ∇fmx
(x(t))−∇fmx̄

(x(t)). Arguing as in Proposition 1 and Theorem 2 we
have the following result.

Proposition 6. Assume that Assumption 2 and Assumption 5 hold. Then, for any initial
data Z(t0) = (x(t0), y(t0)) ∈ dom(∂g)× dom(∂h∗), (SPDS) admits a unique global solution
Z : t ∈ [t0,∞) 7→ (x(t), y(t)). Moreover,

∥(x(t), y(t))− (x̄, ȳ)∥≤ Ce−2µ̃(1−ρ̃)t, ∀t ≥ t0,

with C = ∥(x(t0), y(t0))− (x̄, ȳ)∥e2µ̃(1−ρ̃)t0 , ρ̃ = τβf

µ̃ and µ̃ = min(µ, β−1
h ).

6.3.2. second-order system. To simplify the presentation, we assume that the following
assumptions hold

Assumption 5∗. (a) fmx
(x) = Eξ∼mx

f(x, ξ), with f(., ξ) ∈ C1,1
βf

(H) ∩ Γ0(H) and f(., ξ)

is µ-strongly convex for all ξ ∈ Ξ, and ξ ∈ Ξ 7→ f(x, ξ) is measurable for any x ∈ H,

(b) h ∈ C1,1
βh

(H) ∩ Γ0(H) is a strictly convex function, g ∈ C1(H) and K ∈ L(H,H),

(c) 0 ∈ sri(Kdom(g)− dom(r)).

The main difference between Assumption 5 and Assumption 5∗ is strict convexity of h
which ensures differentiability of h∗ (see, e.g., [23, Corollary 18.12] or [37, Theorem 4.1.1]).
In this case we have

Tmx
(x, y) = (∇xLmx

(x, y),−∇yLmx
(x, y)) . (73)

By analogy with (ISEHDm,2
√
µ), we propose the following inertial system associated to (66){

ẍ(t) + 2
√
µ̃ẋ(t) +∇xLm(x(t), y(t)) + ex̄(x(t)) = 0

ÿ(t) + 2
√

µ̃ẏ(t)−∇yLm(x(t), y(t)) = 0
(ISPDSm,2

√
µ̃)

Systems of the form (ISPDSm,2
√
µ̃) can be found for instance in [8] or [26] in an unperturbed

form, i.e., without the operator ex̄. To lighten the presentation, we discuss (ISPDSm,2
√
µ̃)

without a Hessian damping term. And for the convenience of the reader, we present the main
ingredients of the Lyapunov analysis as in (3). Notice that the existence of a global strong
solution to (ISPDSm,2

√
µ̃) can be obtained as in Section 4. One can also see [8, Section 4].

Let us define the following function V : [t0,∞[→ R+ by

V(t) := Lmx̄
(x(t), y(t))−L∗

mx̄
+
1

2
∥v(t)∥2, where v(t) :=

√
µ̃
(
(x(t), y(t))−(x̄, ȳ)

)
+(ẋ(t), ẏ(t)),

where (x̄, ȳ) is the equilibrium of (63) (cf. Theorem 4) and L∗
mx̄

(x̄, ȳ) := L∗
mx̄

.

Theorem 5. Assume that Assumption 5∗ holds and let t ∈ [t0,∞[7→ (x(t), y(y)) be the solution
of (ISPDSm,2

√
µ̃). Suppose that βfτ

µ̃ <
√
2
4 . We then have:
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• for all t ≥ t0

V(t) ≤ C1e
−

√
µ

4 t, where C1 = V(t0)e−
√

µ

4 t0 .

In particular
0 ≤ Lmx̄

(x(t), y(t))− L∗
mx̄

≤ Ce−
√

µ̃
4 t. (74)

• There exists C2 > 0 such that,

∥(x(t)− x̄, y(t)− ȳ) ∥≤ C2e
−

√
µ̃
4 t, ∀t ≥ t0.

Proof. The proof is similar to the one of Theorem 3. At first, we have, using (ISPDSm,2
√
µ̃)

v̇(t) =
(√

µ̃ẋ(t) + ẍ(t),
√
µ̃ẏ(t) + ÿ(t)

)
=
(
−
√

µ̃ẋ(t)−∇xLmx̄(x(t), y(t))−ex̄(x(t)),−
√

µ̃ẏ(t)−∇yLmx̄(x(t), y(t))
)
.

This gives

(75)

V̇(t) = ⟨∇xLmx̄
(x(t), y(t)), ẋ(t)⟩+ ⟨∇yLmx̄

(x(t), y(t)), ẏ(t)⟩
+ ⟨
√
µ̃(x(t)− x̄) + ẋ(t),−

√
µ̃ẋ(t)−∇xLmx̄(x(t), y(t))− ex̄(x(t))⟩

+ ⟨
√
µ̃(y(t)− ȳ) + ẏ(t),−

√
µ̃ẏ(t) +∇yLmx̄

(x(t), y(t))⟩

We get after some simplifications

(76)V̇(t) + µ̃⟨ẋ(t), x(t)− x̄⟩+ µ̃⟨ẏ(t), y(t)− ȳ⟩+
√
µ̃∥ẋ(t)∥2

+
√
µ̃∥ẏ(t)∥2+

√
µ̃⟨∇xLmx̄(x(t), y(t)), x(t)−x̄⟩+

√
µ̃⟨∇yLmx̄(x(t), y(t)), y(t)−ȳ⟩=−⟨v(t),Ex̄(x(t))⟩.

That is

(77)V̇(t) + µ̃
〈
(ẋ(t), ẏ(t)), (x(t)− x̄, y(t)− ȳ)

〉
+
√

µ̃∥(ẋ(t), ẏ(t)) ∥2

+
√
µ̃⟨Tmx̄(x(t), y(t)), (x(t)− x̄, y(t)− ȳ)⟩ = −⟨v(t),Ex̄(x(t))⟩.

Using µ̃-strong monotonicity of Tmx̄ , and the fact that 0H×H ∈ Tmx̄(x̄, ȳ) we have

⟨Tmx̄
(x(t), y(t)), (x(t)− x̄, y(t)− ȳ)⟩ ≥ Lmx̄

(x(t), y(t))− L∗
mx̄

+
µ̃

2
∥(x(t)− x̄, y(t)− ȳ) ∥2,

(78)
and using this in (77), we get

V̇(t) +
√

µ̃Θ(t) ≤ ∥v(t)∥∥Ex̄(x(t))∥, (79)

where

Θ(t) := µ̃
〈
(ẋ(t), ẏ(t)), (x(t)− x̄, y(t)− ȳ)

〉
+ Lmx̄

(x(t), y(t))− L∗
mx̄

+
µ̃

2
∥(x(t)− x̄, y(t)− ȳ) ∥2

= V(t) +
√
µ̃∥(ẋ(t), ẏ(t)) ∥2.

(80)
Thus, (79) becomes

V̇(t) +
√
µ̃V(t) +

√
µ̃

2
∥(ẋ(t), ẏ(t)) ∥2≤ ∥v(t)∥∥Ex̄(x(t))∥, (81)

Again, using µ̃-strong monotonicity of Tmx̄
we get

V̇(t) +
√

µ̃V(t) +
√
µ̃

2
∥(ẋ(t), ẏ(t)) ∥2+ µ̃3/2

2
∥(x(t)− x̄, y(t)− ȳ) ∥2≤ ∥v(t)∥∥Ex̄(x(t))∥. (82)

We have, using Young’s inequality

∥v(t)∥∥Ex̄(x(t))∥≤
√
µ̃

8
∥v(t)∥2+ 2√

µ̃
∥Ex̄(x(t))∥2≤

√
µ̃

4
V(t) + 2β2

f τ
2

√
µ̃

∥(x(t)− x̄, y(t)− ȳ) ∥2.
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Using Lemma 7-(iii), we get after rearranging the terms

V̇(t) +
√
µ̃

2
V(t) +

√
µ̃

4
∥(ẋ(t), ẏ(t))∥2+

√
µ̃

(
µ̃

4
− 2β2

f τ
2

µ̃

)
∥(x(t)− x̄, y(t)− ȳ) ∥2≤ 0.

Since βfτ
µ̃ <

√
2
4 , we have

V̇(t) +
√
µ̃

2
V(t) ≤ 0,

which gives after integration

V(t) ≤ V(t0)e−
√

µ̃
4 (t−t0), ∀t ≥ t0. (83)

By definition of V, we have

Lmx̄
(x(t), y(t))− L∗

mx̄
≤ V(t0)e−

√
µ̃
4 (t−t0). (84)

Coming back to (83), we have

∥v(t)∥2= ∥(ẋ(t), ẏ(t))∥2+2
√

µ̃
〈
(ẋ(t), ẏ(t)), (x(t)− x̄, y(t)− ȳ)

〉
+µ̃∥(x(t)− x̄, y(t)− ȳ) ∥2≤ C1e

−
√

µ̃
4 t,

(85)
with C1 = 2e

√
µ̃
4 t0V(t0). Setting U(t) =

√
µ̃∥(x(t)− x̄, y(t)− ȳ) ∥2, (85) gives

U̇(t) +
√
µ̃U(t) ≤ C1e

−
√

µ̃
4 t,

which implies after integrating between t0 and t that

∥(x(t)− x̄, y(t)− ȳ) ∥≤ C2e
−

√
µ̃
4 t,

where the constant C2 depends only on C1 and U(t0) = ∥(x(t0)− x̄, y(t0)− ȳ) ∥. This
finishes the proof. ■

7. Comments, extensions and future work

In this paper, we adopted a dynamical system approach to study some stochastic opti-
mization problems with state-dependent distributions. We investigated the existence and
uniqueness of equilibrium points, well-posedness as well as convergence properties of the
trajectories, for both first and second-order dynamics. We highlighted some dynamical
and geometrical properties of the state-dependent distributions suggesting that the natural
framework to study problems of the form (5) is the one of metric random walk spaces. More
particularly, the notion of coarse Ricci curvature gives a new insight on the geometrical
hidden structure of this kind of problems. Finally, we discussed as an application the inertial
primal-dual algorithm. We present here some ongoing works, possible extensions as well as
some open problems.

7.1. Inertial algorithms. Relying on the discretization of the dynamics studied in Section 4
and Section 6, more specifically, (ISEHDm,2

√
µ) and (ISPDSm,2

√
µ̃) , we obtain new inertial

algorithms with Hessian-driven damping for stochastic optimization problems with decision-
dependent distributions. These algorithms exhibit rapid convergence properties and can also
be adapted to the nonsmooth case. This is being addressed in ongoing work.
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7.2. Implicit Hessian damping. We focused in Section 4 on the explicit Hessian damping in
the smooth case. Yet, it is possible to consider implicit damping as in [9, 14]

ẍ(t) + γ(t)ẋ(t) +∇Gmx̄
(x(t) + ωẋ(t)) + ex̄(x(t)) = 0, (ISIHDm,γ)

The dynamics (ISIHDm,γ) is referred to as an Inertial System with Implicit Hessian damping,
since one can observe, using Taylor expansion

∇Gmx̄
(x(t) + ωẋ(t)) ≈ ∇Gmx̄

x(t) +∇2Gmx̄
(x(t))ẋ(t).

As it was observed in [14], higher-order moments of the perturbation ex̄ are required to get
fast convergence guarantees in the implicit case compared to the explicit one. Since in our
analysis (see Theorem 3) no integrability assumption on ex̄ is needed, it is interesting to
investigate the effect of implicit Hessian damping, both in the smooth and nonsmooth cases.

7.3. Tikhonov-regularization. In Section 4 we restricted ourselves, for sake of simplicity, the
analysis to the case where the operator Fmx̄

is smooth. However, it is possible to consider
second-order dynamics for general (and possibly nonpotential) operators, by considering, for
λ > 0 the following dynamic

ẍ(t) + γ(t)ẋ(t) + Fλ(t)
mx̄(t)

(x(t)) + ω
d

dt

(
Fλ(t)
mx̄(t)

(x(t))
)
+ ex̄(x(t)) = 0. (ISEHDm,λ,γ)

where Fλ
mx̄

is the so-called Yosida approximation of Fmx̄
defined by Fλ

mx̄
= 1

λ

(
id− JλFmx̄

)
and JλFmx̄

= (id + JFmx̄
)−1 is the resolvent of Fmx̄

. This approach comes with several
advantages. First, the Yosida approximation is single valued so that the monotone inclusion
(p-ISMI) reduces to the classical differential equation (ISEHDm,λ,γ). In addition one can
exploit the λ−cocoercivity of Fλ

mx̄
and the fact that zerFmx̄

= zerFλ
mx̄

. The approach was
used in [17] for ω = 0 and in the recent work [12] for Newton-like dynamics. We are exploring
the adaption of this techniques to stochastic monotone inclusions with state dependent
distribution in an ongoing work.

7.4. Weaker Assumptions. We have seen that one of the crucial assumptions in the analysis
is Assumption 2, which concerns the Lipschitz behavior of the distribution (mx)x. A natural
question that arises is what happens under a weaker assumption. For example, when x 7→ mx

is Hölder continuous. We are not aware of any existing results in this direction. We plan to
investigate this in future work.
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A. Gronwall inequalities

In this section we list several auxiliary results that we make use of in the paper.

Lemma 9 (Gronwall’s lemma: differential form). Let u, v be two C0 (resp. C1) nonnegative
function on [0, T ] and let w be a continuous function on [0, T ]. We assume that

1

2

d

dt
u2(t) ≤ w(t)u2(t) + u(t)v(t) on (0, T ), (86)

then, for any t ∈ [0, T ]

u(t) ≤ u(0)eK(t) +

∫ t

0

v(s)eK(t)−K(s)ds, (87)

where K(t) =
∫ t

0
w(s)ds.
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Lemma 10. [27, Lemma A.5] Let v ∈ L1(t0, T ;R+) and u ∈ C0(t0, T ) such that

1

2
u2(t) ≤ 1

2
c2 +

∫ t

t0

u(s)v(s)ds,

for some c ≥ 0 for all t ∈ [t0, T ]. Then

|u(t)|≤ c+

∫ t

t0

v(s)ds.

B. Banach Fixed point theorem & Picard iterative method

Theorem 6 (see, e.g., [6, 28]). Let (X ,d) be a complete metric space and S : X → X be a
strict contraction, i.e., there exists a constant ρ < 1 such that

d(S(x), S(y)) ≤ ρd(x, y),∀x, y ∈ X .

Then, there exists a unique x̄ ∈ X such that S(x̄) = x̄. Moreover, for any x0 ∈ X , the
sequence starting from x0 with xn+1 = S(xn) for all n ∈ N converges to x̄ as n goes to ∞.
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