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Capillary lubrication of a spherical particle near a fluid interface

Aditya Jha,1 Yacine Amarouchene,1 and Thomas Salez1, ∗

1Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France.
(Dated: July 17, 2024)

The lubricated motion of an object near a deformable boundary presents striking subtleties arising
from the coupling between the elasticity of the boundary and lubricated flow, including but not
limited to the emergence of a lift force acting on the object despite the zero Reynolds number.
In this study, we characterize the hydrodynamic forces and torques felt by a sphere translating in
close proximity to a fluid interface, separating the viscous medium of the sphere’s motion from an
infinitely-more-viscous medium. We employ lubrication theory and perform a perturbation analysis
in capillary compliance. The dominant response of the interface owing to surface tension results
in a long-ranged interface deformation, which leads to a modification of the forces and torques
with respect to the rigid reference case, that we characterise in details with scaling arguments and
numerical integrations.

Keywords: low-Reynolds-number flows, lubrication theory, capillarity, fluid interfaces, fluid-structure inter-
actions, contact mechanics.

INTRODUCTION

The dynamics of objects moving in viscous fluids has been studied both theoretically and experimentally for a long
time [1–6]. Confining the viscous flow between an object and a rigid surface modifies the forces felt by the object [7–
10]. Such a modification is involved in vastly different phenomena ranging from the mechanics of joints [11, 12], to
the movement of cells in capillaries [13], and the dynamics of suspensions [14–18].

Recent research has provided evidence of boundary elasticity further modifying the lubricated dynamics of an
object [19, 20]. Further standardization of the measurement process has led to the design of contactless probes for
rheology [21, 22]. The coupling of boundary elasticity and lubrication flow, collectively termed as soft lubrication,
predicts the emergence of lift forces exerted on particles translating parallel to soft boundaries [23–34]. Such lift
forces are associated with the symmetry breaking arising out of the deformability. Since the latter is crucial to the
generated force, the nature of the bounding wall has been further explored by examining the influence of slip [35], and
viscoelasticity [36, 37]. A reversal of the nature of the lift force from repulsive to attractive has also been predicted
for viscoelastic settings [38]. Other studies have explored the complex modifications induced by including inertial
effects [39] and compressibility [40]. On the experimental front, dedicated research has verified the presence of these
lift forces on various substrates [41–45].

In biology where cells and tissues are extremely soft, and/or at small scales in soft matter, the interfacial capillary
stress at the boundary dominates over bulk elasticity. By employing a classical Stokeslet-like response of the flow near
a fluid interface, it has been shown that a rectified flow may be generated owing to the tension of the boundary [46, 47].
On the other hand, finite-size effects were addressed [48–51] in the regime of a large gap between the object and the
fluid interface, predicting counter-intuitive behaviors unique to capillarity. The results of these studies have been
useful in analyzing the movement of microorganisms near a fluid interface [52, 53], as well as the formation of floating
biofilms [54]. Recently, capillary-lubrication studies [55, 56] have characterized the dynamics of an infinite cylinder
near a fluid interface, highlighting the influence of the viscosity contrast and thickness ratio between the two fluid
layers, and leading to large variability in the forces generated as opposed to elastic interfaces.

While previous research has highlighted the importance of understanding lubricated motion near a fluid interface,
the characterization of the dynamics of a particle moving with multiple degrees of freedom near a fluid interface
remains to be explored. In this article, we explore in detail the translational motion of a sphere moving in close
proximity to an infinitely viscous but deformable sublayer. In the small-deformation limit, we calculate the forces and
torques generated on the sphere during the motion. Due to a symmetry between translational and rotational motions
in soft lubrication [32], our work immediately generalizes to the case where rotation would be added. The remainder
of the article is organized as follows. We start by describing the capillary-lubrication framework, before presenting
the theoretical methodology for obtaining the different fields using perturbation analysis at small deformations of the
fluid interface. We then discuss the implications of the interfacial deformation, and the competition between gravity
and capillarity, on the forces and torques generated on the particle.

∗ thomas.salez@cnrs.fr



2

I. CAPILLARY-LUBRICATION THEORY

We consider a sphere of radius a translating with a prescribed time-dependent horizontal velocity u⃗ = u(t)e⃗x
near a fluid interface, as shown in Fig. 1. The interface is characterized by its surface tension σ, and separates two
incompressible Newtonian viscous liquids with dynamic shear viscosities η and ηsl, as well as densities ρ and ρsl (with
ρ < ρsl). The acceleration of gravity is denoted by g. The gap profile between the sphere and the undeformed
fluid interface is denoted by h(r, t), which depends on the horizontal radial coordinate r and time t. The x-direction
oriented along e⃗x corresponds to the horizontal angular coordinate θ = 0. The minimum gap between the bottom
of the sphere surface and the undeformed interface is denoted by d(t), which depends upon time, hence its temporal

derivative ḋ(t) denotes the vertical velocity of the sphere. We focus on the case where the bottom layer is extremely
viscous compared to the top layer, i.e. ηsl ≫ η, and is infinitely thick compared to the gap between the sphere and the
undeformed interface. These conditions allow us to assume that the velocity at the fluid interface vanishes because
the shear stress from the top layer is insufficient to generate a flow in the lower layer.

We neglect fluid inertia and assume that the typical gap between the sphere and the interface is much smaller than
the typical horizontal length scale, allowing us to invoke lubrication theory [57, 58]. Introducing the excess pressure
field p, in the top layer, with respect to the hydrostatic contribution, and the horizontal velocity field v⃗ of the fluid in
the gap, the incompressible Stokes equations thus read at leading lubrication order:

∂p

∂z
= 0 , (1)

∇p = η
∂2v⃗

∂z2
, (2)

where ∇ denotes the gradient in the horizontal plane and where z is the vertical coordinate. In the limit of a small

FIG. 1: Schematic of the system. A sphere of radius a immersed in a viscous fluid of viscosity η and density ρ
moves near a fluid interface. The undeformed gap profile is noted h(r, t), with r the horizontal radial
coordinate and t the time. The origin of coordinates is located at the undeformed fluid interface (z = 0) in
line with the center of mass of the sphere (r = 0). The interface separates the top fluid from a secondary fluid
of viscosity ηsl, with ηsl ≫ η, and density ρsl at the bottom, i.e. ρsl > ρ. The sphere has prescribed horizontal
velocity u and vertical velocity ḋ, where d = h(0, t) denotes the instantaneous distance between the sphere
bottom and the undeformed fluid interface. The interface deflection field is denoted as δ(r, t), the acceleration
of gravity is denoted as g, and the surface tension is denoted as σ.

gap, the thickness profile of the fluid between the sphere and the undeformed fluid interface can be approximated by
its parabolic expansion, leading to:

h(r, t) ≃ d(t) +
r2

2a
. (3)

The no-slip boundary condition is imposed at both the sphere’s surface and the fluid interface. Hence, in the frame
of the moving sphere, at z = h, one has:

v⃗ = 0⃗ , (4)

and at the interface, i.e. z = δ, one has:

v⃗ = −u⃗ = −ue⃗x . (5)
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Given the boundary conditions above, we can easily write the horizontal velocity profile in the gap between the sphere
and the interface, as:

v⃗ =
∇⃗p

2η
(z − h)(z − δ) + u⃗

z − h

h− δ
. (6)

The conservation of the fluid volume in the gap allows for the derivation of the Reynolds thin-film equation for the
system, which reads:

∂

∂t
(h− δ) = ∇⃗ ·

[
∇p

12η
(h− δ)3 +

u⃗

2
(h− δ)

]
. (7)

The deflection of the fluid interface is controlled by the Laplace pressure jump. Thus, at z = δ, one has:

p ≃ σ∇2δ + gδ(ρ− ρsl) , (8)

where we have assumed a small deformation of the interface and linearized the curvature.
Let us now non-dimensionalize the equations through:

d(t) = d∗D(T ) , h(r, t) = d∗H(R, T ) , r⃗ = lR⃗ , z = d∗Z , t =
l

c
T ,

v⃗(r⃗, z, t) = cV⃗ (R⃗, Z, T ) , u⃗(t) = cU(T )e⃗x , p(r⃗, t) =
ηcl

d∗2
P (R⃗, T ) , δ(r⃗, t) = d∗∆(R⃗, T ) ,

where c and d∗ represent characteristic in-plane velocity and gap-thickness scales, respectively, with l =
√
2ad∗

denoting the characteristic hydrodynamic radius. In dimensionless terms, the undeformed thickness profile and
Reynolds equation become:

H(R, T ) ≃ D(T ) +R2 , (9)

and:

∂

∂T
(H −∆) = ∇⃗ ·

[
∇P

12
(H −∆)3 +

U⃗

2
(H −∆)

]
. (10)

Besides, the deflection field ∆ is related to the excess pressure field P by the dimensionless version of the Laplace
equation, which reads:

∇2∆− Bo∆ = κP , (11)

where Bo = (l/lc)
2 denotes the Bond number, lc =

√
σ/[g(ρsl − ρ)] denotes the capillary length, and where we have

introduced the capillary compliance of the interface, denoted by:

κ =
ηcl3

σd∗3
. (12)

II. PERTURBATION ANALYSIS

As in previous studies regarding soft lubrication [23, 25, 27–29, 31, 32], we perform an asymptotic expansion of the
unknown fields at first order in dimensionless capillary compliance κ, as:

∆ ≃ κ∆1 +O(κ2) , (13)

P ≃ P0 + κP1 +O(κ2) , (14)

where κi∆i is the i-th order contribution to the deflection of the interface, and κiPi is the i-th order contribution to
the excess pressure field.
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A. Zeroth-order pressure

At zeroth order in κ, Eq. (10) reduces to:

Ḋ = ∇.

(
∇⃗P0

12
H3 + U⃗

H

2

)
. (15)

This equation is identical to the one for a perfectly rigid, flat and no-slip boundary. Since the zeroth-order pressure
field results from linear terms in velocity, we decompose it azimuthally, as:

P0(R⃗, T ) = P00(R, T ) + P01(R, T ) cos θ , (16)

with R and θ the horizontal polar coordinates of R⃗. Assuming a vanishing pressure field at large R, and that it must
remain finite and single-valued at R = 0, the equations can be solved to give the zeroth-order components of the
excess pressure field, as [7]:

P00 = − 3Ḋ

2(D +R2)2
, (17)

P01 =
6UR

5(D +R2)2
. (18)

B. Interface deflection

We now decompose the first-order deflection of the interface azimuthally, as:

∆1(R⃗, T ) = ∆10(R, T ) + ∆11(R, T ) cos θ . (19)

Writing Eq. (11) at first order in κ, one has:

1

R

∂

∂R

(
R
∂∆10

∂R

)
− Bo∆10 = P00 , (20)

and:

1

R

∂

∂R

(
R
∂∆11

∂R

)
− ∆11

R2
− Bo∆11 = P01 , (21)

with the boundary conditions ∆1i → 0 as R → ∞, and finite and single-valued ∆1i at R = 0. The solutions of the
above equations can be written in the most general form as:

∆10(R) = −I0(
√
BoR)

∫ ∞

R

K0(
√
Boξ)ξP00(ξ)dξ −K0(

√
BoR)

∫ R

0

I0(
√
Boξ)ξP00(ξ)dξ , (22)

∆11(R) = −I1(
√
BoR)

∫ ∞

R

K1(
√
Boξ)ξP01(ξ)dξ −K1(

√
BoR)

∫ R

0

I1(
√
Boξ)ξP01(ξ)dξ , (23)

where Ij and Kj denote the jth-order modified Bessel functions of the first and second kinds, respectively.
To understand the parametric influence of the Bond number Bo, we explore the behaviors of the interface deflection

for both small and large Bo values. For vanishing Bo, the anisotropic deflection component ∆11 reaches a limiting
behavior given by the following expression:

∆11 ≃ −3U

10

ln
(
1 + R2

D

)
R

. (24)

In contrast, the isotropic deflection component ∆10 does not show any limiting behavior at vanishing Bo, and a
reduction in Bo leads to an unbounded increase in ∆10. To understand the behavior of ∆10 as Bo → 0, we take
an asymptotic approach previously used in problems relating to capillary deformations [59–61]. The vanishing of Bo
allows for a scale separation in the radial coordinate R into: i) an inner region controlled by surface tension; and ii)
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an outer region, where gravity is present. In the inner region (R ≪ 1/
√
Bo), the interface deformation denoted by

∆i
10 satisfies:

1

R

∂

∂R

(
R
∂∆i

10

∂R

)
= P00 . (25)

The general solution of the above equation reads:

∆i
10 = A− 3Ḋ

8D
ln(D +R2) , (26)

where A is an integration constant. The far-field behavior of the inner solution reads:

∆i
10 ∼ A− 3Ḋ

4D
ln(R) . (27)

In the outer region (R ≫ 1/
√
Bo), gravity matters but there is no lubrication pressure, which leads to the following

governing equation for the interface deformation denoted by ∆o
10:

1

R

∂

∂R

(
R
∂∆o

10

∂R

)
− Bo∆o

10 = 0 . (28)

The latter equation is solved, along with the condition that the deflection vanishes at infinity, leading to:

∆o
10 = BK0(

√
BoR), (29)

where B is an integration constant. The near-field behavior of the outer solution reads:

∆o
10 ∼ −B

(
γ − ln 2 +

lnBo

2
+ lnR

)
, (30)

where γ is Euler’s constant. Matching Eq. (27) with Eq. (30) leads to:

A = −3Ḋ

4D

(
γ − ln 2 +

lnBo

2

)
, (31)

B =
3Ḋ

4D
. (32)

Substituting these constants in Eqs. (26) and (29), we find the matched asymptotes of the interface deflection at small
Bo. The interface deflection can then be approximated by the matched crossover expression:

∆10|Bo→0 ≈ 3Ḋ

4D

[
K0(

√
BoR) +

1

2
ln

(
R2

D +R2

)]
. (33)

The interface deflection is shown in Fig. 2 at a fixed low value of Bo. The crossover expression at small Bo described
above matches the exact one calculated using Eq. (22), with improving precision as Bo reduces. Figure 2 also shows
the inner and outer solutions, which diverge in the far and near fields, respectively.

The other interesting limit arises when Bo → ∞, leading to the curvature-related terms in Eq. (20-21) to drop out,
giving us:

∆10 = −P00

Bo
=

3Ḋ

2Bo(D +R2)2
, (34)

∆11 = −P01

Bo
= − 6UR

5Bo(D +R2)2
. (35)

As a consequence, the deflection is directly proportional to the pressure applied with κ/Bo = ηcl/[gd∗3(ρsl− ρ)] as an
effective compliance. From the latter, we see that in the limit of large Bo the surface tension no longer controls the
deformation. This large-Bo response is akin to the Winkler response for thin compressible elastic materials, which
has been studied previously [25, 27, 29, 32, 62].

Apart from these two extremes, further exploration on the influence of Bo can be done using Eqs. (22) and (23).
Figure 3 shows the isotropic and anisotropic profiles of the amplitude of the first-order interface deflection, for different
values of Bo. We see that capillarity leads to a long-ranged interface deflection whose range and magnitude both
decrease with increasing Bo.
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FIG. 2: Isotropic component ∆10 of the amplitude of the first-order interface deflection as a function of the
radial coordinate R (solid black line), as calculated from Eq. (22), for Bo = 0.01, D = 1 and Ḋ = 1. For
comparison, the inner solution (red solid line), the outer solution (blue solid line), and the matched crossover
expression (symbols), from Eqs. (26), Eq. (29) and (33) respectively, are also shown.

(a) (b)

FIG. 3: Isotropic component ∆10 (a) and anisotropic component ∆11 (b) of the amplitude of the first-order
interface deflection as a function of the radial coordinate R, as calculated from Eqs. (22) and (23), for D = 1,

various Bo as indicated, and for either Ḋ = 1 (a) or U = 1 (b). The black solid line denotes the limiting profile
for Bo = 0 in the anisotropic case, as given in Eq. (24).

C. First-order pressure

At first order in κ, the pressure field involves in particular the squared velocity, and can thus be decomposed as:

P1(R⃗, T,Bo, D) = P10(R, T,Bo, D) + P11(R, T,Bo, D) cos θ + P12(R, T,Bo, D) cos 2θ . (36)

The governing equations for the components P1i of the first-order magnitude P1 of the excess pressure field can be
derived by considering Eq. (10) at first order in κ. Since P12 is not needed to compute the forces and torques, we
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(a) (b) (c)

FIG. 4: Auxiliary functions ϕk (see Eq. (39)) of the isotropic component P10 of the first-order magnitude P1

of the excess pressure field, as functions of the radial coordinate R, for various Bond numbers Bo, as
obtained by numerically solving Eq. (37) with D = 1.

(a) (b)

FIG. 5: Auxiliary functions ϕk (see Eq. (40)) of the anisotropic component P11 of the first-order magnitude
P1 of the excess pressure field, as functions of the radial coordinate R, for various Bond numbers Bo, as
obtained by numerically solving Eq. (38) with D = 1.

restrict ourselves to the two following equations:

1

R

∂

∂R

(
RH3 ∂P10

∂R

)
=

1

R

∂

∂R

[
3RH2

(
∆10

∂P00

∂R
+

∆11

2

∂P01

∂R

)]
+ 3U

∂∆11

∂R
+ 3U

∆11

R
− 12

∆10

∂T
, (37)

1

R

∂

∂R

(
RH3 ∂P11

∂R

)
− H3

R2
P11 =

1

R

∂

∂R

[
3RH2

(
∆10

∂P01

∂R
+∆11

∂P00

∂R

)]
− 3H2∆10P01

R2
+ 6U

∂∆10

R
− 12

∆11

∂T
. (38)

Using the linearity of the equations above, the components of the pressure field can be expressed as follows:

P10 =
U2

D2
ϕU2 +

Ḋ2

D3
ϕḊ2 +

D̈

D2
ϕD̈ , (39)

P11 =
U̇

D
ϕU̇ +

UḊ

D2
ϕUḊ , (40)

where the ϕk represent the auxiliary functions for the corresponding second-order forcing parameters k, such as U2

etc. These functions can then be evaluated by numerically solving Eqs. (37-38) together with the above boundary
conditions. The results are shown in Figs. 4 and 5. For all components, as Bo increases, the magnitudes of the auxiliary
functions decrease due to the decreasing interface deflection. Interestingly, even though the deflection studied above
is long-ranged, the pressure field decays quite rapidly.
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III. CAPILLARY-LUBRICATION FORCES AND TORQUES

Since the zeroth-order forces and torques acting on the sphere are identical to the known ones for the motion
near a rigid, flat and no-slip boundary, we focus here on the first-order forces and torques acting on the sphere, and
resulting from the interface deflection. These can be calculated from the stress tensor Σ, that reads in the lubrication
approximation: Σ ≃ −pI+ ηe⃗z∂z v⃗, where I denotes the identity tensor. In dimensional units, the first-order vertical
force acting on the sphere can be evaluated as:

fz,1 ≃ 25/2πκηca3/2

d∗1/2

∫ ∞

0

P10(R)R dR , (41)

which can be decomposed using the auxiliary functions calculated before, as:

fz,1 ≃ αU2

η2u2a3

σd2
− αḊ2

η2ḋ2a4

σd3
+ αD̈

η2d̈a4

σd3
, (42)

where the αk (with i indicating here the forcing source, such as U2) are the prefactors of the respective scalings. These
prefactors are plotted in Fig. 6 as functions of Bo. An important difference arises between the various prefactors at
small Bo. Indeed the prefactor αU2 reaches a plateau, whereas αD̈ and αḊ2 increase logarithmically with decreasing
Bo. These asymptotic behaviors at small Bo can be calculated using Lorentz’ reciprocal theorem [43, 63, 64], by
invoking as well Eqs. (24) and (33), as detailed in Appendix and summarised in Tab. I. They are in agreement with
the numerical solutions, as shown in Fig. 6. Besides, as Bo increases, all the prefactors decrease, and this decrease
becomes inversely proportional to Bo in the large-Bo limit, highlighting the transition to the Winkler-like regime.
The corresponding asymptotic expressions have been calculated previously [32], are summarised in Tab. I, and are in
agreement with the numerical solutions, as shown in Fig. 6.

FIG. 6: Prefactors αk of the scalings of the vertical-force terms, defined in Eq. (42), as functions of Bond
number Bo. The solid and dashed lines correspond to the small- and large-Bo behaviors (see Tab. I),
respectively

Similarly, the horizontal force acting on the sphere is given by the expression [32]:

fx,1 ≃ 2πηcaκ

∫ ∞

0

[
−2RP11 −

H

2

(
∂RP11 +

P11

R

)
+

∆11

2
∂RP00 +

∆10

2

(
∂RP01 +

P01

R

)
− 2

U∆10

H2

]
RdR , (43)

which can be decomposed into:

fx,1 ≃ −βUḊ

η2uḋa3

σd2
+ βU̇

η2u̇a3

σd
, (44)
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where the βk (with i indicating here the forcing source, such as U̇) are the prefactors of the respective scalings. These
prefactors are plotted in Fig. 7 as functions of Bo. An important difference arises once again between the two prefactors
at small Bo. Indeed the prefactor βU̇ reaches a plateau, whereas βUḊ increases logarithmically with decreasing Bo.
These asymptotic behaviors at small Bo can be once again calculated using Lorentz’ reciprocal theorem, as detailed in
Appendix and summarised in Tab. I. They are in agreement with the numerical solutions, as shown in Fig. 7. Besides,
as Bo increases, all the prefactors decrease, and this decrease becomes inversely proportional to Bo in the large-Bo
limit, highlighting once again the transition to the Winkler-like regime. The corresponding asymptotic expressions
have been calculated previously [32], are summarised in Tab. I, and are in agreement with the numerical solutions, as
shown in Fig. 7.

FIG. 7: Prefactors βk of the scalings of the horizontal-force terms, defined in Eq. (44), as functions of Bond
number Bo. The solid and dashed lines correspond to the small- and large-Bo behaviors (see Tab. I),
respectively.

As shown in previous studies [29, 32], the contributions to the first-order torque felt by the sphere along the y-axis
have the same numerical prefactors as those for the first-order horizontal force, with the inclusion of a supplementary
length-scale factor a. Hence, the first-order torque exerted on the sphere is given by:

τy,1 ≃ βUḊ

η2uḋa4

σd2
− βU̇

η2u̇a4

σd
. (45)

We conclude this whole section by an important remark. The crossover from the capillary-dominated to the Winkler-
like regime occurs at Bo ∼ 1. This occurs when the hydrodynamic radius is comparable to the capillary length. Since
typical capillary lengths are on the order of ∼ 1 mm, and given the lubrication conditions, such a crossover can only
be felt with spheres of millimetric radii and above.

CONCLUSION

Using capillary-lubrication theory, scaling arguments and numerical integrations, we explored the asymptotic forces
and torques generated on a sphere in translational motion within a viscous fluid, in close proximity to a deformable
capillary interface with another, infinitely viscous fluid on the other side. Due to a symmetry between translational
and rotational motions in soft lubrication [32], our work immediately generalizes to the case where rotation would
be added. Specifically, by employing a perturbation analysis in the limit of small deformation of the fluid interface,
we calculated the pressure fields decomposed into their various contributions from different degrees of freedom of the
sphere. We investigated in particular the effects of gravity, which not only changes the scaling laws of the forces
and torques, but also show a Winkler-like elastic response at large Bond numbers. Altogether, our results allow to
quantify and possibly control soft-lubricated colloidal mobility near tensile interfaces – which are ubiquitous in soft
matter and biological physics.
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αk , βk Bo → 0 Bo → ∞

αU2 6π/25 96π/(125Bo)

αḊ2 −6π[2 + 6γ + 3 ln(Bo/4)] 144π/(5Bo)

αD̈ −9π[1 + 2γ + ln(Bo/4)] 12π/Bo

βUḊ −24π[4 + 10γ + 5 ln(Bo/4)]/25 968π/(125Bo)

βU̇ 36π/25 24π/(25Bo)

TABLE I: Asymptotic behaviours of the scaling prefactors αk and βk at small (see Appendix) and large
(see [32]) Bond numbers Bo, where γ denotes Euler’s constant.
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APPENDIX: LORENTZ RECIPROCAL THEOREM

In this appendix, we employ Lorentz reciprocal theorem for Stokes flows [43, 63, 64] in the limit of vanishing Bond
number Bo, which allows us to evaluate the asymptotic behaviors of the scaling prefactors αk and βk.

A: Vertical force

The model problem introduced to perform the calculation comprises a sphere moving in a viscous fluid and towards

an immobile, rigid, planar surface. We note
⃗̂
V⊥ = −V̂⊥e⃗z, the velocity at the particle surface while assuming a no-slip

boundary condition at the wall surface located at z = 0. The model problem is described by the incompressible Stokes’

equations, ∇ · Σ̂ = 0 and ∇ · ⃗̂v⊥ = 0, where Σ̂ denotes the stress tensor of the model problem and v⃗⊥ denotes the
corresponding fluid velocity. We invoke lubrication theory to obtain the corresponding pressure and velocity fields,
given by:

p̂⊥(r⃗) =
3ηV̂⊥a

ĥ2(r)
, (46)

v̂⊥(r⃗, z) =
∇p̂⊥(r⃗)

2η
z[z − ĥ(r)] , (47)

where:

ĥ(r) ≃ d+
r2

2a
. (48)
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From the Lorentz reciprocal theorem, one has:∫
S
n⃗ ·Σ · ⃗̂v⊥ ds =

∫
S
n⃗ · Σ̂ · v⃗ ds , (49)

where Σ and v⃗ denote the stress tensor and flow velocity for the real problem, with S denoting the entire bounding
surface, including the surface of the sphere, the surface of the substrate and the surface located at r⃗ → ∞. The unit
vector normal to the surface pointing towards the fluid is denoted by n. Given the boundary conditions of the model
problem, the above relation simplifies to give:

Fz = − 1

V̂⊥

∫
S
n⃗ · Σ̂ · v⃗ds . (50)

To approximate the velocity field at the wall surface, we perform a Taylor expansion accounting for the small defor-
mation of the wall, as:

v⃗|z=0 ≃ v⃗|z=δ − δ∂z v⃗0|z=0 , (51)

= −ue⃗x − ḋe⃗z + (∂t − u∂x)δe⃗z − δ∂z v⃗0|z=0 , (52)

where v⃗0 denotes the zeroth-order velocity field corresponding to a sphere moving near a rigid surface. Thus, the
leading-order normal force simplifies into:

Fz,1 ≃ − 1

V̂⊥

∫
R2

(p̂⊥(∂t − u∂x)δ + η∂z⃗̂v⊥|z=0 · ∂z v⃗0|z=0) dr⃗ . (53)

Computing the latter integral by considering the deflection δ (or ∆ in dimensionless variables) generated at vanishing
Bo allows us to recover the asymptotic expressions presented in Tab. I.

B: Horizontal force

The model problem consists here of a sphere translating with a velocity V̂∥e⃗x, parallel and near an immobile and
rigid substrate with no-slip boundary conditions applied at both the surfaces of the sphere and the substrate. A
similar treatment as in the previous section leads to:

p̂∥(r⃗) =
6ηV̂∥r cos θ

5ĥ2(r)
, (54)

⃗̂v∥(r⃗, z) =
∇p̂∥(r⃗)

2η
z[z − ĥ(r)] +

⃗̂
V∥

z

ĥ(r)
, (55)

and:

Fx,1 ≃ − 1

V̂∥

∫
R2

(p̂∥(∂t − u∂x)δ + η∂z⃗̂v∥|z=0 · ∂z v⃗0|z=0)dr⃗ . (56)

Computing the latter integral by considering the deflection δ (or ∆ in dimensionless variables) generated at vanishing
Bo allows us to recover the asymptotic expressions presented in Tab. I.
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