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Abstract
Purpose Themodernoperating room is becoming increasingly complex, requiring innovative intra-operative support systems.
While the focus of surgical data science has largely been on video analysis, integrating surgical computer vision with natural
language capabilities is emerging as a necessity. Our work aims to advance visual question answering (VQA) in the surgical
contextwith scene graph knowledge, addressing twomain challenges in the current surgicalVQAsystems: removing question–
condition bias in the surgical VQA dataset and incorporating scene-aware reasoning in the surgical VQA model design.
Methods First, we propose a surgical scene graph-based dataset, SSG-VQA, generated by employing segmentation and
detection models on publicly available datasets. We build surgical scene graphs using spatial and action information of
instruments and anatomies. These graphs are fed into a question engine, generating diverse QA pairs. We then propose SSG-
VQA-Net, a novel surgical VQA model incorporating a lightweight Scene-embedded Interaction Module, which integrates
geometric scene knowledge in theVQAmodel design by employing cross-attention between the textual and the scene features.
Results Our comprehensive analysis shows that our SSG-VQA dataset provides a more complex, diverse, geometrically
grounded, unbiased and surgical action-oriented dataset compared to existing surgical VQA datasets and SSG-VQA-Net
outperforms existing methods across different question types and complexities. We highlight that the primary limitation in
the current surgical VQA systems is the lack of scene knowledge to answer complex queries.
Conclusion We present a novel surgical VQA dataset and model and show that results can be significantly improved by
incorporating geometric scene features in the VQA model design. We point out that the bottleneck of the current surgical
visual question–answer model lies in learning the encoded representation rather than decoding the sequence. Our SSG-VQA
dataset provides a diagnostic benchmark to test the scene understanding and reasoning capabilities of the model. The source
code and the dataset will be made publicly available at: https://github.com/CAMMA-public/SSG-VQA.
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Introduction

Surgical data science is a rapidly growing field that aims
to streamline clinical workflows and enable the develop-
ment of real-time intra-operative decision-support systems
[1, 2]. Recent advancements in surgical video analysis, such
as surgical workflow phase recognition, fine-grained surgical
action detection and surgical semantic scene segmentation,
show evidence of the progress [3–5]. However, the scope of
these methods is confined as it mainly focus on visual-only
data to perform classification or recognition tasks, thereby
offering limited user interaction. The next generation of
surgical data science applications also demands approaches
operating at the crucial intersection of vision and language
to offer intuitive user interaction during intra-operative sur-
gical procedures. Surgical visual question answering (VQA)
is emerging as a notable solution in that direction, which
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Fig. 1 SSG-VQA dataset contains up to 50 complex visual reasoning questions, compared to 2 classification-based questions in the Cholec-VQA
[8]

aims to provide precise answers to user queries in a natural
language by analyzing a given surgical image [6–9].

Developing an effective surgical VQA system is inher-
ently challenging for a typical surgical scene, which contains
multiple anatomical structures and instruments connected
through diverse spatial and action relationships. While a
few works have explored VQA tasks in the surgical con-
text [8, 9], they are typically limited to datasets and models
that ignore detailed scene knowledge. From the dataset per-
spective, one key challenge is the lack of a dataset with
potentially a vast set of question–answer pairs covering var-
ious aspects of the surgical scene. The current surgical VQA
datasets are small and only consider simple scene infor-
mation, e.g., object/action occurrence, as shown in Fig. 1.
Moreover, these datasets contain question–answer pairs with
significant question–condition bias, where answers can be
derived from just the questionswithout performing anyvisual
processing. This hinders the utility of these datasets to serve
as appropriate surgical VQA benchmarks. From the model
perspective, the current surgical VQA architectures operate
on the global visual representation of the surgical image,
ignoring the detailed understanding of surgical scene knowl-
edge. This can be detrimental, especially when object-level
visual reasoning is essential to answer fine-grained questions.
Our key contributions are therefore twofold: the introduction
of a new surgical scene-awareVQAdataset called SSG-VQA
and a novel surgical VQA model called SSG-VQA-Net.

The SSG-VQAdataset uses a semantic scene graph [10] as
a suitable representation to generate diverse question–answer
pairs. A semantic scene graph representation provides scene
knowledge by detecting objects and their attributes and con-
necting relationships and interactions between objects in the
scene. To develop the surgical semantic scene graph, we use
publicly available datasets for semantic segmentation and
tool detection [11, 12], and apply these models to estimate
object spatial relationships. We then estimate the surgi-
cal action relationships, i.e., < instrument, verb, target >,
among the objects using the public CholecT45 dataset [3].

We then develop a surgery-specific question engine that
ingests the surgical scene graph and manually designed
question templates to produce a variety of question–answer
pairs. Including detailed surgical scene understanding along
with question templates helps us to generate question–
answer pairs covering various aspects of the surgical scene,
for example, fine-grained action recognition—“What is the
action being performed on peritoneum?”, semantic scene
reasoning—“What anatomy is at the top-mid of the frame?”,
and surgical object attribute reasoning—“What is the name
of the anatomy that is being retracted?”. Furthermore, we
perform the balancing and sampling strategies based on the
surgery-specific knowledge and class distribution to remove
the questions that contain question–condition bias, e.g.,
“How many livers are in the frame?” which counts the num-
ber of certain anatomical structures. The overall pipeline is
illustrated in Fig. 2.

Given a large-scale SSG-VQA dataset containing fine-
grained surgical question–answer pairs, we propose a multi-
modality surgical VQA model called SSG-VQA-Net. Exist-
ing surgical VQA models use a highly parameterized multi-
modality transformer encoder to fuse the textual embeddings
from a question and the patches from a global visual repre-
sentation of a surgical image [8, 9]. However, these patches
do not contain object-wise information about the surgical
scene, hence missing the geometric scene understanding.
Our key idea is to exploit object-wise local features and fuse
geometric scene information in the VQA model design. To
enable this, we train a fast and lightweight object detec-
tor, YOLOv7 [13], on the bounding box labels of the
SSG-VQA dataset. The trained object detector allows us to
extract object-wise local representations of the surgical scene
objects using RoIAlign pooling [14]. Furthermore, we inte-
grate the geometric spatial coordinates and class labels of
detected bounding boxes into the VQA model by introduc-
ing a lightweight multimodal transformer encoder named
the Scene-embedded Interaction Module (SIM). The SIM
uses a scene graph of detected bounding boxes where each
node contains the class label and bounding box coordinate
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Fig. 2 Pipeline of SSG-VQA construction. The dataset is constructed from the well-designed question engine, which takes the scene graph as input
and changes the parameters of question templates to generate diverse question–answer pairs

information. The scene graph is refined by cross-attention
between the scene graph and the textual inputs, highlighting
specific graph nodes correlated with the complex ques-
tion query. These refined text-aware scene embeddings are
then combined with the object-wise local representations
of the surgical scene and the textual embeddings through a
transformer encoder layer to generate an accurate response.
Experimental results show that ourmethod outperforms prior
workswhile achieving a lowparameter count.We summarize
our main contributions as follows:

• We present a new surgical scene graph-based VQA
dataset, SSG-VQA, providing complex, diverse, geomet-
rically grounded and surgical action-oriented question–
answers.

• We present a surgical VQA model, SSG-VQA-Net, uti-
lizing a novel scene-aware feature extraction strategy to
obtain state-of-the-art performance.

Methodology

SSG-VQA dataset

In this section, we explain the SSG-VQA dataset generation
process consisting of creating surgical scene graphs, design-
ing a question engine with diverse templates and employing
a sampling strategy to mitigate data imbalance and question–
condition bias.

Scene graph generation

We build our SSG-VQA dataset using the publicly available
CholecT45 [3], m2cai16-tool-locations [11] and Cholec-
Seg8k [12] datasets. Specifically, we train a tool detection
model [15] on m2cai16-tool-locations [11] and a semantic
segmentation model [16] on CholecSeg8k [12] to extract
bounding boxes of surgical objects, including surgical instru-

ments and anatomies. Then, we build the surgical semantic
scene graph using the detections. A surgical scene graph can
be formulated as a set of nodes and edges, where the nodes
represent surgical objects that contain a set of attributes,
i.e., color, location and type, and edges represent the spatial
and action relations among the objects. The spatial relations
are calculated by comparing the centroid of objects, and the
action relations are provided by the triplet annotations from
CholecT45 [3]. Then,we leverage the generated scene graphs
as input to a question engine, as described below, to gener-
ate diverse question–answer pairs. Note that to create a clean
test set of question–answer pairs, we manually correct the
bounding boxes and class labels of scene graphs in the test
videos.

Question engine

The question engine, which is responsible for generat-
ing diverse questions with various categories, requires two
inputs, i.e., scene graph and question templates. We use the
CLEVR engine [7, 17] and extend it to the surgical context.
Specifically, the question engine can change question tem-
plates’ parameters conditioned on the surgical scene graph to
express diverse questions. For example, the question “what is
the tool to the left of yellow anatomy?” can be formed by the
template “what is the tool <R> <C> <L> <T>?”, by replac-
ing the parameters <R>, <C>, <L> and <T> into “to the
left of,” “yellow,” “null” and “anatomy.” The questions are
parameterized by five parameters, namely <C> (color), <L>
(location), <T> (type), <N> (name) and <R> (relationship).
In total, there are 40 question templates containing differ-
ent types of questions, such as querying object (e.g., “what
is the name of instruments to the left of the gallbladder?”),
querying attribute ( e.g., “there is an object that is both to the
left of the yellow thing and below the brown anatomy; what
is its location?”), querying relation (e.g., “what is the action
being performed?”), confirming existence (e.g., “is there a
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bipolar in the top-mid location?”) and counting (e.g., “how
many instruments are in the bottom right?”).

Generated questions also fall into three categories depend-
ing on their complexity: zero-hop, one-hop and single-and.
Each requires different visual reasoning steps to resolve.
Specifically, solving these three types of questions involves
the understanding of relations between zero, one or two sur-
gical objects, respectively. Examples from each category are
provided in supplementary material. The question engine
allows us to freely control the complexity, length and number
of questions per image.

Sampling and balancing

Here, we introduce the applied strategies to reduce the effect
of class imbalance and question–condition bias during SSG-
QA dataset construction. Surgical VQA is a multi-choice
task, which mainly includes questions about the surgical
objects. Therefore, an imbalance in the occurrence of surgical
objects could lead to an imbalance in their class distribu-
tion. To address that, we sample the frame amounts based
on the surgical phase presence labels from the Cholec80
dataset, instead of sampling evenly like Cholec80-VQA [8].
The criteria for including or excluding frames from our
dataset is based on achieving a balanced distribution of phase
labels. First, we identify overrepresented phases, marked
by a redundant of frames. We then mitigate the imbalance
by excluding frames from these overrepresented phases,
such as “preparation” and “Calot triangle dissection.” The
process continued until the dataset achieved a state of bal-
ance that we reach a predetermined, nearly equal number
of frames across all phases. Also, to address the question–
condition bias that the information is leaked out from poorly
formulated questions, we consult the clinical expert and
remove the question templates thatmay contain the question–
condition bias, e.g., “how many livers are there?” which
would have answer = 1 for all the cases. Then, these tem-
plates are excluded for question–answer generation, avoiding
the question–condition bias. Since our SSG-VQA dataset is
based on surgical scene graphs, we ask experts to manually
review our dataset’s surgical scene graphs for the testing set,
ensuring the generated questions and answers are accurate for
the evaluation. Also, we consult the experts and design the
rules for the question engine to eliminate poorly formulated
questions. For example, it does not generate the counting
questions when the ground truth answer is related to the
anatomy. Therefore, we can eliminate the questions, such as
“What is the location of the < N >?” with<>=gallbladder
when there is no gallbladder in the scene. These processing
strategies prevent question–condition bias and avoid gener-
ating degenerate question–answer pairs. The overall pipeline
is shown in Fig. 2.

SSG-VQA-Net

Pipeline

Here, we explain the pipeline of SSG-VQA-Net. Given the
textual form of a question, we first extract textual embed-
dings of questions using a pretrained tokenizer [8], denoted
as T = {t1, . . . tK }. From the surgical scene image,we extract
a featuremap using theResNet18 [18] visual backbone. Then
we use a trained object detector, YOLOv7 [13], to detect the
surgical objects and extract N object-wise visual embeddings
using RoIAlign pooling, denoted as V = {v1, . . . vN }. The
object detector is trained on the bounding boxes of surgical
objects from the SSG-VQA training dataset.

We build the scene embeddings using the detected surgi-
cal objects’ information. Specifically, we initialize the graph
nodes as a concatenation of objects’ class labels and spa-
tial coordinates, as shown in Fig. 3. These low-dimensional
embeddings are projected using a linear layer, called Scene
Encoder, to match the dimensionality of textual embeddings.
These scene embeddings S = {s1, . . . sN } are then passed
through our proposed Scene-embedded Interaction Module
(SIM), explained below, to obtain text-aware scene embed-
dings (Sr ). These text-aware scene embeddings (Sr ) are then
concatenated with the visual embeddings (V ) and the textual
embeddings (T ) and passed through a self-attention-based
transformermodule. Finally, features are average-pooled and
mapped to a predefined answer set to generate the output
answer.

Scene-embedded Interaction Module

In SSG-VQA-Net, initial scene embeddings S capture global
surgical scene semantics. To handle complex questions that
require localized focus, we introduce a lightweight Scene-
embedded Interaction Module (SIM). The main objective
of SIM is to correlate the textual embeddings with the
scene embeddings. SIM consists of two interaction lay-
ers. Each layer comprises self-attention, cross-attention and
feed-forward sub-layers, as shown in Fig. 4. The attention
mechanism is defined as:

Attention(Q, K , V ) = softmax

(
QKT

√
dk

)
V , (1)

where the Q is the short for query, K is key and V is value.
In SIM, we first apply cross-attention, Sr =

Cross-Attention(S, T , T ), to the textual and scene embed-
dings by processing textual embeddings T as key and value,
and scene embeddings S as the query. This results in refined
scene embeddings, which incorporate textual cues. Then, the
refined scene embeddings are passed to the self-attention
layer, Sr = Self-Attention(Sr , Sr , Sr ), to interact with them-
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Fig. 3 Pipeline of the SSG-VQA-Net. It requires three types of inputs,
textual, visual and scene knowledge. The textual and scene embeddings
are fed into the SIM and generate refined scene embeddings. The visual
embeddings are generated from the RoIAlign. Finally, we concat them

to feed into the self-attention transformer to get the final answer. Here,
G, H, A and L represent class labels; x1, y1, x2 and y2 represent bound-
ing box coordinates (G: gallbladder, H: hook; A: abdominal wall cavity;
L: liver)

Fig. 4 Scene-embedded Interaction Module. It is a stack of layers of cross-attention and self-attention. The cross-attention modulates the scene
embeddings based on the text queries, while the self-attention refines the scene embeddings

selves. By interacting with the textual embeddings and the
scene embeddings,we obtain the textual-aware scene embed-
dings Sr . Through our ablation experiments, we show that the
Sr significantly contributes to providing correct answers to
fine-grained questions.

Results and discussions

Dataset comparison

SSG-VQA dataset contains the same train and test set videos
as CholecT45 [3] dataset, which contains 40 laparoscopic
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Table 1 Dataset statistics
comparison

Dataset EndoVis-18-VQA [8] Cholec80-VQA [8] SSG-VQA

#Surgical Scenes 2k 21k 25k

#Questions 11k 43k 960k

#Unique Questions 17 51 501k

Average Length in words 5.8 2.0 12.8

Average #Questions per scene 5.0 6.5 38.9

We show that our dataset is more challenging and balanced as it includes more attributes and complexities in
the questions

Table 2 Identification of question–condition bias in existing datasets

Methods Endovis-VQA [8] Cholec80-VQA [8] SSG-VQA

Accuracy Recall F-score Accuracy Recall F-score Accuracy Recall F-score

L+Bert [19] 57.5 45.9 36.3 83.3 29.3 24.4 51.7 36.2 50.0

L+SciBert [20] 55.8 45.1 36.9 83.3 29.3 24.4 52.4 36.9 49.4

L+ClinicalBert [21] 60.4 50.7 40.8 83.1 29.4 24.4 52.3 35.4 49.9

VisualBert [22] 61.9 41.2 33.4 89.7 62.9 63.3 55.0 42.5 54.8

VisualBert Resmlp [22] 63.2 39.6 33.6 89.8 62.7 63.4 58.7 44.8 57.7

The best results are marked in bold
We use the accuracy, recall and F-score metrics from SurgicalVQA [8]. Endovis-VQA contains significant question–condition bias because the
language model with pure language inputs can outperform the model with vision and language inputs

cholecystectomy videos for training and 5 videos for testing.
Our SSG-VQA dataset contains 960k questions from 25k
surgical scenes. Table 1 presents the comparison between
SSG-VQA and the typical datasets from prior work, i.e.,
EndoVis-18-VQA and Cholec80-VQA from [8], showing a
8× and 22× increase in number of questions, respectively.
Also, our SSG-VQA dataset contains more diverse questions
per scene (38.9 vs. 6.5) and much longer questions (12.8
words vs. 5.8 words). Furthermore, SSG-VQA contains a
wider range of categories for object attributes, names and
inter-object relationships, as shown in “Supplementarymate-
rial.” Also, compared to the Cholec80-VQA dataset which
provides 51 questions for all surgical scenes, our SSG-VQA
has more diverse questions (501k) that are unique to surgical
scenes, which prevents the model from overfitting to specific
question patterns.

Question–condition bias

VQA systems can exploit the question–condition bias from
the dataset as a shortcut to answer questions without under-
standing the visual scenes. To quantify this bias, we train
language-only models like ClinicalBert [21] to answer the
questions without any visual information on existing VQA
datasets, such as EndoVis-18-VQA and Cholec80-VQA, and
on our SSG-VQAdataset. As shown in Table 2, the language-
only model ClinicalBert outperforms the vision language
multimodal models in EndoVis-18-VQA, suggesting the
questions from EndoVis-18-VQA contain simple shortcuts
to the correct answer. Cholec80-VQA and SSG-VQA have a

Table 3 Comparison results for baselines and our models

Models Accuracy mAP Recall F-score

L+ClinicalBert 52.3 40.4 35.4 49.9

VisualBert [22] 55.0 47.9 42.5 54.8

VisualBert Resmlp [8] 58.7 51.8 44.8 57.7

SurgicalGPT (RN18) [9] 57.5 49.4 43.8 56.8

SSG-VQA-Net 60.7 54.9 49.1 60.3

SSG-VQA-Net (Oracle) 62.8 56.3 50.6 62.3

The best results are marked in bold
The SSG-VQA-Netwith scene knowledge achieves the best results. The
SSG-VQA-Net (oracle) model refers to the model that uses detection
labels from the SSG-VQA dataset to construct the scene embeddings
instead of using the trained YOLOv7 object detector

lower bias as their questions are more vision-relevant. SSG-
VQAfurther reduces bias by using scene graph-based diverse
questions. In the following, we perform the experiments on
the Cholec80-VQA and SSG-VQA dataset due to their low
question–condition bias (Tables 3 and 4).

Detection and segmentationmodels

We train YOLO model on m2cai16-tool-locations dataset
andDeepLabmodel onCholecSeg8Kdataset to construct the
SSG-VQA dataset. Specifically, we apply the trained mod-
els on the CholecT45 dataset to generate pseudo labels, i.e.,
segmentations for the anatomy and the bounding boxes for
the tools. The segmentation outputs are further converted to
the bounding boxes. We use these bounding boxes to con-
struct the scene graphs and generate the question–answer
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Table 4 Breakdown results of the prior models and our models

VisualBERT [22] VisualBERTMLP [8] SSG-VQA-Net SSG-VQA-Net (oracle)

Query object 39.4 38.4 48.0 55.4

Query attribute 51.7 54.5 54.8 60.2

Existence 68.0 76.4 73.9 72.7

Counting 24.5 29.6 36.9 24.2

Zero-hop 50.4 53.2 56.6 55.0

One-hop 46.4 46.2 50.3 51.9

Single-and 23.4 30.9 39.0 41.4

The best results are marked in bold
We show that our model outperforms the baselines by a large margin, especially on the complex questions that require visual reasoning. Also, the
results on a different set of questions show that our dataset is not dominated by one type of question. We report the mAP here

Table 5 Performance of the detection and segmentation models that we use for SSG-VQA dataset construction

Metrics

(a) The performance of the detection model that we use to construct SSG-VQA dataset.
We report the instrument detection performance of the trained detection model

Precision 0.9521

Recall 0.9358

Class Abdominal cavity Liver Gut Omentum Gallbladder Cystic Duct

(b) The performance of the detection model that we use to construct SSG-VQA dataset. We report the dice over the anatomical classes

Dice 0.8477 0.9422 0.4369 0.8658 0.7436 0.0146

pairs. As shown in Table 5b, we find that the trained YOLO
model is adept at detecting surgical instrument objects. The
model demonstrates high precision, suggesting a low rate
of false positives. This efficiency in detecting instruments
shows the model’s strength to construct high-quality SSG-
VQA dataset. Also, as shown in Table 5b, the segmentation
model trained onCholecSeg8K can segment various anatom-
ical objects, including the abdominal wall cavity, liver, gut,
omentum, gallbladder and cystic duct. It demonstrates the
segmentation model’s ability to accurately segment most
of the anatomy classes. However, a notable exception was
observed in the segmentation of the cystic duct.

Results of SSG-VQA-Net

Results on SSG-VQA

Comparison to other works. As shown in Table 3, SSG-
VQA-Net outperforms baseline models like VisualBert [22]
and VisualBert Resmlp [8] in metrics such as mAP, recall
and F-score. We also train an upper bound model, called
SSG-VQA-Net (oracle), that uses the scene embeddings from
detection labels of the SSG-VQA dataset instead of using
the trained YOLOv7 object detector. This model outper-
forms prior works significantly, emphasizing the importance
of high-quality scene embedding inputs. Additionally, we
train the SurgicalGPT on our SSG-VQA dataset to show the

effect of a strong language decoder. Specifically, we fix the
feature extraction process of SurgicalGPT to be the same as
VisualBert, ensuring fair comparison. Our model achieves
superior results, demonstrating the feature extraction process
and additional scene graph knowledge are more beneficial
than sequence decoding.

Analysis by question type. As shown in Table 4, SSG-
VQA-Net can handle various question types. For “counting”
questions, it outperforms VisualBert by 7.3 points in mAP.
For “existence” and “query object” types, the model again
shows superior performance w.r.t to baseline models.

Analysis by complexity. SSG-VQA dataset provides the
diagnostic setup to pinpoint the weakness of the model. As
shown in Table 4, we compute the performance of ourmodels
on questions that require different visual reasoning complex-
ity, i.e., zero-hop and one-hop, and single-and. Our model
shows consistent gains in both simple and complex ques-
tion queries. For one-hop and single-and type of questions,
SSG-VQA-Net achieves a 4.1 and 8.1 point mAP increase
over VisualBERT ResMLP, respectively. This indicates that
the inclusion of scene context can aid in resolving complex
queries.

Results on Cholec80-VQA

We also conduct the experiments on the other publicly avail-
able surgical VQA dataset Cholec80-VQA. As illustrated in
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Table 6 Results on the
Cholec80-VQA

#Parameter Accuracy Recall F-score

VisualBert [22] 209.8M 89.7 62.9 63.3

VisualBert Resmlp [8] 184.7M 89.8 62.7 63.4

SurgicalGPT (RN18) [9] 234.5M 87.5 57.5 57.9

SurgicalGPT (ViT) [9] 309.5M 92.3 68.3 69.6

SurgicalGPT (Swin) [9] 312.5M 94.3 73.4 74.4

SSG-VQA-Net 145.3M 90.6 64.4 63.7

The best results are marked in bold
SSG-VQA-Net achieves better results than the state-of-the-art models, evenw.r.t SurgicalGPT, which contains
a heavy sequence decoding module of GPT-2

Table 7 Effect of different modules

SIM ROI Accuracy mAP Recall F-score

× × 55.0 47.9 42.5 54.8

� × 57.1 51.0 47.2 56.1

× � 58.8 52.5 47.9 57.7

� � 60.7 54.9 49.1 60.3

The best results are marked in bold
RoIAlign pooling boosts results, and the Scene-embedded Interaction
Module further enhances them.Bothmodules offer complementaryben-
efits

Table 6, SSG-VQA-Net significantly outperforms the Surgi-
calGPT [9], which requires heavy sequence decoding using
GPT-2 architecture. This highlights that the bottleneck of
the current surgical VQA problem lies in the visual scene
understanding instead of text generation. Also, even using
YOLOv7 for object detection, our model achieves higher
performance with fewer parameters than prior works, ver-
ifying its efficiency while maintaining higher performance
metrics.

Our final model, SSG-VQA-Net, uses ResNet18 as its
backbone instead of higher-capacity ViT and Swin Trans-
formers to balance the performance and the efficiency.
As shown in Table 6, SSG-VQA-Net significantly reduces
parameter count by about half compared to ViT and Swin
versions of SurgicalGPT, while still delivering strong results.

Ablation study

Table 7 shows that combining both the Scene-embedded
Interaction Module (SIM) and RoIAlign (ROI) pooling sig-
nificantly boosts the model’s performance. This suggests
that these modules are not just individually beneficial but
are actually complementary. Specifically, the model attains
the highest mAP (54.9%) when both components are added.
Also, the improvement indicates that introducing scene
knowledge representation learning is crucial for robust sur-
gical visual question answering.

Conclusion

In this paper, we tackle the problem of visual question
answering (VQA) in the context of fine-grained surgical
scene understanding. First, we introduce a new dataset called
SSG-VQA, which uses a surgical scene graph as an underly-
ing representation and a question–answer generation engine
to generate diverse, geometrically grounded and surgical
action-oriented question–answer pairs. The question–answer
pairs are also sampled to mitigate the question–condition
bias that exists in the current surgical VQA datasets. We also
propose a novel model called SSG-VQA-Net to explicitly
incorporate scene knowledge and object-wise local features
in the VQA model design to improve the reasoning ability
on complex questions. The results show that SSG-VQA-Net
outperforms existing baseline models by a large margin.
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