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Abstract

A recent original line of research in time–frequency analysis has shifted the
interest in energy maxima toward zeros. Initially motivated by the intrigu-
ing uniform spread of the zeros of the spectrogram of white noise, it has
led to fruitful theoretical developments combining probability theory, com-
plex analysis and signal processing. In this vein, the present work proposes
a characterization of the zeros of the Stockwell Transform of white noise,
which consists in an hybrid time–frequency multiresolution representation.
First of all, an analytic version of the Stockwell Transform is designed. Then,
analyticity is leveraged to establish a connection with the hyperbolic Gaus-
sian Analytic Function, whose zero set is invariant under the isometries of
the Poincaré disk. Finally, the theoretical spatial statistics of the zeros of
the hyperbolic Gaussian Analytic Function and the empirical statistics of the
zeros the Analytic Stockwell Transform of white noise are compared through
intensive Monte Carlo simulations, supporting the established connection. A
publicly available documented Python toolbox accompanies this work.

Keywords: Time–frequency analysis, Stockwell transform, Gaussian
Analytic Functions, Point processes, Hyperbolic geometry

1. Introduction

Time–frequency analysis is a cornerstone of nonstationary signal process-
ing [1, 2, 3]. Crucially, contrary to the Fourier spectrum describing the overall
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frequency content but loosing time localization, time–frequency representa-
tions aim at accounting for both the temporal dynamics and the time-varying
frequency content of a signal. Among the most widely used time–frequency
representations are the spectrogram, obtained as the squared modulus of the
Short-Time Fourier Transform [1, 3], and the time–scale scalogram, which is
the squared modulus of the Wavelet Transform [4]. These joint representa-
tions appeared particularly suited to analyze physical phenomena as diverse
as bat echolocation [5], earthquakes [6] and gravitational waves [7].

The search for analytic signal transforms is a long-standing problem both
in signal processing and harmonic analysis [8, 9, 10, 11, 12, 13] as ana-
lyticity is a key property in phase retrieval problems and phaseless recon-
struction [9, 10, 11]. Recently, this interest has been strongly renewed by
an unorthodox research path which emerged at the interface between time–
frequency analysis and stochastic geometry. This novel line of research con-
sists in shifting the historical interest in representation maxima toward zeros,
which can be seen as “silent" points in the time–frequency plane [14]. No-
tably, the seminal works [14, 15] have shed light on the remarkably even
distribution of the zeros of the spectrogram white noise. Not only this obser-
vation received a rigorous mathematical explanation [16] elegantly combining
complex analysis and probability theory, but the established link between
time–frequency analysis and random complex analytic functions opened up
a novel line of research in the theory of signal representations and led to the
characterization of the zeros of many other signal representations, among
which the Wavelet Transform [17, 18, 16, 12]. Further, this fruitful connec-
tion has even motivated the design of new representations, and in particular
of discrete representations with desirable algebraic properties [12, 13], as well
as original contributions in harmonic analysis [19].

The present work aims at completing these studies by characterizing the
zeros of the time–frequency Stockwell Transform [20], which genuinely hy-
bridizes the Short-Time Fourier Transform and the Wavelet Transform so
as to provide an original multi-resolution analysis with a local phase hav-
ing an absolute reference [20, 21, 22]. The motivation for the introduction
of the Stockwell transform was to overcome a major practical drawback of
the Short-Time Fourier Transform: for low (resp. high) frequency the fre-
quency (resp. time) resolution is coarse, impairing precise localization in the
time-frequency plane. To that aim the historical design relies on a Gaus-
sian analysis window [20], whose width is varied as a function of frequency
so as to produce a higher frequency resolution at lower frequencies and a

2



higher time resolution at higher frequencies while preserving the absolute
reference of the phase, which is lost when using the Wavelet Transform.
Several extensions of the Stockwell Transform have been proposed in the lit-
erature [23, 24, 25, 26, 27], to cite but a few. The main objective of these
extensions is to enable to adapt closely to the characteristics of the analyzed
signal and to the time–frequency patterns of interest.

Thanks to its solid theoretical ground, high versatility and ease of inter-
pretation, the Stockwell Transform has progressively gained popularity not
only in signal processing [28, 29, 30], but also in applied mathematics [22, 31]
and mathematical physics [32, 33].

The main contributions of the present work are, first, to construct an
Analytic Stockwell Transform; second, thanks to a rigorous construction of
an adapted continuous white noise, to characterize the zeros of the Analytic
Stockwell Transform of white noise by proving that they coincides with the
zeros of the so-called hyperbolic Gaussian Analytic Function hence demon-
strating that the zeros are invariant under isometries of the Poincaré disk;
third, to provide numerical evidence supporting this connection by compar-
ing through intensive Monte Carlo simulations the theoretical pair correlation
function of the zeros of the hyperbolic Gaussian Analytic Function and the
empirical pair correlation function of the zeros of the Analytic Stockwell
Transform of white noise. In Section 2, after reminding the definition of
the Generalized Stockwell Transform, the existence of an Analytic Stockwell
Transform is proven by leveraging the intrinsic link between the Stockwell
and Wavelet transforms. Then, the distribution of the zeros of the Ana-
lytic Stockwell Transform of white noise is characterized in Section 3, taking
advantage of a well-suited construction of white noise and of a connection
with Gaussian Analytic Functions. Finally, numerical experiments are imple-
mented in Section 4, providing illustrations of the zero pattern of the Analytic
Stockwell Transform and quantitative support to the results of Section 3 by
systematically comparing the theoretical and empirical spatial statistics of
zeros in hyperbolic geometry through intensive Monte Carlo simulations.
Notation. The set of real (resp. complex) numbers is denoted by R (resp.
C), while the set of positive real numbers (resp. complex number with pos-
itive imaginary part) is denoted by R+ (resp. C+). The set of nonnegative
(resp. positive) integers is denoted by N (resp. N∗). The Hilbert space
of functions which are square-integrable with respect to the Lebesgue mea-
sure on R equipped with the scalar product ⟨f, g⟩ =

∫
R f(t)g(t) dt is de-

noted by L2(R). The space of integrable functions is denoted by L1(R). For
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f ∈ L2(R) ∩ L1(R), the Fourier transform of f , denoted by f̂ , is defined as:
∀ν ∈ R, f̂(ν) = (2π)−1/2

∫
R f(t)e

−2πiνt dt. The standard complex Gaussian
distribution of zero mean and unit variance is denoted by NC(0, 1). The
closed disk of radius R > 0 is denoted by B(0, R) = {z ∈ C : |z| < R}. For
Λ ⊆ C, the space of analytic functions on Λ is denoted by A(Λ).

2. The Analytic Stockwell Transform

First, the formal definition of the Generalized Stockwell Transform is re-
minded, as well as its interpretation as a covariant transform under the group
generated by time translations, frequency modulations and scale dilatations.
Then, connecting the Stockwell Transform to the Wavelet Transform and
leveraging analyticity results obtained for Cauchy wavelet, an Analytic Stock-
well Transform is constructed.

2.1. Preliminary: definition of the Generalized Stockwell Transform
Definition 1. Let φ ∈ L2(R) a finite energy window. The Generalized
Stockwell Transform with analysis window φ of a finite energy signal, f ∈
L2(R), is defined as

Sφf :

{
R× R+ → C

(x, ξ) 7→ ξ
∫∞
−∞ f(t)φ(ξ(t− x))e−2πitξ dt.

(1)

Remark 1. The seminal Stockwell transform introduced in [20] corresponds
to the standard Gaussian analysis window φ(t) = (2π)−1/2e−t

2/2.

For any x ∈ R, ξ, γ ∈ R+, let the translation, modulation and dilatation
automorphisms of L2(R) be respectively defined as

Txh(t) = h(t− x); Mξh(t) = e−2πiξth(t); Dγh(t) = γh(γt), (2)

Then, the Generalized Stockwell Transform of Equation (1) can be inter-
preted as the decomposition of the signal onto the covariant family obtained
by making the group generated by translations, modulations and dilatations
acting on the analysis window, that is:

Sφf(x, ξ) = ⟨f,MξTxDξφ⟩. (3)
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2.2. Existence of an Analytic Stockwell Transform
The design of an Analytic Stockwell Transform leverages the Cauchy

wavelet, also referred to as the Daubechies-Paul wavelet in the literature [34].
Definition 2. Let β ∈ R be such that β > 0. The Cauchy wavelet of
parameters β is defined as the unique function ψβ ∈ L2(R) whose Fourier
transform writes

ψ̂β(ν) =

{
νβe−2πν if ν ≥ 0

0 otherwise. (4)

Remark 2. The condition β > 0 ensures the admissibility of the wavelet, i.e.,∫

R

∣∣∣ψ̂β(ν)
∣∣∣
2 dν

|ν| <∞ (5)

and that ψ̂β ∈ L2(R). Then, the bijectivity of the Fourier transform from
L2(R) to L2(R) yields the existence of a unique ψβ satisfying (4).
Theorem 1. Let β > 0 and ψβ ∈ L2(R) be the Cauchy wavelet of parameter
β. Define the modulated Cauchy wavelet φβ(t) = ψβ(t)e

−2πit. For any finite
energy signal f ∈ L2(R), there exists an analytic function on the unit disk
F : D → C, a conformal mapping ϑ : C+ → D, and a smooth nonvanishing
function λ : R× R+ → C such that

∀(x, ξ) ∈ R× R+, Sφβ
f(x, ξ) = λ(x, ξ)× F

(
ϑ(x+ iξ−1)

)
. (6)

In words, Theorem 1 states that, up to multiplication by a smooth non-
vanishing factor and composition with a conformal transformation, the Gen-
eralized Stockwell Transform of analyzing window φβ of any finite energy
signal is an analytic function on the unit disk D.

Proof. First, remark that for f ∈ L2(R), ∀(x, ξ) ∈ R× R+

Sφβ
f(x, ξ) = ξ

∫ ∞

−∞
f(t)φβ(ξ(t− x))e−2πiξt dt

= ξe−2πiξx

∫ ∞

−∞
f(t)φβ(ξ(t− x))e2πiξ(t−x) dt

= ξe−2πiξx

∫ ∞

−∞
f(t)ψβ(ξ(t− x)) dt

=
√
ξe−2πiξx 1√

ξ−1

∫ ∞

−∞
f(t)ψβ

(
t− x

ξ−1

)
dt

=
√
ξe−2πiξxWψβ

f(x, ξ−1)

(7)
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where Wψβ
f is the Cauchy wavelet transform of f .

Then, from [9, Section 2.2] and [11, Theorem 2], the Cauchy wavelet
transform of f ∈ L2(R) is analytic on the upper-half complex plane, that is
G : z = x+iy 7→ y−β−1/2Wψβ

f(x, y) is an analytic function on C+. Moreover,
let ϑ : C+ → D be the Cayley transform defined as

ϑ(z) =
z − i

z + i
. (8)

Then, ϑ is a conformal and invertible mapping from the upper-half plane to
the unit disk whose inverse is also conformal and writes

ϑ−1(w) =
i + iw

1− w
. (9)

Define F : D → C as ∀w ∈ D, F (w) = G(ϑ−1(w)). F being the composition
of an analytic function G, and of a conformal, hence holomorphic, mapping
ϑ−1, F is analytic. Finally, let λ(x, ξ) = ξ−βe−2πiξx, then λ : R× R+ → C is
a smooth nonvanishing function.

By construction of F , ϑ and λ, they satisfy all the conditions enumerated
in Theorem 1 and ∀(x, ξ) ∈ R × R+, Sφβ

f(x, ξ) = λ(x, ξ) × F (ϑ(x+ iξ−1))
which concludes the proof.

3. The Zeros of the Analytic Stockwell Transform of White Noise

The purpose of this section is to characterize the probability distribution
of the zeros of the newly introduced Analytic Stockwell Transform of white
noise. To this purpose, the link between the Analytic Stockwell Transform
and the Cauchy wavelet transform, established in the proof of Theorem 1,
and the one-to-one correspondence between the zeros of the Cauchy wavelet
transform of white noise and the zeros of the so-called hyperbolic Gaussian
Analytic Function, proven in [18, 12], are combined to yield Theorem 3 below.

For the sake of completeness, before proving the connection with the
hyperbolic Gaussian Analytic Function, some necessary elements of hyper-
bolic and stochastic geometry are presented; the definition of the hyperbolic
Gaussian Analytic Function is reminded accompanied with its main inter-
esting properties so that the present section is self-content. The interested
reader can refer to [35] for a thorough presentation of the theory of Gaussian
Analytic Functions and a detailed study of their zeros.
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3.1. Gaussian Analytic Functions and point processes
The hyperbolic plane is the Riemaniann surface, i.e, two-dimensional man-

ifold, that is homeomorphic to a plane and has constant negative curvature
equal to −1 . Among its classical representations are the hyperboloid model,
the Klein model, the Poincaré half-plane model, and the Poincaré disk model.
The present work uses the Poincaré disk model.

Definition 3. The Poincaré disk model is the triplet (D, dD,mD) constituted
of the open unit disk D = {z ∈ C : |z| < 1}, the hyperbolic metric defined as

dmD(z) =
dz

(1− |z|2)2
(10)

where dz refers to the standard Lebesgue measure on C, and the associated
hyperbolic distance defined for z, w ∈ D as

dD(z, w) = 2tanh−1(pD(z, w)), pD(z, w) =
|z − w|
|1− wz| (11)

with pD the pseudo-hyperbolic distance.

The isometries under the hyperbolic distance dD of the Poincaré disk are
exactly the homographies of the form

z 7→ az + b

bz + a
, a, b ∈ C, |a|2 − |b|2 = 1. (12)

Definition 4. Let α > 0 a real number, the hyperbolic Gaussian Analytic
Function is defined on D as

∀z ∈ D, GAF
(α)
D (z) =

∞∑

n=0

ζn

√
Γ(α + n)

n!
zn (13)

where (ζn)n∈N is a sequence of independent identically distribution standard
Gaussian random variables, ζn ∼ NC(0, 1). By [35, Lemma 2.2.3], for α > 0,
GAF

(α)
D is well-defined and almost-surely an analytic function on D.

Gaussian Analytic Functions have received much interest from the proba-
bility and spatial statistics communities, in particular due to the remarkable
properties of their zeros [35]. Indeed, since Gaussian Analytic Functions
are almost-surely analytic, their zeros constitute a random set of isolated
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points in C with probability one. Further, [35, Lemma 2.4.1] ensures that
the random zeros of a Gaussian Analytic Function are almost-surely simple.
Hence, the zero set of a Gaussian Analytic Function forms a simple point
process [36, 37], defined as a random variable taking values in the configu-
rations of points in C. Several Gaussian Analytic Functions, among which
the hyperbolic Gaussian Analytic Function, are distinguished by the fact
that their zeros are distributed very uniformly in their definition domain,
which is mathematically formalized as an invariance under isometries [35,
Section 2.3]. This invariance property is the cornerstone of the zero-based
signal processing procedures designed for detection [16, 13], denoising [18, 16]
and component separation [15]. The interested reader can refer to [38] for a
review of the use of spatial statistics in time–frequency analysis.

Theorem 2. [35, Proposition 2.3.4] For α > 0, the point process formed by
the zeros of GAF(α)

D is invariant under the isometries of the hyperbolic disk.

3.2. Link with the zeros of the Hyperbolic Gaussian Analytic Function
A major consequence of Theorem 1 is that, since ϑ is invertible and λ

never vanishes, the zeros of the Analytic Stockwell Transform of a finite
energy signal are in one-to-one correspondance with the zeros of an analytic
function F on the unit disk. As so, the zeros of the Analytic Stockwell
Transform form a collection of isolated points in D. Further, in the presence
of noise in the signal, f is random and then the zeros of Sφβ

f are random
isolated points in D, thus form a point process.

In line with [17, 12, 13], the purpose of this section is to study a re-
markable instance of such point process, that is the zeros of the Analytic
Stockwell Transform of white noise, and to demonstrate that it coincides in
law with the zeros of the hyperbolic Gaussian Analytic Function introduced
in Section 3.1. Following [17, 18, 16, 12], this connection is established in two
steps: first the continuous white noise adapted to the considered transform
is rigorously constructed; second the equality, in law, of the point process
of the zeros of the transform of white noise and of the zeros of the associ-
ated Gaussian Analytic Function is proven. The following lemma will appear
as an important building block for the design of the continuous white noise
adapted to the Analytic Stockwell Transform.

Lemma 1. Let β > 0 and consider the family of functions {fn}n∈N defined
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through their Fourier transforms such that, ∀n ∈ N,

∀ν ∈ R+, f̂n(ν) =

√
n!

Γ(2β + n+ 1)
2π e−2πν(2π)2βνβL(2β)

n (4πν), (14)

where L(2β)
n denotes the Laguerre polynomial of order n with parameter 2β,

defined by the Rodrigues formula

L(2β)
n (µ) =

eµµ−2β

n!

dn

dµn
[
e−µµ2β+n

]
(µ). (15)

There exists a smooth nonvanishing function ηβ : R × R+ such that, for all
n ∈ N, the Analytic Stockwell Transform of fn has the closed-form expression:

Sφβ
fn(x, ξ) = ηβ(x, ξ)

√
Γ(2β + n+ 1)

n!
ϑ(z)n. (16)

Remark 3. The above lemma is an original contribution of the present work.
Indeed, first, the Hilbertian basis used to connect the Cauchy Wavelet Trans-
form of white noise to the Hyperbolic Gaussian Analytic Function in [17, 18,
12] has to be adapted to the Analytic Stockwell Transform of Section 2.2.
Second, in [17, 18] the Hilbertian basis used is only defined implicitly. Third,
it seems that the explicit derivations performed in [12, Theorem 2.3], relying
on [12, Equation (2.15)], together with the computations in [39, Section 4],
contains erroneous prefactors that might impact the definition of the white
noise adapted to the Cauchy wavelet transform used to prove [12, Theo-
rem 2.3]. Hence, since Equation (16) is the cornerstone of the demonstration
of the connection between the hyperbolic Gaussian Analytic Function and
the Analytic Stockwell Transform of white noise, for the sake of complete-
ness, the proof below details the entire calculation, including the proposed
corrected prefactors and normalizations.

Proof. First, remark that for f ∈ L2(R), the analytic factor of the Stockwell
transform, corresponding to

ξβ+1/2Wψβ
f(x, ξ−1) = ξβ+1

∫ ∞

−∞
f(t)ψβ

(
t− x

ξ−1

)
dt,
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involves the convolution between f and h defined as h(t) = ψβ(−t/ξ−1).
Then, using that the Fourier transform of the convolution between two func-
tions is the product of the Fourier transforms of these functions leads to

ξβ+1/2Wψβ
f(x, ξ−1) = ξβ+1

∫ ∞

−∞
f̂(ν)ĥ(ν)e2πiνx dν. (17)

Using the symmetries of the Fourier transform and the expression of the
Fourier transform of the Cauchy wavelet provided in Equation (4) yields

ĥ(ν) = ξ−1ψ̂β(ξ−1ν) =

{
ξ−1−βνβe−2πξ−1ν if ν > 0

0 otherwise

which, when injected into Equation (17), leads to

ξβ+1/2Wψβ
f(x, ξ−1) = ξβ+1

∫ ∞

−∞
f̂(ν)ĥ(ν)e2πiνx dt

=

∫ ∞

0

f̂(ν)νβe−2πξ−1νe2πiνx dν

=

∫ ∞

0

f̂(ν)νβe2πiν(x+iξ−1) dν.

(18)

Then, injecting the expression of the Fourier transform of fn provided
in Equation (14) into the expression of the analytic wavelet transform of
Equation (18) and setting z = (x+ iξ−1), one obtains

ξβ+1/2Wψβ
fn(x, ξ

−1) =

∫ ∞

0

f̂n(ν)ν
βe2πiνz dν (19)

=

√
n!

Γ(β + n+ 1)
2π

∫ ∞

0

e2πν(iz−1)(2πν)2βL(2β)
n (4πν) dν

µ=2πν
=

√
n!

Γ(β + n+ 1)

∫ ∞

0

eµ(iz−1)µ2βL(2β)
n (µ) dµ

Replacing the expression of the Laguerre polynomial by its Rodrigues formula
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of Equation (15) one gets
∫ ∞

0

eµ(iz−1)µ2βL(2β)
n (2µ) dµ

=

∫ ∞

0

eµ(iz−1)µ2β e
2µ(2µ)−2β

n!

dn

dµn
[
e−µµ2β+n

]
(2µ) dµ

=
1

22βn!

∫ ∞

0

eµ(iz+1) dn

dµn
[
e−µµ2β+n

]
(2µ) dµ

ν=2µ
=

1

22β+1n!

∫ ∞

0

eν
iz+1
2

dn

dνn
[
e−νν2β+n

]
(ν) dν

(20)

which is the Laplace transform1 of the nth order derivative of gn(ν) =
e−νν2β+n evaluated in −(iz + 1)/2, i.e.,

∫ ∞

0

eµ(iz−1)µ2βL(2β)
n (2µ) dµ =

1

22β+1n!
L
{
g(n)n

}(
− iz + 1

2

)
. (21)

To get a closed-form expression of L
{
g
(n)
n

}
, the following lemma is needed.

Lemma 2. Let n ∈ N, and g : R → C be n times differentiable. Assume
that the nth derivative of g, denoted g(n), is of exponential type2. Then, the
Laplace transform of g(n) writes

L
{
g(n)

}
(s) = snL[g](s)−

n−1∑

k=0

sn−k−1g(k)(0+) (22)

where g(k)(0+) denotes the limit of g(k)(t) as t→ 0, t > 0.

Proof. The proof derives from a recursion on the differentiation order n.

Hence, the first step to compute the Laplace transform of g(n)n is to derive
an expression of the Laplace transform of gn. For all s ∈ C satisfying Re(1+
s) > 0, one has

L[gn](s) =
∫ ∞

0

e−sνe−νν2β+n dν =
Γ(2β + n+ 1)

(1 + s)2β+n+1
(23)

1Let g : R → C. The Laplace transform of g, denoted L[g] : µ ⊆ C → C, is a function

of the complex variable s defined as: L{g}(s) =
∫

R
e−νsg(ν) dν, s ∈ µ.

2A function g : R → C is said to be of exponential type if there exist M > 0 and τ > 0
such that |g(t)| ≤ Met/τ in the limit t → ∞
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leveraging the generalized change of variable ν ′ = ν(1+ s) and the definition
of the Euler Gamma function. The second step is to compute the limits
g(k)(0+) for k ∈ {0, . . . , n − 1}. To that aim, a recursion shows that for all
k ∈ {0, 1, . . . , n}, there exists a polynomial pk of order n, such that

g(k)(ν) = e−νν2βpk(ν) (24)

and thus, since β > 0, ∀k ∈ {0, 1, . . . , n − 1}, g(k)(0+) = 0. Further, for
k = n, Equation (24) shows that g(n)n is of exponential type. Altogether,
Lemma 2 applies and the combination of Equations (22) and (23) enables to
obtain a closed-form expression of the integral in Equation (21)

∫ ∞

0

eµ(iz−1)µ2βL(2β)
n (2µ) dµ =

1

22β+1n!

(
− iz + 1

2

)n
Γ(2β + n+ 1)

(1− iz+1
2

)2β+n+1

=
1

n!
(−iz − 1)n

Γ(2β + n+ 1)

(1− iz)2β+n+1
(25)

=
1

n!

(−iz − 1

1− iz

)n
Γ(2β + n+ 1)

(1− iz)2β+1

=

(
i

z + i

)2β+1
Γ(2β + n+ 1)

n!

(
z − i

z + i

)n

.

Equations (20) and (25) show that

ξβ+1/2Wψβ
fn(x, ξ

−1) =

(
i

z + i

)2β+1
√

Γ(2β + n+ 1)

n!
ϑ(z)n (26)

where ϑ is the Cayley transform defined in Equation (8). Finally, remember-
ing that z = x+ iξ−1, let ηβ : R× R+ → C be defined as

∀(x, ξ) ∈ R× R+, ηβ(x, ξ) =
√
ξe−2πiξx

(
i

x+ iξ−1 + i

)2β+1

(27)

Then, for any β > 0, ηβ is a well-defined a smooth nonvanishing function on
the upper half-plane, and the Analytic Stockwell Transform of fn writes

Sφβ
fn(x, ξ) =

√
ξe−2πiξxWψβ

fn(x, ξ
−1)

= ηβ(x, ξ)

√
Γ(2β + n+ 1)

n!
ϑ(z)n.

(28)
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Theorem 3. Let β > 0, ψβ ∈ L2(R) be the Cauchy wavelet of parameter
β and φβ(t) = ψβ(t)e

−2πit. Then, up to a conformal transform, the zeros
of the Analytic Stockwell Transform with analysis window φβ of the white
noise coincide in law with the zero set of the hyperbolic Gaussian Analytic
Function of parameter 2β + 1. Consequently, the zero set of the Analytic
Stockwell Transform of white noise is invariant under isometries of D.

Remark 4. Establishing a connection between time–frequency transforms and
Gaussian Analytic Functions with isometry-invariant zero sets requires to
consider the complex-valued white noise [16, Section 4], [12, 17, 18, 13]. Thus,
all along this work, “white noise" will refer to a complex random variable.3

Proof. This proof follows closely the reasoning developed in [12, Theorem
4.3], linking the Cauchy wavelet transform of white noise to the Hyperbolic
Gaussian Analytic Function. It is sketched here for the sake of completeness.

The first step consists in defining rigorously the continuous white noise
adapted to the considered transform. To that aim, two main paths have
bee, proposed, respectively described in [18, 16] and in [12], which is used
in the following. Considering H = L2(R) and the Hilbertian basis {fn}n∈N
introduced in Lemma 1, applying [12, Proposition 3.3] yields a completion Θ
of L2(R) in which the limit of the series

ζ =
∑

n∈N

ζnfn, ζn ∼ NC(0, 1) (29)

with (ζn)n∈N a sequence of independent identically distribution standard
Gaussian random variables, defines a Gaussian random variable with the
characteristic function of the white noise. Note that, as emphasize in [12,
Section 3] Θ depends on the basis, hence the importance of Lemma 1 deriving
a basis suited to the Analytic Stockwell Transform.

The second step is to show that the Analytic Stockwell Transforms ex-
tends to Θ, which then ensures that the transform of the continuous white
noise is well-defined. To that aim, for β > 0 fixed, let {Ψn}nN be the sequence
of analytic functions on D defined as

Ψn(w) =

√
Γ(2β + n+ 1)

n!
wn. (30)

3The interested reader can refer to [16, Section 3] for a study of the far more intricate
case of real white noise, which will not be discussed in the present work.
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For K ⊂ D a compact, let 0 < R < 1 be such that K ⊂ B(0, R), then

∑

n∈N

(1 + n2)|Ψn(w)|2 =
∑

n∈N

(1 + n2)
Γ(2β + n+ 1)

n!
|w|2n

≤
∑

n∈N

(1 + n2)
Γ(2β + n+ 1)

n!
R2n

<∞ since |R| < 1.

(31)

Hence, the (CK revisited) condition of [12, Theorem 3.4] is satisfied and

T f(w) =
∑

n∈N

⟨f, fn⟩Ψn(w) (32)

yields a well-defined and continuous transform T : L2(R) → A(D). Then,
Lemma 1 shows that for any n ∈ N,

∀(x, ξ) ∈ R× R+, Sβfn(x, ξ) = ηβ(x, ξ)Ψn(ϑ(z))

= ηβ(x, ξ)T fn(ϑ(z)), z = x+ iξ−1 (33)

which extends to any f ∈ L2(R) by continuity of T . Applying [12, Theorem
3.4] proves that T extends continuously to Θ. Consequently, T ζ is well-
defined and it follows from the fact that ηβ is nonvanishing that the relation

∀(x, ξ) ∈ R× R+, Sβζ(x, ξ) = ηβ(x, ξ)T ζ(ϑ(z)), z = x+ iξ−1 (34)

yields a rigorous definition to the Analytic Stockwell transform of white noise.
Finally, by the definition of ζ and of T provided in Equations (29) and (32),

∀w ∈ D, T ζ(w) =
∑

n∈N

ζnΨn(w) =
∑

n∈N

ζn

√
Γ(2β + n+ 1)

n!
wn = GAF(2β+1)(w)

from which one deduces that for all (x, ξ) ∈ R× R+, and for z = x+ iξ−1

Sβζ(x, ξ) = ηβ(x, ξ)GAF
(2β+1)(ϑ(z)). (35)

Since ηβ is nonvanishing and ϑ is bijective, Equation (35) ensures that the
zeros of the Analytic Stockwell Transform of white noise are in one-to-one
correspondance with the zeros of the Hyperbolic Gaussian Analytic Function
of parameter 2β + 1.
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4. Numerical Experiments and Spatial Statistics of Zeros

The present section goal is twofold. First, illustrations of the zero set of
the Analytic Stockwell Transform are provided, enabling the reader to ob-
serve qualitatively the hyperbolic uniform spread of zeros in the Poincaré disk.
Second, the characterization of zeros, established in Theorem 3, is supported
by quantitative numerical evidence obtained by thorough comparison of the
theoretical and empirical spatial statistics of the point process of zeros. A
documented Python toolbox implementing the Analytic Stockwell Transform
and performing the spatial statistics analysis of the zeros of the transform,
thus enabling to reproduce all the experiments, plots and figures presented
in Section 4 has been made publicly available by the authors.4

4.1. Discrete Time–Frequency Analysis
In Section 2, the Analytic Stockwell Transform has been defined for con-

tinuous signals f ∈ L2(R). Though, in practice, one only measures a finite
number N ∈ N∗ of values of the signal of interest in a bounded time window

∀n ∈ {1, . . . , N}, yn = f (xn) , xn = xmin + n∆x, (36)

corresponding to sampling f in [xmin, xmax] at equally spaced time x1, . . . , xN
with resolution ∆x = (xmax − xmin)/(N − 1). This yields a discrete signal
y = (y1, . . . , yN) ∈ CN . The continuous signal f is then said to be sampled at
frequency 1/∆x. Furthermore, in practice, the frequency variable needs to be
discretized as well. In the present work, motivated by the connection with the
Cauchy wavelet transform, the discrete Analytic Stockwell transform is com-
puted on M logarithmically spaced frequency channels: ∀m ∈ {1, . . . ,M},

log2(ξm) = log2(ξmin) +m∆log2 ξ, ∆log2 ξ =
log2(ξmax)− log2(ξmin)

M − 1
(37)

where ∆log2 ξ is the log-frequency resolution, and the range [ξmin, ξmax] is cho-
sen depending on the time–frequency pattern of interest, with the constraint
of satisfying Nyquist-Shannon reconstruction theorem [40, Theorem 5.15].

Definition 5. Let M,N ∈ N∗ and β > 0. The Discrete Analytic Stockwell
Transform of parameter β with N time samples and M frequency channels

4https://github.com/courbot/ast
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is the application Sφβ
: CN → CN×M associating to the discrete signal y =

(y1, . . . , yN) ∈ CN , the matrix defined as

(Sφβ
y)j,m =

N−1∑

n=0

ynφβ(ξm(xn − xj))e
−i 2π

N
ξm·xn (38)

for indices j ∈ {0, . . . , N − 1},m ∈ {0, . . . ,M − 1} and discrete times and
frequencies {xn, ξm}n,m defined in Equations (36) and (37) respectively.

Definition 6. Let N ∈ N∗. The discrete N -dimensional white noise ζ ∈ CN

is the Gaussian random vector of zero mean and identity covariance matrix:

ζ = (ζ1, . . . , ζN), ζn ∼ N (0, 1) (39)

where ζ1, . . . , ζN are independent identically distributed Gaussian variables.

Proposition 1. The discrete transform Sφβ
ζ is a discretization of the Ana-

lytic Stockwell Transform of continuous white noise Sφβ
ζ of Equation (34).

Proof. The demonstration relies on the orthogonality of the family {fn}n∈N,
defined in Lemma 1, used to construct the continuous white noise ζ, and
stems from the reasoning developed in [12, Section 5].

Numerically, the discrete Analytic Stockwell Transform is computed in
the Fourier domain, using a Riemann approximation of Equation (17) com-
bined with Equation (7). Following [15, 17, 18, 16, 12, 13, 41] the local-
ization of zeros is performed using the Minimal Grid Neighbors algorithm,
introduced initially in the code5 accompanying the seminal paper [15]. The
method is described in details in [38, Section 4.3] in the context of standard
time–frequency analysis, and can be applied as is to the discrete Analytic
Stockwell Transform of Definition 5. A major advantage of the Minimal Grid
Neighbors algorithm is that it benefits from a strong robustness, explained
by its solid theoretical ground established recently [41].

Figure 1 displays the modulus of the discrete Analytic Stockwell Trans-
form of parameter β such that α = 2β + 1 = 300 computed over a real-
ization of discrete white noise of length N = 4000 with sampling frequency
νs = 400 Hz, corresponding to a time resolution ∆x = 1/νs, and for M = 600

5https://perso.ens-lyon.fr/patrick.flandrin/zeros.html
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frequency channels ranging from ξmin = 2−6 to ξmax = 23.3, together with
the associated zeros. The representation on the Poincaré disk, on the right
of Figure 1, illustrates that, in the hyperbolic geometry in which the metric
explodes as one gets closer to the border of the disk D, the zeros spread very
evenly. Similarly, the representation in the time–scale plane, on the left of
Figure 1, shows the uniform spread in the hyperbolic upper-half plane.

Figure 1: Log-modulus of the Analytic Stockwell Transform of white noise (background
colormap) and its zero set (red dots) Z(α). The discrete white noise is considered to span
a time period of xmax − xmin = 10 s and corresponds to a sampling frequency of 400 Hz
over. The parameter of the Cauchy wavelet β is chosen such that α = 2β + 1 = 300.
Representation in the (x, ξ−1)-plane where the inverse frequency ξ−1 is called the scale in
reference to the related Cauchy wavelet transform (left). Representation in the Poincaré
disk D parameterized by ϑ(x+iξ−1) for (x, ξ−1) running over the same grid, where ϑ is the
Cayley transform of Equation (8). The dotted circle represents the border of D (right).

4.2. Spatial Statistics
Point processes can be characterized by their k-points correlation func-

tions [36, Section 5.4], describing the probabilistic interactions between the
points of a realization of the point process, e.g., the short-range repulsion
observed in the zero pattern of analytic time–frequency transforms [15, 18,
16, 12, 13].

Definition 7. Let Z be a point process on Λ ⊆ C. For k ∈ N∗, if existing,
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the k-point correlation function ρk of Z is defined by

∫

Λk

Ψ(w1, . . . , wk)ρk(w1, . . . , wk) dw1 . . . dwk = E




∑

(w1,...,wk)∈Zk

w1 ̸=... ̸=wk

Ψ(w1, . . . , wk)



,

(40)

for any bounded compactly supported measurable map Ψ : Λk → C, and
where dw denotes the metric in the ambient space, e.g., the hyperbolic met-
ric mD in the Poincaré disk. In particular, ρ1 is often called the intensity of
the point process as, by definition, integrating it over a domain yields the
expected number of points falling into. As for the two-point correlation func-
tion ρ2, it is commonly normalized to get the pair-correlation function [37,
Chapter 4], defined as

g̃(w1, w2) =
ρ1(w1, w2)

ρ1(w1)ρ1(w2)
, w1, w2 ∈ Λ. (41)

By Proposition 2, the point process corresponding to the zero set of the
hyperbolic Gaussian Analytic Function Z = GAF

(α)
D ({0}), and hence to the

zeros of the Analytic Stockwell Transform of parameter β = (α − 1)/2 of
white noise, is invariant under isometries of D, which has two major conse-
quences. First, the intensity ρ1, defined relatively to the hyperbolic metric
mD is constant. Second, the two-point correlation function only depends on
the hyperbolic distance between w1 and w2, or equivalently on the pseudo-
hyperbolic distance. Consequently, the pair correlation function of the zeros
of the hyperbolic Gaussian Analytic Function of parameter α writes

g(α)(r) = g̃(α)(w1, w2), r = pD(w1, w2). (42)

Remarkably, the joint intensities of zero sets of Gaussian Analytic Functions
have closed-form expressions. Applying the Edelman-Kostlan formula [35,
Section 2.4.1] [38, Proposition 16] yields the explicit expression6 of the inten-

6The difference from the formula derived in [17, 18] comes from a difference in the
normalization of the hyperbolic metric of Equation (10) and of the metric used in [17, 18].
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sity of the zeros of GAF(α)
D :

ρ
(α)
1 =

α

π
. (43)

To access the higher-order joint intensities, one can leverage the formulas
involving determinants and permanents provided in [35, Corrolary 3.4.1], to
get the following explicit formula for the pair correlation functions [17]

g(α)(r) =
sα
(
α(1− s)− s(1− sα)

)2
+
(
αsα(1− s)− (1− sα)

)2

(1− sα)3
. (44)

where s = 1 − r2. This theoretical expression is to be compared to the
pair correlation function of the zeros of the Analytic Stockwell Transform of
parameter β = (α− 1)/2 of white noise.

To provide quantitative numerical evidence supporting Theorem 3, the
theoretical pair correlation g(α) is compared to the empirical pair correlation
function of the Analytic Stockwell Transform of parameter β = (α− 1)/2 of
white noise. The need for accurate and robust estimators of empirical pair
correlation functions resulted in a rich variety of spatial statistics estimation
strategies with solid theoretical guarantees [37, Section 4.3]. Notably, edge
correction techniques have been developed to handle the fact that in practice
only a bounded window is observed [37, Section 4.3.3].
Remark 5. Although derived in Euclidean geometry, the aforementioned spa-
tial statistics framework [37] applies as is in the Poincaré disk, replacing the
Euclidean metric and distance by their hyperbolic counterparts.

In the present work, the pair correlation function is estimated using the
nonparametric estimator of [37, Section 4.3.5], the kernel being chosen as a
step function of support size h > 0. The number of zeros in the observed
window being large enough, border effects are managed using the reduced-
sampled estimate [37, Section 4.3.3]. Denoting by Z(α) the zero set of the
Analytic Stockwell transform of parameter β = (α− 1)/2 of white noise, the
pair correlation function estimator writes

ĝ(α)(r) =
(1− r2)2

4αhr

∑

z∈Z(α)\B(α)

∑

w∈Z(α)

1{|pD(z,w)−r|<h
2} (45)

where 1A denotes the indicative function of the probabilistic event A. To
correct the bias induced by the observation of a bounded window the av-
eraging over z is performed only on the zeros which are far enough from
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(a) Isocontours (light orange to black cir-
cles) depicting equal pseudo-hyperbolic dis-
tances pD, and thus by Equation (11) equal
hyperbolic distance, to three selected cen-
ters (orange stars).

(b) Inner points (red dots) in Z(α)\B(α) are
used as center point to enumerate the den-
sity of zeros in their vicinity, outer points
(pink dots) in B(α) are too close to the bor-
der and hence excluded from the ensemble
average.

Figure 2: Key features of the implementation of the pair correlation function estimator
ĝ(α): counting zeros in hyperbolic disks (left) and border effect correction (right).

the border of the observed hyperbolic window. Denoting B(α) ⊂ Z(α) the
zeros which are too close to the window’s border, represented as pink dots
in Figure 2a, the averaging is performed on inner points z ∈ Z(α) \ B(α),
represented as dark red points in Figure 2b, while the counting runs on every
points w ∈ Z(α). The practical implementation of ĝ(α) amounts to building
concentric rings of radius r around each point in the zeros set, as illustrated
in Figure 2a, counting the number of points in each hyperbolic ring, aver-
aging it over the observed zeros, and finally normalizing by the theoretical
first-intensity function provided in Equation (43).

The theoretical pair correlation function of GAF
(α)
D , whose explicit ex-

pression is provided in Equation (44), is displayed as a dashed black line in
Figure 3 for three values of α. One remarks, going from the left to the right of
Figure 3, that as α increases the short-range repulsion between zeros visible
at the vicinity of r = 0 weakens while the range of attraction between zeros,
correspond to the bump above one, gets narrower and shifts toward r = 0.
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To compare the expected and empirical behaviors of the zeros of the Ana-
lytic Stockwell Transform of white noise, R = 100 realizations of the discrete
white noise in dimension N = 4000 are generated, their Analytic Stockwell
Transforms are computed at time resolution 1/νs with νs = 4000 Hz and
accross 600 frequency channels, yielding R realizations of the point process
Z(α) constituted of their zeros; finally the R the empirical pair correlation
functions ĝ(α) are estimated from Equation (45), and averaged leading to the
averaged empirical pair correlation function ⟨ĝ(α)⟩ displayed as the solid blue
line with star ticks in Figure 3 accompanied with their 5% and 95% quantiles.
Empirical estimates show a good match with the theoretical pair correlation
function for all three values of α, although with a slightly larger 95% credi-
bility region for small α. All observations made on the theoretic g(α) remains
true for its empirical estimate, providing a strong numerical evidence of the
connection between the hyperbolic Gaussian Analytic zeros and the zeros of
the Analytic Stockwell Transform of white noise.

0.1 0.2 0.3 0.4
r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

g
(r

)

g(α)
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(a) α = 100
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(b) α = 300
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Figure 3: Theoretical pair correlation function of the zeros of the hyperbolic Gaussian
Analytic function of parameter α (dashed black line) and averaged empirical pair cor-
relation functions (blue solid line) of the zeroes of the Analytic Stockwell Transform of
parameter β = (α − 1)/2 of white noise for α ∈ {100, 300, 500}. Ensemble averaging and
quantile estimation are performed over R = 100 realizations of the discrete white noise
in dimension N = 4000, corresponding to a time period of xmax − xmin = 1 s long and a
sampling frequency νs = 4000 Hz.

5. Conclusion and Perspectives

After evidencing the existence of an Analytic Stockwell Transform, whose
analysis window have been designed leveraging a modulated Cauchy wavelet,
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the zeros of the transform of white noise are characterized. To that aim a well-
suited construction of continuous white noise has been presented, enabling
to establish a strong connection between the Analytic Stockwell Transform
of white noise and the hyperbolic Gaussian Analytic Function. This link per-
mitted to transfer the remarkable properties of the zeros of the hyperbolic
Gaussian Analytic Function, among which the invariance under isometries of
the Poincaré disk, to the zeros of the Analytic Stockwell Transform of white
noise. Finally, intensive Monte Carlo simulations are implemented to illus-
trate and support this result; notably the empirical pair correlation function
of the zeros of the Analytic Stockwell Transform of white noise is shown to co-
incide very accurately with the expected theoretical pair correlation function
of the zero set of the hyperbolic Gaussian Analytic Function. A documented
Python toolbox reproducing all the experiments has been produced and made
publicly available.7

The characterization of the distribution of zeros under a white noise
hypothesis is the cornerstone of recent original zero-based detection proce-
dures [16, 13, 42]. Hence, the direct continuation of the present work would
consists in leveraging the knowledge gained on the zeros Analytic Stockwell
Transform to perform signal detection in high-noise contexts. Though, ap-
plication of spatial statistics in signal processing do not restrict to detection
and zero-based denoising and separation strategies have shown promising re-
sults [15, 16, 42]. The nice resolution properties and great versatility of the
Analytic Stockwell Transform make it a good candidate for the development
of zero-based component separation algorithms. Finally, as the accuracy of
zero-based procedures relies on the precise localization of zeros, the off-the-
grid algorithm developed in [43] will be generalized to the hyperbolic geom-
etry framework to enhance the quality of spatial statistics estimators, and
hence reaching state-of-the-art detection and reconstruction performance.
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