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Developing proper maintenance and rehabilitation investment plans is vital for prolonging the service life of road
infrastructures while preserving the required service level under capital constraints. This paper proposes a
reinforcement learning approach for determining an optimal policy of selecting maintenance, repair and
rehabilitation alternatives for a network of road infrastructure facilities. The proposed approach is based on a policy
gradient method and overcomes the computational complexity of optimisation problems due to a large number of
possible combinations of network conditions and maintenance, repair and rehabilitation alternatives. The developed
optimal management policy takes into consideration interdependencies among infrastructure facilities in a road
network. Numerical studies on concrete bridge decks in road networks are performed to demonstrate the
advantage, feasibility and capability of the proposed approach.

Keywords: infrastructure planning/Markov decision process/rehabilitation, reclamation & renovation/reinforcement learning/
transport planning
Notation
a action
b(s) baseline function for state s
Gt return following time t
h(s, a, p ) preference for selecting action a in state s based on p
I number of iterations
J(p ) performance measure for policy pp
M mini-batch size
qp(s, a) value of state-action pair s, a under policy p
r reward
s, s0 states
vp(s) value of state s under policy p
w weight parameter for a state value function
x feature vector
z(m) episode in a mini-batch m
a step size parameter
g discount rate
p parameter for a policy
p policy

Introduction
Decision making in road infrastructure management is a complex
process for determining what types of maintenance, rehabilitation
and replacement (MR&R) actions should be selected and when
and where the selected actions should be performed. Planning an
optimised MR&R strategy for road infrastructures is a daunting
challenge involving the evaluation of MR&R projects –

construction costs, project risks and improved service level after
implementation – and that of their ramifications – traffic
disruptions, accident risks, environmental impacts and so on. The
importance of MR&R planning has been exacerbated by the
global phenomenon of ageing infrastructure and concomitant loss
of structural health. The need for effective decision-support tools
is well documented in the literature (Frangopol and Liu, 2007;
Kulkarni and Miller, 2003; Uddin et al., 2013; Vanier, 2001).

It has been a common practice to formulate an infrastructure-
management problem as a Markov decision process (MDP)
because of the use of condition states for the interpretation of
inspection and evaluation data, which are ubiquitous in bridge-
and pavement-management systems (Golabi and Shepard, 1997;
Kulkarni and Miller, 2003). The MDP framework is amenable to
analytical solutions for the optimisation of infrastructure-
management activities through operations research methods, such
as linear programming and dynamic programming (Camahan
et al., 1987; Golabi et al., 1982; Gopal and Majidzadeh, 1991;
Jesus et al., 2011; Smilowitz and Madanat, 2000). These
programming methods are computationally efficient in
determining an optimal management policy for a road network of
limited size, but they perform less well when the road network is
large, due to the ‘curse of dimensionality’ unless they are
restructured to subnetworks for analytical purposes.

Studies have been proposed to deal with optimisation problems
beyond the capabilities of traditional formulations of
programming methods. A common approach in the road-
infrastructure-management context is the use of metaheuristic
methods such as genetic algorithms (e.g. Chan et al., 1994; Fwa
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et al., 1994; Morcous and Lounis, 2005). Their computational
efficiency is appealing; metaheuristic methods can explore various
situations involving interdependencies among road infrastructure
facilities in a network. However, metaheuristic methods inherently
lack mathematical bases and do not guarantee near-optimal
solutions. Other common approaches are modified programming
methods such as bi-level programming (Chu and Chen, 2012;
Hajibabai et al., 2014; Ng et al., 2009). These modified
programming methods provide mathematical foundation for
offering optimal solutions; however, they are usually NP-hard
(Bard, 2013). The third approach is approximate solution methods
from reinforcement learning. These approximate methods are
MDP-based techniques, which aim to overcome the challenges
associated with high dimensions faced by programming methods.
Unlike programming methods, which are often referred to as
tabular methods because they aim to fill and update tables of
state-action pairs, approximate solution methods aim to generalise
sensible decisions for large state and action spaces. This type of
approach has recently gained more popularity in the literature
(examples are introduced in the following section), mostly due to
its MDP-based mathematical bases and efficiency in updating
parameters to determine a good approximate solution.
Reinforcement learning with approximation methods has the
potential to be applied to various road-infrastructure-management
problems to which traditional formulations are not applicable.

Background
Reinforcement learning is an area of machine learning concerned
with how an agent must act in an environment to maximise the
cumulative reward. The agent has little or no prior knowledge on
which actions to take and discovers which actions yield the most
reward by trial and error. The actions taken by the agent may
affect not only the immediate reward but also the environment
and, through that, all subsequent rewards. Trial-and-error search
and delayed rewards are the two most distinguishing features of
reinforcement learning (Sutton and Barto, 2018). Figure 1 shows
the agent–environment interaction in the reinforcement learning
framework. The goal of reinforcement learning is for the agent to
learn an optimal policy. A policy is a decision making rule
mapping from perceived states of the environment to available
2

actions. The optimal policy is a policy that maximises the
cumulative reward or more generally the reward function.

MDPs are a classical formalisation of sequential decision making
pertaining to determining the optimal policy and a mathematically
idealised form of the reinforcement learning problem. An MDP is
a five-tuple (S, A, Pa, Ra, T), where S is the state space; A is the
action space; Pa is the transition probability from state s at time t
to state s0 at time t + 1 when action a is selected; Ra is the
immediate reward received by transitioning from state s to state s0

due to an action a; and T is the set of decision epochs for finite
horizon problems. A value function, vp(s), gives the value of a
state s, under a policy denoted as p. vp(s) is the expectation of
cumulative rewards for the remaining periods:

vp sð Þ ¼ E
X∞
k¼0

g kRtþkþ1 ∣ St ¼ s

" #

1.

where E[·] denotes the expected value given that the decision
maker follows policy p at decision epoch t and g is the discount
factor 0 £ g £ 1. Value functions satisfy particular recursive
relationships, known as Bellman equations:

vp sð Þ ¼
X
a

p asð Þ
X
s0,r

p s0, r ∣ s, a
� �

r þ gvp s0
� �� �

2.

The objective of an MDP is to find an optimal policy p*, which
maximises the value function:

p� ¼ argmax
p

vp sð Þ
3.

for all s Î S.

Consider a road network of N road infrastructure facilities and
that the condition state of each facility is described by one of the
set C of condition rating states. Let X denote the networkwide
aggregated condition describing the conditions of all N facilities.
Then, the set X would contain |C|N states, and Equation 2 would
have to be evaluated for each of |C|N states. Moreover, Equation 2
requires evaluation of the whole action space with |A|N possible
combinations. Therefore, obtaining an exact solution of an MDP
for a road network might be infeasible for public agencies since
agencies generally manage a large number of infrastructure
facilities in a network. In addition, a large-scale MDP such as a
road-infrastructure-network-management problem requires not
only a designed algorithm to deal with the large state space but
also network-level consideration such as underlying network
configurations. Dekker et al. (1997) propose three classifications
of interdependencies between infrastructure facilities in a network:
economic dependencies (the benefits/costs of management on an
Agent

Environment

State
st

Reward
rt

Action
at

Figure 1. Agent–environment interaction in reinforcement
learning
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individual facility are affected by the conditions of other
facilities), structural dependencies (network system performance
such as connectivity and capacity is collectively determined by
facilities) and stochastic dependencies (correlated deterioration
factors such as environment and loading conditions exist among
facilities).

Approximate solution methods for large-scale MDPs have been
adapted to infrastructure-management problems. Durango-Cohen
(2004) proposes a value function approximation approach using
temporal-difference learning applicable to imperfect information on
facility transition rates between states. Kuhn (2010) proposes an
approximate dynamic programming model using value function
approximation in which the value functions are approximated by a
linear combination of basis functions. Medury and Madanat (2013)
also propose an approximate dynamic programming approach in
which the value functions of state-action pairs are generalised by a
set of linear and separable functions. The study emphasises
structural interdependencies (set of facilities collectively
determining system performance such as connectivity or capacity)
between infrastructure facilities by imposing a network capacity
constraint on the MR&R activity selection.

The above examples use function approximation methods that aim
to produce a good approximation of the value functions over large
subsets of the entire state space. Methods that instead learn a
parameterised policy that can select actions without necessarily
consulting a value function are policy gradient methods. One
advantage of parametrising policies is that the approximate policy
can be driven to produce a stochastic optimal policy while it can
also approach a deterministic policy according to parametrisation,
allowing more flexibility tailored to the problem context.
Moreover, the policy gradient theorem, which provides
mathematical bases for calculating the performance gradient with
respect to the policy parameters, adds a theoretical advantage to
policy gradient methods. One drawback is that policy gradient
methods often suffer from high variance in the parameter update
process and converges to a local rather than global optimum.

Han et al. (2021) present a proximal policy optimisation model, a
policy gradient algorithm that improves training stability
compared with ‘vanilla’ policy gradient update. Proximal policy
optimisation uses a clipped surrogate objective, which discourages
policy updates for extremes for better rewards while retaining
similar performance. It is also worth noting that in the study, a
Markov state transition model was developed based on a deep
artificial neural network. While the number of prior studies on
applying policy gradient methods to network-level optimisation
problems in infrastructure management was limited, policy-
gradient-based approaches had shown promising applicability to
similar engineering problems. For instance, Andriotis and
Papakonstantinou (2019) demonstrate an application of a deep
artificial neural network based policy gradient approach to a truss
bridge whose structural system comprises a number of subsystem
components.
In this study, an approach to determining the optimal MR&R
actions based on policy gradient methods is proposed. A
stochastic gradient-ascent algorithm, Reinforce (Williams, 1992),
is used to update parameters pertaining to both parameterised
policy and state value functions. The proposed approach is aimed
at determining an optimal management solution for a complex
network of infrastructures, which should consider
interdependencies. The following section provides the derivation
of the proposed approach.

Policy gradient method
Policy gradient methods rely on optimising parameterised policies
with respect to the expected return (long-term cumulative reward)
by gradient, which may be sometimes a more direct and natural
approach than value function approximation. The parameterised
policy p (a|s,p) = Pr {At = a|St = s, pt = p} describes the
probability that action a is taken at time t given that the
environment is in state s at time t with parameter p. Let J(p) be
any policy objective function. Policy gradient methods seek to
maximise J(p). Therefore, policy gradient algorithms search for a
local optimum in J(p) by ascending the gradient of the policy ∇J
(pt) with respect to parameters p:

q tþ1 ¼ q t þ a∇qJ p tð Þ4.

where ∇qJ(pt) is the policy gradient or a stochastic estimate
whose expectation approximates the gradient of J(p) with respect
to its argument qt. To ensure that the policy can be parameterised
and its gradient is calculable, p (a|s,p) must be differentiable with
respect to its parameters – that is, ∇p (a|s,p) must exist and be
finite for all s, a, p, where ∇p (a|s,p) is a vector notation of partial
derivatives of p (a|s,p) with respect to the components of p.

A natural and common kind of parameterisation is forming
parameterised numerical preferences h(s,a,p) Î ℝ for each state-
action pair. Probabilities of actions being selected in each state are
found according to preferences. Soft-max in action preferences is
formed as

p as, pð Þ ¼ eh s,a,qð ÞX
b
eh s,b,qð Þ5.

The action preferences can be parametrised arbitrarily. For
instance, linear-in-feature preference can be constructed as

h s, a, qð Þ ¼ p Tx s, að Þ6.

using feature vectors x(s, a).

Parametrising policies according to the soft-max in action
preferences results in some favourable characteristics. An
3
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advantage of such parametrisation is that the approximate policy
can reach a deterministic policy, while e-greedy action selection is
always associated with the e probability of selecting a random
action. The action-value estimates would converge to their
corresponding true values. Another advantage of using soft-max
in action preferences is being able to select actions with arbitrary
probabilities. For instance, in a road-infrastructure-management
problem, an MR&R action on an individual facility given its state
may not be strictly better than the other MR&R alternatives in a
deterministic manner due to the large state space of the road
network conditions. Rather, an MR&R action may be optimal for
certain percentage of time. Therefore, the best approximate policy
can be stochastic. In addition, policy gradient methods are
advantageous over value function approximation in terms of
better convergence properties in high-dimensional space while
they may suffer from a tendency to converge to a local optimum
and involve high variance in estimating parameters. Various
policy gradient algorithms for addressing these issues have been
proposed in the computer science/machine learning/artificial
intelligence literature (Agarwal et al., 2020).

Policy gradient algorithms are developed based on the policy
gradient theorem, which provides an analytic expression for the
gradient of the objective function with respect to the policy
parameter p :

∇J pð Þ ¼ E p

X
a

qp St, að Þ ∇ p a ∣ St, pð Þ
" #

7.

where qp(s, a) is the value of taking action a in state s under
policy p. The proof of the theorem can be seen in prior literature
(e.g. Sutton and Barto, 2018). Equations 4 and 7 with some
calculations bring about a stochastic gradient-ascent algorithm:

p tþ1 ¼ p t þ aqGt
∇p At ∣ St , pð Þ
p At ∣ St, pð Þ8.

where Gt represents the return (the sum of future rewards)
following time t and aq is the step size or learning rate for
updating p. Policy gradient algorithms in which parameters are
updated following Equation 8 are referred to Reinforce. The
update increases the parameter vector in a direction proportional
to the return. This renders the parameter to move most in the
directions that favour actions that yield the highest return. In
addition, the update is inversely proportional to the action
probability. This avoids actions that are selected frequently to be
at an advantage. Reinforce can be classified as a Monte Carlo
algorithm and therefore is suitable for an episodic case because
the update uses the complete return from time t, which is the sum
of future rewards up until the end of the episode.
4

Reinforce has good theoretical convergence properties since the
expected update over an episode is in the same direction as the
gradient of the objective function. However, as a Monte Carlo
method, high variance in parameter updates can be an issue. To
counter this, adding a baseline is known to reduce the variance. By
adding an arbitrary baseline b(s), Equation 7 can be rewritten as

∇J pð Þ ¼ E p

X
a

qp St, að Þ − b sð Þ½ � ∇ p a ∣ St, pð Þ
" #

9.

which can then be used to form a generalised Reinforce by
rewriting Equation 8:

p tþ1 ¼ p t þ aq Gt − b Stð Þ½ �∇p At ∣ St, pð Þ
p At ∣ St, pð Þ10.

The baseline can be any function given that it does not vary with
the action a. A natural and common choice for the baseline is an
estimate of the state value, vðSt , wÞ, where w is a weight vector.
As Reinforce uses a Monte Carlo method to learn the policy
parameter p, it can also use a Monte Carlo method to learn the
state value weights w.

wtþ1 ¼ wt þ aw Gt − v St,wð Þ½ � ∇ v St, wð Þ11.

A pseudocode using Reinforce with a state value function as the
baseline is provided in Algorithm 1. In this study, mini-batch
sampling is added to pursue even better stability in estimating the
parameters. In the algorithm, x denotes a state vector describing
all the important attributes and features in the network in time t.
In the presented modified Reinforce algorithm, a stochastic
gradient ascent is employed to refine iteratively the policy
parameters for optimal decision making in a reinforcement
learning framework. The algorithm starts with the initialisation of
policy parameters p and state value weights w, essential for
defining the policy p(a|s,p) and the state value function vðSt , wÞ,
respectively. Additionally, step sizes for both p and w, a mini-
batch size M and the number of iterations I are specified. In each
iteration, the algorithm generates episodes using the current policy
and computes the average reward Gt for each state in these
episodes. This computation is pivotal, as it captures the expected
return from a state, discounted over future steps. Subsequently, for
each decision epoch within an episode, the algorithm updates the
state value weights w using the difference between the computed
average reward and the estimated value from vðSt ,wÞ. This step is
critical for refining the state value function towards more accurate
estimations. In parallel, the policy parameters p are adjusted based
on the gradient of the policy log-probability, scaled by the
discounted reward. This dual updating mechanism of both w and
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p converges to a policy that maximises the expected cumulative
reward over time, encapsulating the essence of the policy gradient
method in reinforcement learning.

Application
This section demonstrates the implementation of the proposed
policy gradient approach in road infrastructure management. In
this application, concrete bridge decks are selected as the primal
target of management because they are often the most expensive
elements of bridge systems in terms of durability (Cady and
Weyers, 1984). In addition, partial or full closures of bridges can
affect the overall network performance and result in considerable
economic loss, as they represent the most vital and critical links
of a road network. The assumed region of application is Quebec,
Canada. The climate of Quebec is in general cold and humid. In
such an environment, the corrosion of reinforcing steel due to the
use of de-icing chemicals in winter, as well as freezing and
thawing cycles, is a critical factor affecting degradation of
concrete bridge decks in addition to loads from traffic.

In this application, four types of MR&R actions are considered,
and their unit costs are shown in Table 1: do nothing, minor
repair, major repair and replacement. Examples of minor repair
include surface cleaning, minor sealing of joints, repair of cracks
and local repairs on the slab above the reinforcement. Major
repair primarily comprises localised repair of the concrete to a
depth below the reinforcement in addition to major sealing of
joints and epoxy injection to fill cracks. Replacement is the
construction of a new slab with new reinforcement. The cost data
for each MR&R activity are obtained from the Ministère des
Transports du Québec (MTQ, 2021) for typical activities in
Quebec. It is assumed that only one MR&R activity can be
carried out on a bridge deck at each decision epoch. Note that the
durations of bridge closures assume small bridges or viaducts.
Therefore, applying the numbers to larger bridges or viaducts
would lead to an optimistic scenario.

Yearly condition state transition probability matrices, which
describe the rate of deterioration, are obtained from the paper by
Zhang et al. (2020) and shown in Table 2. The matrices are
estimated using TransChlor, which uses hourly climate data
(precipitation, temperature, relative humidity, solar radiation) to
replicate the application of de-icing salts within a given climatic
region Conciatori et al. (2010). The deterioration process is
divided into four stages. At stage 1, the structural health of the
deck is like new; it refers to the beginning of the service life until
the initiation of corrosion. Stage 2 starts when corrosion initiates
and lasts until a surface crack width reaches 0.8 mm. Stage 3 is
the final phase of the propagation of corrosion up until the onset
of concrete cover spalling. The four stages defined herein are
compatible with visual inspection and condition assessment
procedures and therefore are applicable to a wide range of
infrastructure facilities. The effects of interventions are reflected
in the transition probability matrices. It is assumed that stage 4 is
too severe for minor repair; therefore, minor repair on a stage 4
deck has no effect. Major repair is assumed to restore stage 2
Algorithm 1. Pseudocode for updating parameters by stochastic gradient ascent

1: Initialise:
2: Policy parameter q in a differentiable parameterised policy p(a|s,p )
3: State value weights w in a differentiable parameterised state value function bvðSt ,wÞ
4: Step sizes a(q) > 0 and a(w) > 0
5: Mini-batch size M Î ℕ+

6: Number of iterations I Î ℕ+

7: i ← 0
8: while i £ I do
9: for each m Î {1, 2, …, M} do
10: Generate an episode

z(m) = (S0, A0, R1, …, ST − 1, AT − 1, RT),
following p(·|·, p)

11: Calculate average reward at time t, Gt, for the mini-batch:

12: Gt ¼
1
m

X
m

XT
k¼tþ1

g k−t−1Rk,m

13: end for
14: for each decision epoch t Î {1, 2, …, T } do
15: d ¼ GtðxÞ − bvðSt ,wÞ
16: w ←w þ aðwÞd ∇ bvðSt ,wÞ
17: p ← p þ aðqÞg t ∇ ln pðAt jSt , p Þ
18: end for
19: i ← i + 1
20: end while
Table 1. Costs of MR&R actions
Action
 Unit cost: US$/m2
 Bridge closure
Do nothing
 0
 N/A

Minor repair
 800
 Half-closure, 2 days

Major repair
 1500
 Half-closure, 7 days

Replacement
 2000
 Full closure, 14 days
5
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0
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0

0

1

1

1

1

0

0

0

0

0

0

1

1

1

2

3

4

1 2 3 4 1 2 3 4
considering that the reinforcing steel is not replaced after a major
repair. After replacement, decks are assumed to be like new
regardless of their stage before the intervention.

In the following sections, results of numerical studies are presented
for a single facility, a small network and a large network. In the
single-facility case, the objective is to show that the policy gradient
approach can determine a policy acceptably similar to, if not the
same as, the one determined by dynamic programming, an analytical
approach that explores the entire state space and is thus theoretically
the best approach in terms of precision. The small-network case is
composed of three bridges in a road network. The policy gradient
approach is intended to show its capability to account for
interdependencies among the facilities and determine the optimal set
of MR&R actions for the network. The results are again compared
with dynamic programming to prove their validity. Lastly, the large-
network example is presented to show the applicability of the policy
gradient approach to a large-scale problem to which traditional
methods are less suitable. For all three cases, the decision epoch is
every 5 years, meaning that a 1-year transition occurs according to a
selected MR&R action, and the deck deteriorates following the
transition probabilities for do nothing for the remaining 4 years. The
assumed service life is 100 years; therefore, 20 decision epochs are
considered. The optimal policies are determined as an infinite horizon
problem since the assumed service life is long enough to be regarded
as such. The discount factor is 0.98.
6

In this study, economic and structural dependencies within
infrastructure networks are highlighted in the sections headed ‘Small
network’ and ‘Large network’. Economic dependencies arise when
the management of one facility is influenced by the condition of
others, while structural dependencies relate to how individual
facilities collectively impact the overall performance of the network.
The authors’ approach can be easily expanded to accommodate
stochastic dependencies, which involve correlated deterioration
factors among facilities. Future expansions of this work could adapt
the method to encompass these stochastic aspects, enhancing its
comprehensiveness in infrastructure management. This potential for
broader applicability underscores the depth and versatility of this
approach.

Single facility
Consider managing a bridge on a highway primarily focusing on
the deterioration of its deck. The bridge is assumed to have three
lanes in each direction and a deck area of 10 000 m2. The impact
of interventions is estimated from the results of traffic simulations
using the Emme software (INRO, 2022) on a real bridge in
Quebec that has similar design, characteristics and role. The
estimated daily economic losses from half-closure and full closure
of this bridge are US$70 000 and US$326 000, respectively.

The optimal policies determined by the policy gradient approach
and dynamic programming are shown in Table 3. Both methods
Table 2. Transition probability matrices of concrete bridge decks
Do nothing Minor repair

1

1

2

2

3

3

4

4

1

2

3

4

0.68

0

0

0

0.32

0.89

0

0

0

0.11

0.91

0

0

0

0.09

1

1

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1 2 3 4
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identify the same policies: the optimal actions when the bridge
deck is in states 1, 2, 3 and 4 are, respectively, do nothing, do
nothing, minor repair and major repair. Replacement was not
selected as the best action for any stage of degradation, as it was
less cost effective than the other MR&R alternatives. As
discussed in the section headed ‘Policy gradient method’, an
advantage of the policy gradient approach is to be able to describe
the extent of preferences with probabilities. For instance, while
dynamic programming determines the single optimal action for
each stage, policy gradient estimates, for instance, for stage 2,
0.58 for do nothing, 0.30 for minor repair and 0.12 for major
repair according to soft-max in action preferences. These numbers
represent the attractiveness of the alternatives and provide
additional pieces of information crucial for decision making.

In the analysis presented in Table 3, it is observed that bridges are
typically not replaced, a finding consistent with current industry trends
where high costs often lead to the deferral of bridge replacement.
However, this study employs a time-invariant deterioration model,
which does not account for the potential acceleration in deterioration
rates following major repairs. The authors acknowledge that this is a
simplification of real-world conditions. Future studies could explore
the impact of employing a time-variant deterioration model, which
might reveal different insights, particularly in terms of the frequency
and cost-effectiveness of bridge replacements. Such research could
provide a more nuanced understanding of the long-term management
strategies for bridge infrastructure, particularly under varying
deterioration conditions post-repair.

Small network
Three bridges are considered for the small-network example. Two
bridges are added to the one used in the previous example of the
single-facility case. They are assumed to be overpasses on arterial
roads with two lanes in each direction. Let bridge A be the one
from the single-facility case and bridges B and C be the two
added bridges. The deck areas of bridges B and C are 7500 and
5000 m2, respectively. Similar to the single-facility case, the
economic losses due to interventions on these bridge decks are
estimated using the results of traffic simulation performed using
the Emme software for similar real bridges in Quebec. The
estimated daily economic losses from half-closure and full closure
of individual bridges are US$20 000 and US$93 000 for bridge B
and US$26 000 and US$134 000 for bridge C, respectively. The
relationship between the deck surface area and economic losses is
inversely proportional for bridge C, which is modelled after an
existing bridge in proximity to a central business district,
therefore playing a critical role for network connectivity.

It is imperative to develop optimal intervention policies that
account for interdependencies among infrastructure facilities in
proximity to each other. In the following, two common causes of
correlated user costs are considered. In the first case, concurrent
interventions on multiple bridges in series tend to decrease the
total economic losses in comparison with the sum of losses for the
bridges considered separately. Conversely, concurrent
interventions on multiple bridges in parallel tend to increase the
total economic losses in comparison with the sum of losses for the
bridges considered separately. In both cases, the change in total
economic losses can be obtained considering that the losses from
individual bridges are negatively correlated for bridges in series
and that they are positively correlated for bridges in parallel.
When two bridges are in series, the length of detours and delays
in travel times are shorter than the sum of detours and delays
when only a single bridge is closed since part of the detours are
common. When two bridges are in parallel, the total delays are
increased since the bridges cannot be used as mutual detour
routes. Therefore, in this example, the feature vector x in
Algorithm 1 denotes concurrent interventions on multiple bridges.

Figure 2 shows the evolution of the total costs as a function of the
number of iterations for the interventions on a network of three
bridges in series and in parallel. In both cases, the correlation
coefficients for losses on individual bridges are assumed to be
0.5, which have been observed from simulations using the Emme
software on a simplified network. First, the optimal policies for
bridges A, B and C are individually determined as in the previous
example and used as the initial policies for the network. For the
bridges in series, the optimised parameterised policy favours
Table 3. Optimal policy for a single facility

Policy gradient
Stage
 DN
 Minor
 Major
 Replace
1
 1
 0
 0
 0

2
 0.58
 0.30
 0.12
 0

3
 0.27
 0.58
 0.16
 0

4
 0
 0
 1
 0
Dynamic programming
Stage
 Optimal action

1
 Do nothing

2
 Do nothing

3
 Minor repair

4
 Major repair
DN, do nothing
7
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simultaneous interventions on bridges. Conversely, for the bridges
in parallel, the optimal policy is to avoid concurrent interventions
on multiple bridges. The savings in costs by optimising the
intervention times reduces total initial estimates of costs based on
optimal interventions on individual bridges by 50% in both cases.
The results also suggest that interventions on a larger network
should favour concurrent interventions on bridges in series over
those in parallel since costs are then reduced by a factor of 3. The
differences between the simulated costs at the beginning and the
end of the iterations are attributed to adjusting these preferences
on conducting concurrent interventions.

The optimal simulated costs obtained from policy gradient models
are compared with those obtained from the dynamic programming
model in Figure 3. PG(0) is the policy gradient model based on
8

the policies optimal for individual bridge decks and therefore does
not account for interdependencies. PG(1) is the policy gradient
model calibrated from PG(0) to take into account
interdependencies. DP is the dynamic programming model, which
determines the exact solution by exploring all possible
combinations of MR&R alternatives and the network condition
composed of deterioration stages of individual bridge decks. The
figure shows the cost differences between PG(1) and DP, which
are approximately US$1 million for the bridges in series and US
$25 million for the bridges in parallel. While these differences are
not marginal, they are presented to highlight the relative
efficiency of different management strategies. Specifically, the
comparison between PG(0) and PG(1) demonstrates the
applicability and effectiveness of the policy gradient method in a
network with interdependencies. This analysis helps underscore
that PG(1) is suitably calibrated for network-level optimisation,
showing a more cost-effective approach. It is important to note
that these cost comparisons are specific to the context of this
study and are not meant to be generalised to larger-scale projects
or different scenarios.

The differences between the optimised costs of PG(0) and PG(1)
are US$18 million for the bridges in series and US$85 million for
the bridges in parallel. These differences are much larger than
those between PG(1) and DP and demonstrate that PG(1) is
capable of identifying near-optimal policies. The differences
between PG(0) and PG(1) are much larger for the bridges in
parallel. The optimised costs for PG(0) are 60 and 80% higher for
the bridges in series and the bridges in parallel, respectively.
Because the optimised cost itself is much more expensive for the
bridges in parallel, the size of the difference becomes larger.
Another plausible explanation is related to the optimal policy. The
policies of PG(0) and PG(1) for the bridges in series are similar
because the single-facility policy intervenes when the deck is in a
progressed deterioration state such as stage 3 or 4. This leads to
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concurrent interventions when multiple bridge decks are
deteriorated, which take advantage of the cost reduction.
However, the policies are different for the bridges in parallel since
PG(1) attempts to avoid concurrent interventions when multiple
bridge decks are deteriorated, while PG(0) does not. In the end,
the results suggest that the policy gradient approach can
incorporate the effects of interdependencies when the model
specification is appropriately constructed.
Large network
For the large-network example, a road network comprising 14
bridges is assumed with nine bridges on highways and five
bridges on arterial roads (Figure 4). The study area has
dimensions of 8 × 10 km. Bridges 1–4 and bridges 5–9 are
assumed to be highway overpasses that are oriented horizontally
and vertically on the map, respectively. Bridges 10–14 are
assumed to be on arterial roads that cross a river. User
equilibrium-based traffic assignment is conducted to estimate
traffic redistribution, traffic delays and economic losses due to
interventions on the bridge decks. Figure 5 shows the estimated
daily economic losses from a closure of each bridge. Highway
bridges tend to show large economic losses as a function of
interventions. In particular, bridges 7–9 play a significant role in
distributing the traffic from the upper part of the map to the lower
part and vice versa. The economic losses due to partial closures
on bridges 10–13 are not visible in the figure since their values
are smaller than US$1000.

An important objective of the proposed approach is to capture the
effect of network configurations on optimal sequences of
interventions. Figure 6 shows the compound effect of two half-
closures in the network for 91 (=14 × 13 ÷ 2) possible
combinations of two bridge closures out of 14 bridges. The daily
user costs (economic loss) of concurrent two interventions are
compared with those of the sum of individual interventions on the
two bridges. The straight line in the figure denotes the concurrent
costs that are equal to the sum of individual intervention costs.
The data points under the line indicate combinations where
concurrent costs exceed the sum of individual costs, which should
be avoided. These instances are illustrated by interventions on
bridges 8 and 10 or 8 and 11 corresponding in both cases to two
bridges in parallel relative to the major axis of regional traffic.
Conversely, data points above the line correspond to two bridges
in series and the benefit of concurrent interventions. These
instances are illustrated by interventions on bridges 2 and 3,
where the two bridges form a series relationship.

The feature vectors x(s,a) are designed to capture whether
intervention of the bridges is planned. Therefore, every element of
the action preference for a bridge deck in a particular state h(s,
a,p) is described by q intercept þ

X13

i q ixi as a linear-in-feature
preference. Example progresses of the parameter-updating process
are shown in Figure 7. Figure 7(a) shows the value of p for
conducting major repair on bridge 3 when intervention of bridge
4 is also planned. Starting with the initial value of 0, the value
monotonically increases. This incremental change results in
rendering the major repair action be more likely to be selected,
which benefits from saved economic loss from concurrent
interventions. Figure 7(b) shows the progress on the value of p
for conducting major repair on bridge 13 when intervention of
bridge 14 is planned. In contrast to Figure 7(a), Figure 7(b) shows
another type of example where concurrent interventions are
discouraged due to large additional economic losses generated by
forcing travellers to take a long detour. Some may find the update
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Figure 4. Illustration of the large-network example
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process of parameter p surprisingly smooth; this is mainly a result
of applying a large mini-batch size. Using a smaller mini-batch
size would make the parameter update process fluctuate, while the
time to complete calculation of a simulation episode would be
saved.

Therefore, the mini-batch size controls the trade-off between the
stability and computational time for the simulations.

Figure 8 presents the progress of the policy gradient model for this
large-network example (the figure shows the costs for the entire
network for the whole service life). The result of the single-facility
case is used as the initial values of the intercept parameters.
10
Therefore, this initial policy already recommends good actions for
individual facilities. The network-level consideration such as
network configurations, however, is missed by the initial policy.
The reduction in costs per episode in Figure 8 is therefore attributed
to encouraging concurrent interventions when they are
advantageous and avoiding them otherwise.

Conclusion
This paper presents a reinforcement learning approach to network-
level road infrastructure management based on the policy gradient
method. The proposed approach is able to capture
interdependencies among road infrastructure facilities and
determine the optimal policy that considers the network
configurations. It also resolves the computational complexity of the
optimisation problem in road infrastructure management that arises
for a large network. The validity and applicability of the proposed
approach are demonstrated through computational studies. In these
studies, a linear-in-preference formulation is used, and the policy is
parameterised to form the soft-max preference in actions. This
model formulation provides relative preferences among actions,
which can be informative for decision makers when more than one
intervention alternative seems competitive.

Future research may address the innate high variance of the policy
gradient method in updating the parameters. In this paper, the
Reinforce algorithm with estimated state values as the baseline is
used to mitigate the issue. In the computer science community,
reinforcement learning is an ever-progressing subject, and
advanced policy gradient algorithms are proposed to resolve the
high variance problem and accelerate the speed of parameter
estimation.

In addition, future research may use a reinforcement learning
approach to conduct empirical studies that impose strict
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restrictions, constraints and challenges particular to real-world
examples. In this paper, the computational studies are based on
fundamental settings and assumptions that are prevalent among
many infrastructure-management projects. It would be interesting
to examine the capabilities of reinforcement learning approaches
for a wide range of MR&R projects.
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