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Equilibrium sampling of the configuration space in disordered systems requires algorithms that
bypass the glassy slowing down of the physical dynamics. Irreversible Monte Carlo algorithms
breaking detailed balance successfully accelerate sampling in some systems. We first implement
an irreversible event-chain Monte Carlo algorithm in a model of continuously polydisperse hard
disks. The effect of collective translational moves marginally affects the dynamics and results in a
modest speedup that decreases with density. We then propose an irreversible algorithm performing
collective particle swaps which outperforms all known Monte Carlo algorithms. We show that these
collective swaps can also be used to prepare very dense jammed packings of disks.

Sampling the Boltzmann distribution in dense fluids
becomes a formidable computational problem as the glass
transition is approached at large density or low temper-
ature [1]. If conventional methods such as molecular dy-
namics or local Monte Carlo algorithms are used [2–4],
the rapidly growing timescale characterizing the glassy
dynamics also controls the sampling efficiency [5]. The
microscopic mechanisms responsible for the dynamical
slowing down continue to elude our understanding [6].
This represents a fascinating physics problem, but consti-
tutes a major obstacle to the development of algorithms
that can efficiently shortcut the slow dynamics to reach
and study equilibrium states close to the glass transition.
Glass-formers are a challenging benchmark for systems
exhibiting a complex and rugged energy landscape, even
far beyond the realm of the physical world [7–10].

Recently, an efficient Monte Carlo algorithm was de-
veloped for size polydisperse fluids, where local Monte
Carlo moves are performed in an enlarged configuration
space composed of particle positions and diameters [11–
13]. The sequential swap of particle pairs respect detailed
balance and ensures that the particle size distribution
is conserved [11]. The resulting Swap Monte Carlo al-
gorithm (hereafter called ‘Swap’) allows equilibration at
very low temperatures, exploiting dynamic pathways un-
available to the local dynamics [13]. Swap paved the way
for numerous physical studies [14–16] and computational
developments [17, 18]. Diameter dynamics can be imple-
mented in molecular dynamics, both in thermal equilib-
rium [19] or in gradient descent [20, 21]. For hard parti-
cles, this optimisation strategy was exploited to produce
jammed packings with large stability and novel physical
properties [21–23].

The Swap algorithm samples the Boltzmann distribu-
tion owing to reversible evolution rules obeying detailed
balance. In many areas of physics and applied mathe-
matics, it was realized that giving up detailed-balance–
while preserving the target distribution–can be rewarded

with sampling acceleration. Ironically, the seminal 1953
article [24] by Metropolis et al. presented an algorithm
to sample the Boltzmann distribution for simple fluids
whose elementary moves did not, strictly speaking, sat-
isfy detailed balance. As long as the global balance con-
dition is satisfied by the transition rates, the target dis-
tribution is correctly sampled, even if dynamic pathways
again become unphysical.

In specific instances, it can be proved that irreversible
algorithms carry out their sampling task faster than in
equilibrium [25, 26]. A successful implementation of
these ideas for particle models is the event-chain Monte
Carlo (ECMC) algorithm [27] that also operates in an
enlarged configuration space where irreversible collective
particle translations are performed. For hard disks near
their hexatic ordering transition, ECMC offers a two or-
ders of magnitude speedup that led to a better under-
standing of the phase diagram [28]. This approach was
extended in various directions [29–36], but quantitative
benchmark in dense disordered states is lacking.

Here we propose, implement and benchmark irre-
versible Monte Carlo algorithms where collective and
directed particle translations and diameter swaps are
performed while maintaining global balance, see Fig. 1.
We carefully test the respective and combined effects
of these moves in a continuously polydisperse models
of hard disks displaying glassy dynamics in equilibrium,
and that can be compressed towards jamming [23]. We
find that the directed translational moves used in ECMC
marginally affect the dynamics, with a speedup that
plummets with increasing density. By contrast, irre-
versible collective swaps (named ‘cSwap’) produce an op-
posite trend offering a comfortable gain over Swap that
improves with density. Combining both types of moves
in a novel algorithm (named ‘cSwapECMC’) provides an
overall computational speedup reaching about 40 over the
conventional Swap. In addition, cSwapECMC remains
extremely efficient during nonequilibrium compressions,
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FIG. 1. (a, b) Event-chain Monte Carlo algorithm: the lifted
set of degrees of freedom, the active label j and the speed di-
rection v (magenta), produce a directed translational motion
of a chain of three particles. (c, d) Collective Swap algorithm:
the active particle (in magenta) inflates while other particles
deflate, resulting in a directed motion in diameter space (as
seen at the bottom) and a collective swap of five particles.

producing jammed packings comparable to gradient de-
scent protocols preserving the particle size distribution.

We consider a two-dimensional mixture of N = 1024
hard disks in a periodic square box of linear size L
with a fixed continuous polydispersity of about 25% (see
SM [37] for results on a different polydisperse model and
different system sizes). Lengths are measured in units
of the average diameter σ, and the packing fraction is
ϕ = Nπσ2/(4L2). We work in a density regime charac-
terized by glassy dynamics, typically much beyond the
one explored in [27] for monodisperse systems.

We runNV T Monte Carlo simulations [3]. To compare
the efficiency of various algorithms, we need to carefully
define a specific unit of time, tmove, adapted for each
case. In Metropolis Monte Carlo (MMC) dynamics, a
random particle is selected uniformly, and a random dis-
placement is uniformly drawn from a square of length δ
centered around the origin. We take δ = 0.115σ. The
displacement is accepted if it creates no overlaps. One
such attempt defines tmove. In Swap, we randomly al-
ternate translational moves (as in MMC) with particle

swaps with probability pswap = 0.2. During tmove, two
particles are randomly selected and their radii are ex-
changed if the swap does not create overlaps.

In both MMC and Swap, a configuration is specified
by C = {rN , σN}, encoding the N particle positions and
diameters. For ECMC, the phase space is lifted by two
additional degrees of freedom, corresponding to the la-
bel i of the active particle performing directed motion,
and its direction of motion v. During a time interval
tmove, particle i travels along direction v until it collides
with one of its neighbors, j. The activity label is then
updated from i to j. After a time ntmove, with n an
integer, a directed chain of n particles has moved in di-
rection v, see Fig. 1. To warrant ergodicity, both v and
the activity label are uniformly resampled after the to-
tal directed displacements add up to a fixed total length
ℓ (see SM [37] for more details on the numerical imple-
mentation). Following the original choice [27, 38], v is
uniformly resampled from {ex, ey}. Of course, ECMC
can be combined with Swap, which trivially leads to a
new algorithm, ‘SwapECMC’.

We now show how to perform directed, irreversible,
collective moves in diameter space to arrive at cSwap.
We define a one-dimensional array containing the parti-
cle labels in order of increasing diameters and the opera-
tors (L,R) acting on the labels: L(i) returns the label of
the particle immediately to the left of i (with a smaller
radius); R(i) returns the label of the particle to the right
(with a larger radius). During tmove we perform the fol-
lowing operations. A particle i is uniformly selected to
become active and the state of the system is described by
C = {rN , σN , i}. We then determine the largest diame-
ter σj ∈ σN that particle i can adopt without generating
an overlap. To preserve the particle size distribution,
we now perform a cascade of swaps: σi ← σj (maxi-
mal authorized expansion of i), followed by a series of
incremental deflations σj ← σL(j), σL(j) ← σL2(j), . . .,
σLn(j) ← σi, with n such that Ln(j) = R(i), thus com-
pleting the cascade. Finally, a lifting event occurs lead-
ing to C′ = {rN , σ′N ,L(i)}, where σ′N is reached after
the collective swap. If i is the particle with the small-
est diameter, L(i) is the particle with the largest diame-
ter. To warrant ergodicity, we perform with probability
1/N a uniform resampling of the lifting label. Finally,
ECMC can be combined with cSwap, leading to a fully
irreversible algorithm, ‘cSwapECMC’. The invention and
implementation of irreversible and collective swap moves
is our main algorithmic development. While cSwap is
broadly applicable for any particle size distribution, its
efficiency should be optimal for continuous distributions,
or discrete ones with a large number of families. For
bidisperse models, cSwap remains rejection-free and irre-
versible, but loses its collective character.

We must prove that the stationary state of the
cSwap dynamics is the Boltzmann distribution, i.e.
πss

(
{rN , σN , i}

)
= πB(r

N , σN )ν(i), where πB =
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FIG. 2. Equilibrium relaxation time of six different Monte
Carlo algorithms as a function of packing fraction. MMC and
the faster ECMC fall out of equilibrium much before the four
swap algorithms. The large speedup offered by Swap can be
further improved using irreversible MC moves, cSwapECMC
providing a further speedup of about 40 near ϕ = 0.88.

[
∫
dσ′NπB(rN , σ′N )]−1 ≡ Z−1 is the Boltzmann distri-

bution for a system of polydisperse hard disks for a fixed
set of positions rN , and ν(i) = N−1 is the uniform distri-
bution for lifting. Denoting by p(C → C′) the transition
probability from C = {rN , σN , i} to C′ = {rN , σ′N , i′},
we must prove that the stationarity condition

∑

C′

πss(C′)p(C′ → C) = πss(C) (1)

is satisfied by πss = πB/N . The left-hand side is decom-
posed into label resampling and collective swaps:

p(C′ → C) = 1

N2
δσ′N ,σN +

(
1− 1

N

)
δC′,C∗ , (2)

where C∗ is the configuration reaching C after a cSwap
move (we show below that C∗ exists and is unique). Sub-
stituting (2) into (1), using the definition of πss and∑

C =
∑
j

∫
dσN , we get

1

N
πB

(
rN , σN

)
+

(
1− 1

N

)
πB

(
rN , σ∗N)

= πB

(
rN , σN

)
.

Since for hard disks, πB is uniform over allowed config-
urations, stationarity is proven. Finally we construct
the configuration C∗ =

{
rN , σ∗N , i∗

}
that will reach

C =
{
rN , σN , i

}
. We first transform σR(i) ← σR2(i) if the

change does not generate any overlap. We then repeat
this operation for R2(i), R3(i), etc. After n iterations,
either the transformation σRn(i) ← σRn+1(i) is no longer
allowed, or the largest particle is reached. When n is
reached, we set i∗ = Rn(i) and transform σRn(i) ← σR(i).
The resulting configuration defines σ∗N , as directly veri-
fied by performing a cSwap move on C∗.

The above reasoning establishes the stationarity of the
Boltzmann distribution. The general proof of ergodicity
of the algorithm, as obtained for ECMC [39], is left for
future work. As a test, we computed the stochastic ma-
trix associated to the cSwap algorithm for a small system
of N = 4 hard disks (see [37]) and analytically confirmed
ergodicity in that case. For larger systems, we support
our claim of ergodicity by extensive numerical tests of
correct sampling using cSwap, as compiled in SM [37].

We run simulations comparing MMC, ECMC, Swap,
SwapECMC, cSwap and cSwapECMC for increasing
packing fractions. After careful equilibration, we mea-
sure a representative time correlation function for 2d
glass-formers, namely the time autocorrelation of the
global hexatic order Cψ(t), and define the structural re-
laxation time τα from Cψ(τα) = 1/e [37]. For each al-
gorithm, we collect the evolution of the correlation time
τα(ϕ) measured in units of Ntmove in Fig. 2. The most
costly part of Monte Carlo moves is the overlap detection
involving a sum over neighbors. Since one such sum is
needed over the time tmove in each algorithm, the com-
parison in Fig. 2 accurately describes CPU times [37].

Each algorithm displays hallmarks of glassy dynam-
ics, and we follow for about 5 decades the slowing down.
The algorithms are split into two families, depending on
the presence of swap moves. MMC and ECMC only
contain translations and equilibration becomes difficult
above ϕ ≈ 0.79. Yet, ECMC clearly outperforms MMC
throughout the entire density range, but the edge of
ECMC over MMC is lost as ϕ increases. This is demon-
strated in Fig. 3(a), which shows that the ratio of their
relaxation times decreases from ≈ 22 in the fluid, down
to ≈ 10 near ϕ = 0.79. This suggests that the irreversibil-
ity introduced by the directed chain moves does not help
the system to discover new, faster pathways across con-
figuration space. This interpretation is confirmed by the
snapshots in Figs. 3(b, c) showing particle displacements
with respect to the system’s center of mass from the same
initial condition, using either MMC or ECMC. Despite
the very different particle moves in both dynamics, the
long time relaxation proceeds along a similar path. A
similar conclusion was recently reached for systems sub-
mitted to transverse forces [40].

By constrast, the four algorithms employing particle
swaps sample the Boltzmann distribution much faster
than MMC and ECMC and only become inefficient near
ϕ ≈ 0.88, see Fig. 2. All algorithms thus display a dra-
matic speed up compared to MMC and ECMC. Using
Swap as a reference, we again observe that the intro-
duction of translational chains in SwapECMC provides
a modest acceleration over conventional Swap of about 5
at ϕ = 0.77, decreasing to about 2 at the largest density
(see Fig. 4). Therefore, coupling Swap to ECMC is not
very helpful. The situation is more favorable when col-
lective swap moves are introduced, as the speedup offered
by the irreversibility in cSwap now grows with density,
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FIG. 3. (a) The speedup offered by ECMC over MC decreases
with density. (b, c) Comparison of the displacement field
relative to the center of mass after a time comparable to the
relaxation time starting from the same initial condition at ϕ =
0.79 using MMC (t = 4.6 × 106Ntmove) or ECMC (t = 2.2 ×
105Ntmove). Despite different dynamic rules, both algorithms
follow similar dynamic pathways.

as demonstrated in Fig. 4, to reach a factor about 10
near ϕ = 0.88 over Swap. These results suggest that it is
useful to combine cSwap and ECMC into cSwapECMC,
where both translational and diameter moves are now
collective and irreversible. Getting the best of both types
of moves, cSwapECMC now offers a comfortable speed
up over Swap that increases from 10 to about 40 at the
largest packing fraction studied, clearly outperforming
the swap Monte Carlo algorithm.

An interesting avenue for our algorithms is the pro-
duction of jammed disk packings, which are typically
produced using specific nonequilibrium compression pro-
tocols [41, 42]. Using conventional MMC for compres-
sions, the jamming packing fraction ϕJ can be reached
using NPT Monte Carlo. The simplest protocol starts
from an equilibrium hard disk configuration at ϕinit, be-
fore suddenly turning the pressure to infinity [43]. At
long times, the packing fraction saturates to a value ϕJ ,
which is an increasing function of ϕinit [44]. This is con-
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FIG. 4. Acceleration provided by three novel algorithms
(SwapECMC, cSwap, cSwapECMC) with respect to conven-
tional swap Monte Carlo. In cSwapECMC, the combination
of collective swaps and chain moves provides the fastest algo-
rithm with a speed up increasing with ϕ and reaching 40.

firmed in Fig. 5, where the range ϕJ ∼ 0.855 − 0.895 is
covered. Very similar results are obtained using ECMC
during compressions, see Fig. 5. Note that the prepa-
ration of equilibrium configurations for ϕinit > 0.79 re-
quires particles swaps [45], which are no longer used dur-
ing compressions. Interestingly, introducing swaps dur-
ing compressions from the same range of initial condi-
tions leads to jamming densities that are considerably
larger, ϕJ ≈ 0.904− 0.906 (Fig. 5). At the time of writ-
ing, such large packing fractions have only been obtained
using gradient descent algorithms simultaneously opti-
mizing diameters and positions to more efficiently pack
the particles, followed by geometric triangulation meth-
ods [23]. That similar performances can be reached us-
ing cSwap suggests that these nonequilibrium algorithms
in fact explore pathways similar to the ones allowed by
swap moves. In addition, the very weak dependence of
ϕJ on ϕinit rationalizes the surprising efficiency of aug-
mented gradient-descent algorithms. A major advantage
of cSwap is that the particle size distribution is strictly
conserved, rather than annealed, during the compression.

Using swap and event-chain Monte Carlo as stepping
stones, we demonstrate that simple Monte Carlo algo-
rithms with increasing efficiency can be devised, that
provide a set of improved computational tools to more
efficiently equilibrate deep glassy states, prepare more
stable configurations, with lower configurational entropy,
thus approaching closer the putative Kauzmann tran-
sition. In order to become new standards, the cSwap
algorithm and its derivatives proposed here need to be
pushed in several directions. A first encouraging result is
the successful scaling of their performances with system
size, see [37], in line with results for ECMC and Swap. A
less obvious direction is the application to three dimen-
sions, which is the subject of on-going efforts, again with
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encouraging preliminary results. A third direction con-
cerns the application to glass-former with soft potentials.
Swap performances do not decrease with continuous po-
tentials [13], and some extensions of ECMC to continuous
potentials were successful [29, 46]. Future work should
develop extensions of cSwap for glass-formers with con-
tinuous potentials to extend the range of applicability
of irreversible Monte Carlo methods in the field of super-
cooled liquids. All these perspectives directly follow from
our work; they should help the development of efficient,
versatile and simple to implement sampling methods for
disordered systems with a complex free energy landscape.
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I. A MODEL WITH A DIFFERENT POLYDISPERSITY

To show that the efficiency of the cSwap algorithm does not depend on the specific polydispersity of the model
studied in the main text, we study the relaxation dynamics of a second model. It consists of N = 1024 hard disks
with a diameter distribution following a power law, π(σ) ∝ σ−3, with σmin ≤ σ ≤ σmax, as studied earlier [1]. We
recall that the units of length are chosen so that σ = 1. We have chosen the support of the diameter distribution such
that the polydispersity is ∆ = 23%. We ran NV T simulations using the six different algorithms studied in the main
text at a large packing fraction, ϕ = 0.86, where we measured the time decay of Cψ. The results are shown in Fig. 1.
The hierarchy of speedups obtained by the different algorithm, and their relative values, is comparable to the results
reported in the main text for a similar value of ϕ.
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FIG. 1. Time dependence of the hexatic correlation function for a system of N = 1024 particles with a power law distribution of
the diameters. Time is measured in units of Ntmove, and the efficiency of the algorithms that involve swap moves is comparable
to the results shown in Fig. 2 of the main text near ϕ ≈ 0.85.

II. DIAMETER DISTRIBUTION OF THE HARD DISK SYSTEM

Figure 2 shows the probability distribution function of the diameters σ for the polydisperse mixture of hard disks

studied in the main text. The polydipersity of the system, defined as ∆ ≡
√
σ2−σ2

σ ≈ 25%. This diameter distribution
results from a gradient descent protocol in an extended space composed of particles positions and radii, which will be
detailed in [2], which represents an improvement over earlier versions [3].
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FIG. 2. Particle size distribution π(σ) for the system investigated in this work.

III. EVENT-CHAIN MONTE CARLO

We recall the implementation of the Event-chain Monte Carlo (ECMC) dynamics. We resort to the so-called
‘straight’ version, as described in [4, 5].

The state of the system is described by a configuration C = {rN , σN , i,v} where we store the position of the N
particles rN , their diameters σN , the label of the active particle i and the direction of self propulsion v, a two-
dimensional vector of unit norm. In the mathematical literature on Markov chains, i and v are called lifting degrees
of freedom, and they govern the nonequilibrium dynamics of the system. An ECMC move consists in moving the
active particle i along the direction v, until an event, i.e. a collision with another particle, whose label is denoted as
j, occurs. The distance δℓij traveled by i during a move is thus determined by the equation

δℓij = rji · v−
√
σ2
ij − (rji · v⊥)

2
, (1)

where rji = rj − ri is the vector joining particle i with particle j, σij ≡ σi+σj

2 is the effective diameter, and
v⊥ = (vy,−vx) is the direction orthogonal to v. In practice, in the simulations the inter-particle distance rij is
computed according to the minimum image convention [6] to keep into account periodic boundary conditions, and the
particle j is identified through an event-driven scheme, by minimizing δℓik among all possible target particles k, i.e.
j = argmink δℓik. After an event occurs, a lifting move is performed: the activity label changes from i to j. In the
next ECMC move particle j will perform directed motion along the direction v. The composition of several ECMC
moves builds up a chain of particles performing directed motion. When the displacement performed by the active
particles add up to a fixed parameter ℓ, which fixes the length of the chain, the activity label and the self propulsion
direction are resampled uniformly in their domain of definition, which are respectively the set {1, 2, . . . , N} for the
activity label and the set {ex, ey} for the self-propulsion, for the case of straight ECMC. As the density of the system
increases, more and more particles participate to the chain. This is demonstrated in Figure 3, which shows nℓ, the
average number of particles in a chain as a function of the packing fraction ϕ for a fixed value of ℓ.

IV. HEXATIC CORRELATION FUNCTION

We recall the definition of the time correlations for the hexatic order parameter, which have been extensively used
in the past to monitor the relaxation of two-dimensional glassy systems [7]. The hexatic correlation function Cψ(t) is
defined as

Cψ ≡
⟨ψ∗(t)ψ(0)⟩
⟨|ψ(0)|2⟩ , (2)
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FIG. 3. Average number of particles nℓ participating in a chain of fixed length ℓ as a function of the packing fraction ϕ.

where ψ(t) is the global hexatic order parameter. It is defined as a sum of local terms ψ(t) ≡ 1
N

∑N
i=1 ϕ6,i(t) where

the local hexatic order parameter for particle i, ϕ6,i(t) is defined as

ϕ6,i(t) ≡
1

ni

ni∑

j=1

e6iθij , (3)

with the sum running over the ni neighbors of particle i, defined through a Voronoi tessellation, constructed using
the freud libary [8], and θij is the angle between the vector rij ≡ ri − rj and the vector ex. From the time decay of
Cψ we define the relaxation time τα, such that Cψ(τα) = e−1.

V. ERGODICITY OF CSWAP IN AN N = 4 SYSTEM

Here we prove the ergodicity of the cSwap dynamics in the case of a small polydisperse system at low densities.
The discrete-time dynamics we consider is made up only by cSwap moves, the positions of the disks rN being fixed
at all times. The state of the system C = {σN , i} is specified by assigning a diameter to each of the N particles –the
resulting permutation of diameters is denoted by σN– and by the lifting degree of freedom i, i.e. the label of the
active particle. The system can access a subset of N ! × N configurations. The configurations in the subset satisfy
the non-overlapping hard disks condition. The probability πt(C) for the system to be in state C at time t obeys the
discrete time Markov dynamics

πt+1(C) =
∑

C′

P (C′ → C)πt(C′), (4)

with P the transition matrix encoding the probability to jump from one configuration to another during a discrete
time-step. The convergence properties of the dynamics are encoded in the spectrum of P . Proving that the cSwap
dynamics is ergodic amounts to showing that the spectrum of P has a unique, nondegenerate, eigenvalue λ = 1 lying
on the unit circle, and that all the other eigenvalues have a norm strictly smaller than 1 [9].

We consider the case where N = 4 and the particles are far away from each other, so that no overlap between them
can be generated upon permutation of the radii. To write down the transition matrix describing the cSwap dynamics,
we decompose the configuration space into a tensor product S4 ⊗ i, where S4 is an element of the permutation group
of 4 elements, and i is the lifting degree of freedom labeling the active, expanding particle. The permutations are
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labeled by natural numbers in the following way:

1 ≡ {1, 2, 3, 4} 2 ≡ {2, 3, 4, 1} 3 ≡ {3, 4, 1, 2} 4 ≡ {4, 1, 2, 3}
5 ≡ {1, 3, 4, 2} 6 ≡ {3, 4, 2, 1} 7 ≡ {4, 2, 1, 3} 8 ≡ {2, 1, 3, 4}
9 ≡ {1, 2, 4, 3} 10 ≡ {2, 4, 3, 1} 11 ≡ {4, 3, 1, 2} 12 ≡ {3, 1, 2, 4}
13 ≡ {2, 4, 1, 3} 14 ≡ {4, 1, 3, 2} 15 ≡ {1, 3, 2, 4} 16 ≡ {3, 2, 4, 1}
17 ≡ {2, 3, 1, 4} 18 ≡ {3, 1, 4, 2} 19 ≡ {1, 4, 2, 3} 20 ≡ {4, 2, 3, 1}
21 ≡ {2, 1, 4, 3} 22 ≡ {1, 4, 3, 2} 23 ≡ {4, 3, 2, 1} 24 ≡ {3, 2, 1, 4}

(5)

Here the numbers inside the brackets denote the index of the particles, ordered according to their diameters, from
the smallest to the largest. For example, {2, 3, 4, 1} is the configurations where particle with label 1 has the largest
diameter, particle with label 4 has the second largest diameter, and so on. If the system is in a configuration where
particle 3 is the active one, we would have C = {2, 3, 4, 1} ⊗ 3.

With this notation, the transition matrix can be written as a 24 × 24 block matrix, each block being made by a
4× 4 sub-block. Transitions between blocks represent changes in the diameter assignments for the different particles,
while transitions within a block represent change in the active degree of freedom. The transition matrix describing
the cSwap dynamics is

P =




D4 B1 · · B2 · · · B3 · · · · · · · · · · · · · · ·
· D4 B1 · · · · · · · · · B2 · · · B3 · · · · · · ·
· · D4 B1 · B3 · · · · · B2 · · · · · · · · · · · ·
B1 · · D4 · · · · · · · · · B3 · · · · · B2 · · · ·
· · · · D4 B1 · · · · · · · · B3 · · · B2 · · · · ·
· · B3 · · D4 B1 · · · · · · · · · · · · · · · · B2

· · · · · · D4 B1 · · · · · B2 · · · · · B3 · · · ·
· B2 · · B1 · · D4 · · · · · · · · · · · · B3 · · ·
B3 · · · · · · · D4 B1 · · · · · · · · · · · B2 · ·
· · · · · · · · · D4 B1 · B3 · · · B2 · · · · · · ·
· · · B2 · · · · · · D4 B1 · · · · · · · · · · B3 ·
· · · · · · · · B1 · · D4 · · · B2 · B3 · · · · · ·
· · · · · · · B2 · B3 · · D4 B1 · · · · · · · · · ·
· · · B3 · · · · · · · · · D4 B1 · · · · · · · B2 ·
· · · · B3 · · · B2 · · · · · D4 B1 · · · · · · · ·
· · B2 · · · · · · · · · B1 · · D4 · · · · · · · B3

· B3 · · · · · · · · · · · · · · D4 B1 · · B2 · · ·
· · · · · B2 · · · · · B3 · · · · · D4 B1 · · · · ·
B2 · · · · · · · · · · · · · · · · · D4 B1 · B3 · ·
· · · · · · B3 · · · B2 · · · · · B1 · · D4 · · · ·
· · · · · · · B3 · B2 · · · · · · · · · · D4 B1 · ·
· · · · · · · · · · · · · · B2 · · · B3 · · D4 B1 ·
· · · · · · B2 · · · B3 · · · · · · · · · · · D4 B1

· · · · · · · · · · · · · · · B3 · B2 · · B1 · · D4




.

(6)
The dot symbol · denote 4 × 4 matrices whose entries are all zeros. The diagonal block is a sum of two terms,
D4 ≡ A4 +B4. The block of type A4 encodes transitions involving only the active degree of freedom,

A4 ≡



α α α α
α α α α
α α α α
α α α α


 , (7)

with α = 1/42 = 1/16. They are associated to random resampling of the activity label, and they are used here to
ensure that P is ergodic. The blocks Bi encode transitions generated by the cSwap moves, involving an inflation of
the active particle and the cascade of swaps. They are given by:

B1 ≡



◦ ◦ ◦ 1− 1

4
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦


 B2 ≡



◦ ◦ ◦ ◦

1− 1
4 ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦


 B3 ≡



◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ 1− 1

4 ◦ ◦
◦ ◦ ◦ ◦


 B4 ≡



◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ 1− 1

4 ◦


 , (8)
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with the symbol ‘◦’ denoting the entries with value 0.
The matrix P is doubly stochastic, i.e. the sum of all the elements belonging to a fixed row, or fixed column, is

one. A stationary solution of the stochastic process associated with P is given by

πss ≡
1

4× 4!

24⊕

i=1

[1, 1, 1, 1]
T
, (9)

which is the tensor product of the Boltzmann distribution for hard disks times a uniform distribution of the active
degree of freedom among the 4 particles. To show ergodicity, we inspect the spectrum of P . Its eigenvalues λ are
shown in the complex plane in Fig. 4. The only eigenvalue lying on the unit circle is λ = 1, thus proving the ergodicity
of the cSwap Markov chain. We observe that the other eigenvalues tend to accumulate at the vertices of an octagon
inside the unit circle. This is a consequence of the introduction of a refreshment probability for the label of the
active particle. Without such a refreshment dynamics, the Markov chain would be periodic, and there would be 2N
eigenvalues lying on the unit circle. The introduction of a refreshment rate pushes the eigenvalues inside the unit
circle, making the Markov Chain aperiodic.
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FIG. 4. Representation in the complex plane of the eigenvalues λ of the transition matrix P given by Eq. (6) for the cSwap
dynamics in the case of a system of N = 4 particles. The dotted line is the unit circle.

VI. ADDITIONAL NUMERICAL EVIDENCE OF ERGODICITY FOR CSWAP DYNAMICS

We present numerical tests supporting the ergodicity of the cSwap and ECMC algorithms. The first test is the
numerical calculation of the equation of state Z(ϕ) of the polydisperse system considered in the main text. The

equation of state relates the reduced pressure Z = βP
ρ to the packing fraction ϕ. Here P is the pressure applied to the

system, ρ is the number density and β−1 = kBT . It can be obtained from simulations in the NPT ensemble, where
one has access to the running averages of Z and ϕ at fixed applied pressure P . The results are shown in Fig. 5(a),
where they are compared with an extension to polydisperse systems of the empirical Henderson formula [10, 11] which
reads

ZeH =
1−

(
1− σ2

σ2

)
ϕ+ (b− 3)σ

2

σ2
ϕ2

(1− ϕ)2
,

b ≡ 16

3
− 4
√
3

π
.

(10)
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FIG. 5. Numerical test of ergodicity for the cSwap and ECMC algorithms. (a) Equation of state Z(ϕ) for the polydisperse hard
disks system. (b) Rescaled radial distribution function g(r/σ − 1) as a function of the distance from its first peak r/σ − 1. (c)

Probability distribution function of the packing fractions π(ϕ) explored by the system during NPT simulations at βP = 16.3σ2.

The agreement with the empirical formula and with the conventional Metropolis and Swap algorithms is excellent,
and this serves as a guide to detect deviations from one algorithm to another. We find that all algorithms agree with
each other.

We next compare the rescaled radial distribution function g(r/σ) in the NPT ensemble in Fig. 5(b). Its expression
is given by

g(x) ≡
∑

i,j
i<j

Cij

∫ xb+∆x

xb

δ

(
x′ − rij

σij

)
dx′

Cij ≡
1

2π(xb +∆x/2)∆xσ2
ijρ(N − 1)

(11)

where σij ≡ 1
2 (σi + σj), ρ = N/L2 is the number density of the system, and we collect the rescaled interparticle

distances in a histogram with bin width ∆x. xb = b∆x is the coordinate of the b-th bin, with b chosen so that
xb ≤ x < xb +∆x. Again, the curves obtained with the different algorithms superimpose on each other.

Finally, we report in Fig. 5(c) the histogram of the packing fractions explored during an NPT simulation, π(ϕ),
for a fixed pressure P . Again all algorithms explore the same fluctuations, including in the tails of the distribution,
showing that the same Boltzmann distribution is indeed properly sampled in all our algorithms.

VII. CHOICE OF TIME UNITS FOR THE DIFFERENT MONTE CARLO ALGORITHMS

In the main text a unit of time tmove was chosen based upon the elementary transitions involved in each algorithm.
Here, we clarify its relation with the CPU time required by the algorithms studied in the main text. We first observe
that in all the algorithms investigated, during a unit of tmove only one evaluation of the overlap of a given disk with
its neighbors is performed. This is usually the most computationally demanding task in hard disks simulations. We
thus expect the trend of the relaxation time in units of CPU time to resemble the one obtained using units of tmove.
This is confirmed in Fig. 6, where we show the relaxation time τα, now measured in units of CPU time, as a function
of ϕ. The trend of the curves is virtually identical to the one shown in Fig. 1 of the main text.

When using the ECMC algorithm, it is also possible to measure times using the number of directed chains of
particles that have moved [4]. When comparing ECMC with other types of algorithms, however, this choice is a poor
indicator of its efficiency, as it hides the number of particles–and hence of event determinations–that are involved in
each chain. This is demonstrated in Fig. 7(a), where the time relaxation of Cψ is shown as a function the number of
chain displaced during an ECMC in the NV T ensemble, for different values of the chain length ℓ. When times are
measured according to the number of chains displaced, longer chains have a stronger impact on the system relaxation.
However, if one measures times in units of Ntmove, thus counting individual particle displacements, we see that all the
relaxation curves now collapse. This collapse implies that the efficiency of ECMC (in CPU time) is nearly independent
of ℓ.
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FIG. 6. Equilibrium relaxation times of the six algorithms investigated in the main text, in units of CPU time. Here tCPU = 1
second.
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FIG. 7. Equilibrium correlation function for the ECMC dynamics, using different values of the chain length ℓ. Time is measured
in units of (a) the number of chains displaced, and (b) Ntmove.

VIII. EFFICIENCY OF THE ALGORITHMS AS A FUNCTION OF SYSTEM SIZE

In this section we address the question of how the gain provided by SwapECMC, cSwap and cSwapECMC behaves
with the size of the system. We study the relaxation dynamics for polydisperse systems of N = 1024, 2048, and 4096
hard disks, with the polydispersity defined as in Sec. I. To avoid uncontrolled fluctuations in the distribution of the
diameters and make a clear comparison between different system sizes, we generate the diameters {σi}i=1,...,N in each
system of N particles in the following way: we first take N numbers ai = i/N with a uniform spacing in the interval
[0, 1]. From each number ai, the diameter σi is generated using the following relation

σi =
σmax√

1− ai + ai

(
σmax

σmin

)2
, (12)

which maps a random number generated from the uniform distribution in the interval [0, 1] to a random number
generated from a power law distribution ∝ σ−3 between σmin and σmax.
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FIG. 8. Time dependence of the hexatic correlation function for systems of different sizes using the Swap, SwapECMC, cSwap
and cSwapECMC algorithms in the NVT ensemble.

We run NVT simulations using the Swap, SwapECMC, cSwap, cSwapECMC algorithms for the three system sizes
at a high packing fraction ϕ = 0.853, and we track the decay of the correlation function Cψ(t). The resulting curves,
displayed in Fig 8, demonstrate that the gain provided by the different algorithms is constant with respect to the size
of the system. This is in line with previous results regarding swap efficiency in glass-formers.
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