
HAL Id: hal-04652010
https://hal.science/hal-04652010

Submitted on 17 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-level Electrochemical-model-based Estimation of
Li-ion Battery State of Charge - Real-data Validation on

an Electric Vehicle Use Case
Iulian Munteanu, Antoneta Iuliana Bratcu, Gildas Besancon, Didier Georges,

Pierre-Xavier Thivel, Yann Bultel

To cite this version:
Iulian Munteanu, Antoneta Iuliana Bratcu, Gildas Besancon, Didier Georges, Pierre-Xavier Thivel, et
al.. Two-level Electrochemical-model-based Estimation of Li-ion Battery State of Charge - Real-data
Validation on an Electric Vehicle Use Case. CCTA 2024 - 8th IEEE Conference on Control Technology
and Applications, Aug 2024, Newcastle Upon Tyne, United Kingdom. �hal-04652010�

https://hal.science/hal-04652010
https://hal.archives-ouvertes.fr


Two-level Electrochemical-model-based Estimation
of Li-ion Battery State of Charge – Real-data
Validation on an Electric Vehicle Use Case

Iulian MUNTEANU, Antoneta Iuliana BRATCU, Gildas BESANÇON, Didier GEORGES
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Abstract—This paper proposes a two-level hierarchical es-
timation structure of a lithium-ion battery state of charge
(SoC) based on the parabolic-partial-differential-equation Single
Particle Model (SPM). Using a suitable linear finite-dimensional
approximation of this model, it is proposed that the SoC estima-
tion to be done in two dynamically-separated levels, consistent
with the multi-time-scale nature of battery internal phenomena:
a fast level implementing a dynamic inversion, in charge of
retrieving surface concentrations of lithium based on output
voltage measures, and a slow level, in which internal lithium con-
centrations are estimated by employing a Luenberger observer.
After having first suitably calibrated the model, this structure is
easy to tune and allows avoiding estimation convergence issues
frequently occurring in the case of a global, one-level estimation
and which are partly due to a numerically ill conditioned linear
approximated model. SoC estimation accuracy is validated by
using real data issued from battery cycling in an electric vehicular
application, that is, under standard driving cycle scenarios.
Estimation errors – computed against Coulomb counting taken
as baseline estimation of battery SoC – are smaller than 3.5%,
thus suggesting very satisfactory performance.

Index Terms—battery electrochemical model, Single Particle
Model (SPM), state of charge (SoC) estimation, state observer,
dynamic inversion

I. INTRODUCTION

Lithium-ion batteries are ubiquitous in electrical vehicle
(EV) applications, having superior performance in key char-
acteristics such as energy-to-weight ratio, output current, dis-
charge capability, and total number of discharge cycles. Their
successful and riskless use is done via Battery Management
Systems (BMS) and supposes real-time knowledge of bat-
tery states. The lack of real-time internal measurements and
the complexity of cell internal electrochemical phenomena
– which renders difficult battery modeling and parameter
identification – lead to significant inaccuracies in battery state
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of charge (SoC) estimators that are used in practical BMS
[1]. That is why the search of advanced cell SoC estimators
is a richly investigated research topic [2]– [5], often relying
on complex physics-based electrochemical models, like Single
Particle Model (SPM) [1], rather than on insufficiently repre-
sentative equivalent electrical circuit models.

A lot of research effort has been dedicated to render these
estimators efficient in practical applications. For example, in
order to obtain very small SoC estimation errors, (Extended)
Kalman filters have been used, [2], or else direct PDE ob-
server design [6]. More recently, nonlinear observers based
on a finite-dimensional approximation of SPM have been
proposed, as well as improvements by the so-called hybrid
multi-observer redesign [7], [8]. Also, including electrolyte
behavior and temperature variation in the model, leading to the
so-called Extended SPM [9], is a way to enhance estimation
accuracy. However, these complex approaches come with a
significant computational burden, which should be avoided
in automotive applications. Moreover, the efficiency of these
observers is hindered by improper model parameter identifi-
cation, a topic richly addressed in the literature [10], [11].
Various simplifications – of either the model or the associated
parameters – have thus been proposed [6], [12], [13].

In the same spirit, of using sufficiently simplified approach,
within a pragmatic, engineering practice viewpoint, this paper
proposes a SoC observer structure in which the estimation
of interest variables is done in two dynamically-separated
levels. The cell model complexity is maintained at a minimum,
while retaining the phenomena essential to the battery cell
electrochemical behavior captured by the SPM.

The paper is organized as follows. Section II is focused on
battery cell modeling and Section III details the proposed SoC
observer design and convergence. Section IV presents observer
validation results both in simulation and by using real data
relevant to EV use cases. Section V concludes the paper.



II. SINGLE-PARTICLE MODELING OF A LI-ION CELL

A battery cell consists basically in a superposition of porous
positive and negative electrodes and the electrolyte, its main
charging/discharging behavior being governed by intercalation
(and desintercalation) of Li into the electrodes structure, as
the cell is submitted to an electric current. It is widely agreed
that this phenomenon, involving volumetric Li concentrations
evolution within the electrodes, be modeled by a Fickian
diffusion process, described by a set of parabolic partial-
differential equations (PDEs) for every elementary particle (or
grain) in the electrode. The mass transfer phenomena are here
neglected. The cell terminal voltage is a function of the Li
concentrations in each electrode [1]. SPM (Fig. 1) has been
developed as an efficient way to predict Li concentrations’
evolution and uses a single, equivalent spherical particle and
a single PDE [2]. Next, subscripts “p” and “n” are used for
positive and negative electrode, respectively.

Fig. 1. SPM illustration, where each electrode is equivalent to a single
spherical particle, of radius Rp/n.

1) Li concentrations within cell electrodes: are governed
by a diffusion process written in the spherical coordinate:

∂Cp,n

∂t
(r, t) = Dp,n

[
2

r
· ∂Cp,n

∂r
(r, t) +

∂2Cp,n

∂r2
(r, t)

]
, (1)

where Cp,n(r, t) denote the volumetric concentrations within
the positive/negative sphere as functions of the radial coordi-
nate r (along the sphere radius) and time t, and Dp,n are the
diffusivity coefficients in each of the electrodes, considered
constant. Neumann boundary conditions are added to (1) in
the particle’s center and on its surface, respectively:

∂Cp,n

∂r
(0, t) = 0

∂Cp,n

∂r
(Rp,n, t) =

i(t)

Dp,nFap,nALp,n
,

(2)

where F is Faraday’s constant, Rp,n are the particle radii, A
is the cell area, Lp,n are the electrode thicknesses, ap,n are
the specific interfacial surface areas and i(t) is the cell current,
whose sign convention is i(t) > 0 when charging and i(t) < 0
when discharging. The cell voltage potential is determined by
surface concentrations of both positive and negative electrodes,
noted as Csp(t) = Cp(Rp, t) and Csn(t) = Cn(Rn, t),
respectively, which are the solutions of (2) for each electrode.

In automotive applications, battery current is usually lower
than 1C, when considering suitable vehicle autonomy. It is
widely agreed that at these levels of cell current, Li+ concen-
tration values remain practically constant in the electrolyte and

mass transport effects within it are negligible. Cell behavior
can thus reasonably be described by (1) and (2) written for
both particles, which give Li concentrations in both electrodes.
Also, experimental tests on cells under EV-specific driving
cycles (e.g., [14]), showed sufficiently small cell temperature
variations (within ±1.5◦C), so that the temperature be reason-
ably considered constant within a discharge cycle.

2) Voltage of a cell: depends on current and on Li concen-
trations on particles’ surfaces through a nonlinear algebraic
relation describing the Butler-Volmer kinetics [3], [6]):

vbt(t) =
RT

αpF
· sinh−1

[
i(t)

2apALpi0(Csp(t))

]
−

− RT

αnF
· sinh−1

[
−i(t)

2anALni0(Csn(t))

]
+Rf · i(t)+

+ Up(Csp(t))− Un(Csn(t)),

(3)

where i0 is the exchange current density for each electrode:

i0(Csp,n(t)) = kp,n

√
C0

e · Csp,n(t) [Cmxp,n − Csp,n(t)] (4)

and αp,n are the anodic/cathodic transfer coefficients, kp,n are
the reaction rates, Cmxp,n are the maximum Li concentrations
in solid phase, C0

e is the Li+ concentration in electrolyte
phase, Rf is the lumped current collector resistance, T is the
cell temperature and R is the universal gas constant. Specific
interfacial surface areas are defined as ap,n =

3εp,n
Rp,n

, where
volume fractions εp,n are constant for a given electrode.

The first two right-side terms of (3) represent cell overpoten-
tials (of the positive and the negative electrode, respectively),
depending of both Li concentrations and the cell current and
corresponding to a cumulative effect of a series resistance,
which is variable with the Li concentrations on both parti-
cles’ surfaces. Their inverse-hyperbolic-sine form corresponds
to equal transfer coefficients, αp,n = 0.5, describing lithi-
ation/delithiation reactions where a single electron per Li
atom is exchanged. The third term denotes the overpotential
due to the lumped internal resistance, Rf . Up(Csp(t)) and
Un(Csn(t)) in (3) are the so-called equilibrium potentials,
which are material-dependent functions of the amount of Li
in the electrode (also called degree of lithiation), expressed
by normalized surface concentrations in relation to their
respective maximum values, Cmxp,n – see Figs. 2 a) and
b). Being characteristic of each type of electrode material,
they are usually given in the literature either as look-up
tables or as equations using transcendental functions [11].
Their difference gives the so-called cell open-circuit voltage:
Vocv(t) = Up(Csp(t))− Un(Csn(t)).

3) The state-space model: of Li concentrations results from
spatial derivative approximation via discretization of radial
coordinate within each spherical particle.

Considering N internal discretization nodes within the
sphere, radius Rp,n is quantized in (N + 1) domains of
∆rp,n =

Rp,n

(N+1) . As this discretization defines (N +1) spher-
ical shells of equal thickness, Li volumetric concentrations
Ckp/n(t) are defined within elementary volumes situated on
the surface of each sphere having the index k. We note
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Fig. 2. Open-circuit potentials of a) positive and b)
negative electrode vs. normalized surface concentrations
[11]. c) Typical cell voltage variation vs. surface con-
centrations.
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Fig. 3. SoC estimation with the proposed two-level observer, emphasizing the two-time-scale
dynamics: a fast dynamic inversion and a slower Luenberger estimation, respectively. Only the
positive particle is used for estimation, the negative one undertakes a feed-forward action. Gains to
be selected are grayed.

the time constants τp,n =
∆r2p,n
Dp,n

and the gains Gp,n =
Dp,nFap,nALp,n.

Furthermore, one uses the method of lines for approximating
SPM PDE in (1) and Euler’s forward difference method for
the first spatial derivative approximation. However, in the
second equation of (2) (i.e., on the particle surface) backward
differencing is used for derivative approximation. After some
usual algebraic manipulations , a set of (N + 2) equations is
obtained, which represents the complete model of Li concen-
trations’ evolution within each particle:

dC0p,n(t)

dt
=

1

τp,n
[C1p,n(t)− C0p,n(t)]

dCkp,n(t)

dt
=

1

kτp,n

[
(k + 2)C(k+1)p,n(t)− 2(k + 1)Ckp,n(t)

+ kC(k−1)p,n(t)
]
, k = 1, 2...N

dCsp,n(t)

dt
= ∓Dp,n(N + 3)

Gp,nRp,n
i(t)

− 1

τp,n

[
CNp,n(t)− C(N−1)p,n(t)

]
.

(5)
The system state vector incorporates all Li concentrations in

all spatial discretization points, including center of the generic
spherical particle and its surface:

xp,n = [C0p,n(t) C1p,n(t) · · · CNp,n(t) Csp,n(t) ]
T . With

the cell current, i(t), as input and the Li concentration on the
surface of each of the particles, Csp,n(t) ≡ C(N+1)p,n(t), as
output the ODEs describing Li diffusion within the particle
under the influence of the cell current lead to a (N+2)th-order
state-space model for each electrode:{

˙xp,n(t) = Ap,nxp,n(t) +Bp,ni(t)

Csp,n(t) = Cp,nxp,n(t)
(6)

State-space matrices resulting from developing (5) for all
discretization points k in the generic particle are given in (17)
in the Appendix. Matrices Ap,n have both a zero eigenvalue
– with all the other ones in the left-side complex plane –
which shows an integration effect within the Li concentration
buildup, corresponding to the charging/discharging process (or
otherwise cell SoC evolution). The state matrices have a tri-
diagonal structure and depend only on the time constants, τp,n,
and the number of spatial samples, N . The input matrices Bp,n

have each a single, last-row, non-zero element, denoted next
as the current gain, showing that the current acts directly only
on the surface concentrations, Csp,n. The two current gains,
Gip and Gin, respectively, have opposite signs, reflecting the
opposite actions of current on the surface concentrations: for
battery charging (i(t) > 0) that of positive particle diminishes
and that of negative particle increases – and the opposite for
discharging. These gains depend on the respective electrode
geometry: surface, thickness and volume fraction:

Gip,n = ∓Dp,n(N + 3)

Gp,nRp,n
= ∓ N + 3

3FAεp,nLp,n
. (7)

With i(t) = 0 in (6) – corresponding to what is called cell
relaxation – an autonomous system is obtained, whose steady
states are by definition the equilibrium Li concentrations,
which thus depend on the initial concentrations just before
zeroing the cell current. So the equilibrium concentrations
directly reflect the cell SoC, namely, the one (just) before
relaxation. Let us note surface concentrations at equilibrium
at SoC=0 by Cp0 and Cn0 and at SoC=1 by Cp1 and Cn1,
respectively. Starting from an initial given SoC – i.e., from
the corresponding initial concentrations – Csp and Csn are
obtained by numerically integrating SPM equations (6)–(7) for
both the positive and the negative particles. Then, the voltage
results by using these concentrations and current i(t) in (3).



Finally, the equilibrium concentration at a certain time t,
noted as Ceq(t), which directly represents the cell SoC, can
be computed as the solution of the relaxation process that
would begin at t if the current would be zeroed at t:

Ceq(t) = Cp,n · e(Ap,n·Tr) · xp,nbr
, (8)

where Cp,n = [0 0 0 . . . 0 1] (size of N + 2), time value
Tr is fixed, larger than the relaxation time, and xp,nbr

is
the vector of concentrations just before relaxation. Note that
Ceq(t) can be approximated by a linear combination of either
the concentrations Cpk(t) or Cnk(t):

Ceq(t) =
6

(N + 1)(N + 2)(2N + 3)
·
N+1∑
k=0

(
k2Ckp,n(t)

)
, (9)

more accurate as the spatial sampling grid is finer (N larger).

III. TWO-LEVEL SOC OBSERVER

The goal here is to recover the “true” cell SoC from
an arbitrary one by using the available measured variables:
current and voltage of the real cell. As the SoC is the linear
combination (9) of internal Li concentrations of either the
positive electrode or the negative one, the SoC estimation can
be formulated as a state observation problem for the dynamical
system with state equations (6) and output equation (3).

A. Proposed observer structure

The proposed observer structure exploits the specific model
structure, detailed in Section II, and aims at employing a
divide-et-impera approach. More specifically, it uses the fact
that the high-order (2(N +2)) linear dynamical system giving
the surface Li concentrations in both particles feeds a nonlinear
voltage function as output. The two types of complexity – due
to nonlinearity and to the high-order modeling, respectively –
are thus dealt with separately, as shown in Fig. 3.

First, a dynamic inversion scheme is used to get the surface
concentration of that of the particles exhibiting the faster
dynamics – here, the positive one, as τp < τn – which
represents one of the inputs of the nonlinear voltage function.
This is done by integrating the error between real cell voltage,
vbtreal

(t), and model output voltage, vbt(t). In this way, a
pseudo-measure of surface Li concentration for the positive
particle, C∗

sp(t), is obtained. It serves as a reference for the
second level of estimation.

At the second (lower) estimation level, estimates of all inter-
nal Li concentrations are obtained, by means of a Luenberger
observer [15], which minimizes the error between the model-
computed surface Li concentration, Ĉsp(t), and its pseudo-
measure, C∗

sp(t), provided by the first (upper) estimation level.
The first-level dynamic inversion should be significantly

faster vs. the second-level linear observation loop, which is
achieved by using a suitably large integrator gain, Kv . A
certain slow dynamics for the estimated states (concentrations
at various coordinates in positive and negative spheres) can
then be imposed by pole placement, as (Ap,Cp) matrix pair is
detectable, resulting in the second-level observer vector gain,
Lp – see the justification below.

This results in the second level observer gains Lp and Ln.
Note that, from physical interpretation, Lp and Ln should also
be related with each other: if indeed the estimation for the
positive sphere relies on a gain Lp (related to the (Ap,Cp)
pair), the estimates of concentrations in the negative, slower
particle, Ĉsn(t), are in fact adjusted via a feed-forward action,
by means of a vector gain Ln, which should be consistent with
the conservation of total Li species.

This is because observer implementation supposes an alter-
ation of the estimated states’ derivatives in the positive particle,
which can be viewed as an additional current-like action on
all the surfaces k = 0, 1, ...N+1. An equivalent action should
thus be applied for the negative particle, by virtue of the above-
mentioned conservation law. So the same error, i.e., that of
surface concentration of positive electrode, Ĉsp−C∗

sp, will also
drive estimation for the negative one, to ensure that its internal
Li concentrations are also correctly estimated. Therefore, the
cell SoC estimate can further be computed based on either
Ĉkp or Ĉkn, k = 1, 2...N + 2.

As it is also emphasized by the convergence proof in
the next subsection, III-B, rapidity of dynamic inversion is
crucial to initiate the estimation convergence process, as in
this way a pseudo-measure of the surface concentration, even
if approximate in a first place, is made available for the
second estimation level. At this latter level, the effective
state estimation takes place: first for the positive particle
via Luenberger observer and then for the negative particle
by means of feed-forward correction. This iterative process
ensures minimization of the voltage error and ultimately a
reliable SoC estimation through the estimated equilibrium
concentration, Ĉeq(t), computed according to (9) based on
positive electrode’s internal Li concentrations, Ĉkp. Matrix
Ceq in Fig. 3 results from (9).

B. Convergence proof and observer design guidelines
Let us resume the state-space model (6) of both electrodes’

internal concentrations and cell voltage (3) as output, y ≡ vbt:
ẋp = Apxp +Bpi
ẋn = Anxn +Bni
y = hp(Csp, i) + hn(Csn, i) +Rf i

(10)

with surface concentrations given by Csp = Cpxp and Csn =
Cnxn, respectively, where matrices Ap,An,Bp,Bn,Cp,Cn

are given in the Appendix and functions hp, hn can be
identified in (3). According to the overall scheme in Fig. 3,
the proposed observer takes the following form:

Ċ∗
sp = Kv(ŷ

∗ − y)
˙̂xp = Apx̂p +Bpi+ Lp(Ĉsp − C∗

sp)
˙̂xn = Anx̂n +Bni− Ln(Ĉsp − C∗

sp)

ŷ∗ = hp(C
∗
sp, i) + hn(Ĉsn, i) +Rf i

(11)

for appropriate gains Lp,Ln,Kv .
Notice first that we will use the following properties on

hp, hn, which hold for some constants α > 0 and β > 0 in
the considered operating conditions, as suggested by Fig. 2 c),
showing some typical variation of a battery voltage with
electrodes’ surface concentrations:



(P1)
∂hp

∂Csp
(Csp, i) ≤ −α

(P2)
∂hn

∂Csn
(Csn, i) ≃ −β

∂hp

∂Csp
(Csp, i),

(12)

together with boundedness of Ċsp. Note also that, in practice,
an estimate of β is given by −CpBp

CnBn
= −Gip

Gin
, hence β can

be used in the design (while no knowledge on α is needed).
In addition, from the forms of Ap,An,Cp,Cn one can

check the following property:
(P3) (Apn,Cpn) matrix pair is detectable,

where Apn :=

(
Ap 0
0 An

)
, Cpn :=

(
Cp −βCn

)
This follows from the fact that both Ap and An have all their
eigenvalues with strictly negative real parts, except one at 0.
Hence, Apn has only two unstable eigenvalues, both equal to
zero. It can easily be checked that the related eigenvectors are:

v1 =
(
11×(N+2) 01×(N+2)

)T
, v2 =

(
01×(N+2) 11×(N+2)

)T
where a1×(N+2) stands for a row vector of N+2 components,
all equal to a (N+2 being the dimension of both xp and xn).
It is also obvious that Cpnv1 ̸= 0 and Cpnv2 ̸= 0, meaning
that the zero eigenvalues of Apn are observable.

Let us now set hpd :=
∂hp

∂Csp
and hnd :=

∂hn

∂Csn
and define

estimation errors ep := x̂p − xp, en := x̂n − xn and e∗sp :=
C∗

sp − Csp. Then, considering a first order approximation for
dynamics of e∗sp, we get:

ė∗sp ≃ Kvhpde
∗
sp +KvhndCnen − Ċsp (13)

On the other hand, we can derive from (10)–(11) the
following error equations:

ėp = (Ap + LpCp)ep − Lpe
∗
sp

ėn = Anen − LnCpep + Lne
∗
sp

= (An − hnd

hpd
LnCn)en + Ln(e

∗
sp +

hnd

hpd
Cnen)

−LnCpep
(14)

Notice here that, by using property (P2), we have that en is
driven by An + βLnCn (while ep is driven by Ap +LpCp).

Next, assuming that Kv is chosen large enough, we clearly
obtain that (13)–(14) defines a two-time-scale system, whose
boundary layer takes the following form:

ξ̇ = hpd · ξ, (15)

for which 0 is clearly uniformly exponentially stable by
property (P1). Then the related reduced system becomes:

ėp = (Ap + LpCp)ep − βLpCnen
ėn = (An + βLnCn)en − LnCpep

(16)

Now, we can use property (P3) to design Lpn so that Apn+
LpnCpn to be Hurwitz, and we thus just need to select Lp and

Ln with
(

Lp

−Ln

)
= Lpn such that to ensure the origin of error

system (16) being exponentially stable. Finally, according to
Tikhonov theorem [16], the solution of error system (13)–(14)
approaches 0 with an accuracy driven by 1

Kv
.

IV. CELL SOC ESTIMATION RESULTS IN AN ELECTRIC
VEHICLE USE CASE

This section presents SoC estimation performance in an
electric vehicle (EV) use case, i.e., for battery cells be-
ing submitted to EV-specific driving cycles. Here, a cur-
rent profile derived from the Worldwide Harmonized Light
Vehicles Test Procedure (WLTP) [14] was used in both
MATLAB® /Simulink® simulations and real-world tests; its
negative-average variation in Fig. 4 obviously reflects a battery
discharging process. Real-data validation was based on voltage
measures provided by a BCS-800-series battery cycler [17].
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Fig. 4. WLTP-like current profile used for SoC estimation validation.

A. Numerical simulation results
Here, the goal is to force the estimation performance limits –

in absence of any noise, parameter uncertainty and unmodelled
dynamics – in order to illustrate that design parameters –
especially the dynamic inversion gain, Kv – are adjustable in a
large range, thus confirming the formal findings in Subsection
III-B. SPM parameters of the battery used in simulations are
given in Table I in the Appendix. In the simulation scenario
convergence of the proposed observer is checked when the
state-space SPM model and the observer, both excited with
the WLTP-like current profile in Fig. 4, repeated nine times,
have some initial states corresponding to very different SoC
values. A case where SoCobs0 = 0.55 is smaller than that of
the model, SoCmodel0 ≈ 0.9, was considered. A large gain,
Kv = 35000, was used to enable very fast recovering of
the “real” SoC, while the Luenberger observer gain, Lp, is
a constant vector filled with −6 and Ln vector gain is filled
with −2.667. Table I in the Appendix contains parameters’
values resulting from previous SPM calibration against tests
on real cells, e.g., according to the method proposed in [18].

Fig. 5 a) shows the estimated SoC vs. the SoC computed by
Coulomb counting (integration of current i(t)) and the model-
computed one, denoted as the “real” one. The SoC recovering
time is very small, less than 10 s – see the zoom around time 0.
The error between the three SoC signals is detailed in zoom 1.
Total evolution of estimation error can be seen in Fig. 5 b),
the maximum error being less than 2% (see zoom 2).

Voltage variations in Fig. 6 a) and zoom 1 suggest that
the model-given (or “real”) voltage (vbtreal

in Fig. 3) is very



Fig. 5. SoC evolution during an almost complete battery discharge and associated zoomed pictures: a) model and estimated values vs. Coulomb counting
value taken as baseline; b) SoC estimation error.

accurately tracked by the one computed based on estimated
surface concentrations (v̂bt

∗ in Fig. 3). Figs. 6 b) and c) show
evolutions of positive and negative surface concentrations, Csp

and Csn, respectively, for both the model and the observer. Es-
timation accuracies are shown in zooms 2 and 3, respectively.

B. Estimation results on real data

The real-data estimation scenario was carried out for a bat-
tery submitted to the same excitation current as in simulation,
this time on a BCS-800-series battery cycler. In this case,
calibration of SPM parameters indicated that it is the negative
electrode’s dynamic which is faster – i.e., τn ≤ τp – so the
estimation was performed on it, with the upper-level dynamic
inversion providing this time a pseudo-measure of the negative
particle’s surface concentration, C∗

sn, send as reference for
the second estimation level. Here also, the battery and the
observer have some initial states corresponding to different
SoC values, namely SoCobs0 = 0.55 was smaller than the real
SoC = 0.885, as given by Coulomb counting.

Real-data-based estimation has some particularities, as fol-
lows. Low-pass filtering was necessary to denoise the voltage
error, v̂bt

∗
(t)−vbtreal

(t). In order to enable fast recovering of
the real SoC, the dynamic inversion gain was rendered adap-
tive in the sense of decreasing with the voltage error squared:
Kv = Kvnom

[v̂bt
∗
(t)−vbtreal

(t)]2, with Kvnom
= 850. Lower-

level estimation vector gains, Lp and Ln, exchange their roles,
with the Luenberger observer gain, Ln, being a constant vector
filled with −6.25 and Lp being filled with −14.0625.

Fig. 7 a) shows the estimated SoC vs. the SoC computed
by Coulomb counting (integration of current i(t)), which was
considered as the true SoC value. The SoC is here recovered in
about 300 s. Fig. 7 b) shows the total evolution of estimation
error and the associated zoom indicates a maximum error
being less than 3.5%. Voltage variations in Fig. 8, along with a
zoomed part of the plot, suggest good tracking of the measured
values, vbtreal

by the one computed based on estimated surface
concentrations, v̂bt

∗.

Figs. 9 a) and b) show evolutions of all estimated internal
Li concentrations inside the positive and the negative elec-
trode, respectively. In both cases, surface concentrations are
the mostly variable, as they are directly influenced by the
input current action. Note the significantly larger dispersion
of positive particle’s concentrations, Ckp, in relation to the
negative particle’s ones, Ckn, and also the spatial filtering
effect resulting in the center concentrations, C0p and C0n,
respectively, having the smoothest variations.

V. CONCLUSION

This paper has investigated the problem of lithium-ion
battery SoC estimation starting from an electrochemical model
that describes the internal diffusion phenomena governing
the charging/discharging process. Thus, the parabolic-partial-
differential-equation Single Particle Model (SPM), in which
each electrode is represented as a single spherical particle,
has been adopted. It has next been approximated by a linear
finite-dimensional state-space model – namey, by 1D spatial
discretization of each particle (electrode), from its center to its
surface – whose states are the Li volumetric internal concen-
trations at each discretization point. Further, the temperature
being supposed invariant, the equilibrium concentration – a
direct image of battery SoC – can be estimated as as a linear
combination of these concentrations – out of which the surface
ones play a special role, as the measurable battery voltage
depends on nonlinearly – provided that SPM parameters had
previously been identified, e.g., by model calibration against
measured data.

In this paper a two-level hierarchical observer is proposed
for SoC estimation, within an approach consistent with an
engineering practice viewpoint aiming at simplicity of tuning,
implementation and integration as a BMS advanced function.
Thus, the two dynamically-separated estimation levels reflect
the multi-time-scale nature of battery internal phenomena: a
fast level achieving a dynamic inversion, aimed at retrieving
surface Li concentrations from the battery measured voltage,
and a slow level, in which the internal Li concentrations



Fig. 6. Evolution of cell voltage and surface concentrations and associated zoomed pictures: a) model vs. estimated voltage; b) surface concentration of
positive particle: model, Csp, and estimated, Ĉsp, almost perfectly equal to the reference (pseudo-measure) provided by the dynamic-inversion loop, C∗

sp; c)
surface concentration of negative particle: model, Csn, and estimated, Ĉsn.

Fig. 7. SoC evolution as the battery is submitted to the same current i(t)
as in simulation and observer is based on real measured voltage values:
a) estimated value vs. Coulomb counting value taken as baseline; b) SoC
estimation error and zoom indicating its maximum at around 3.5%.

Fig. 8. Evolution of the cell voltage: measured, vbtreal
(t), vs. estimated,

v̂bt
∗(t) – and zoomed plot in between 8000 s and 8500 s.

Fig. 9. Totality of the N + 2 = 32 real-voltage-based estimated internal Li
concentrations, of the a) positive particle and b) negative one.

are estimated by using a classical Luenberger observer. As
illustrated by numerical simulations and also by using real
voltage measures (relevant to electric-vehicle (EV) use cases),
this structure is easy to tune and allows avoiding frequent
convergence issues occurring in the case of a global, one-
level estimation and which are partly due to an intrinsically
ill numerical conditioning of the linear approximated model.

It has been proven that SoC estimation accuracy and rapidity

mainly depends on the upper-level gain, implementing the
dynamic inversion by integrating the error between the real
voltage and the estimated one. Thus, the faster this level
obtains a so-called pseudo-measure of surface concentration,
the better is for the lower level, which receives this pseudo-
measure as a reference and, at its turn, minimizes the error
between reference and estimation. As SoC estimation can
be equivalently based on either of the electrode’s surface
concentration, the observer will act on the one with the
faster concentrations’ dynamics, according to the state-space
SPM. This divide-et-impera approach allows the two types
of complexity – due to nonlinearity and to the high-order
modeling, respectively – being dealt with separately. Vali-
dation on real data issued from battery cycling under input
current profiles corresponding to standard EV driving cycle
scenarios has shown estimation errors – in relation to baseline
SoC estimation by Coulomb counting – less than 3.5%, which
suggests very good performance.

Two main research directions may further be envisaged.
One of them is to deepen the study of formal properties of
the proposed observer towards possible generalizations to a



larger class of systems. A second direction is to investigate
both practical implementation issues of the proposed SoC
observer – in terms of computational burden vs. time criticality,
robustness to various parameter uncertainties and possibly
unmodelled dynamics – and its use as a software sensor for
battery tests in various states of health (SoH), to emphasize
the inter-relation between SoC and SoH, and possibly with
other battery operation key variables.
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“Algorithms for advanced Battery Management Systems,” IEEE Control
Systems Magazine, vol. 30, no. 3, pp. 49–68, June 2010.

[2] D. Di Domenico, A. Stefanopoulou, and G. Fiengo, “Lithium-ion battery
state of charge and critical surface charge estimation using an elec-
trochemical model-based extended Kalman filter,” Journal of Dynamic
Systems, Measurement, and Control, 132(6), 061302, November 2010.

[3] R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen, and
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APPENDIX

TABLE I
SPM PARAMETER VALUES USED IN NUMERICAL SIMULATION.

Symbol Signification Value

Common parameters
N [-] No. of discretization points 30
A [m2] Electrode area 0.1
Ce
0 [mol/m3] Electrolyte Li+ concentration 1000

Rf [Ω] Internal ohmic resistance 0.020
T [K] Cell temperature 298.15
R [J/mol/K] Universal gas constant 8.31446
F [C/mol] Faraday constant 96487
Negative particle
Dn [m2/s] Diffusivity in graphite 3.9 · 10−14

εn Electrode volume fraction 0.75
αn Reaction transfer coefficient 0.5
Cmxn [mol/m3] Maximum Li+ concentration 30555
Ln [m] Electrode thickness 83 · 10−6

Rn [m] Particle radius 20 · 10−6

an [m2/m3] Specific interfacial surface area 1.125 · 105

kn [m4/mol s] Electrode reaction rate 2 · 10−6

τn [s] Time constant 10.67
Gin [mol/m3/s/A] Current gain 0.555
Positive particle
Dp [m2/s] Diffusivity in AM 1.92 · 10−16

εp Electrode volume fraction 0.5
αp Reaction transfer coefficient 0.5
Cmxp [mol/m3] Maximum Li+ concentration 51555
Lp [m] Electrode thickness 75 · 10−6

Rp [m] Particle radius 0.75 · 10−6

ap [m2/m3] Specific interfacial surface area 2 · 106

kp [m4/mol s] Electrode reaction rate 1.25 · 10−7

τp [s] Time constant 3.05
Gip [mol/m3/s/A] Current gain −0.921

Ap,n =



−
1

τp,n

1

τp,n
0 0 0 0 0 0

1
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2(1 + 1)
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0 0 0 0 0
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0 · · ·
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0
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,

Cp,n =
[
0 0 0 · · · 0 0 1

]
.

(17)
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