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Regularisation for the approximation of functions by
mollified discretisation methods

Marc Hoffmann∗ Camille Pouchol†

Abstract

Some prominent discretisation methods such as finite elements provide a way to
approximate a function of d variables from n values it takes on the nodes xi of the
corresponding mesh. The accuracy is n−sa/d in L2-norm, where sa is the order of
the underlying method. When the data are measured or computed with systematical
experimental noise, some statistical regularisation might be desirable, with a smooth-
ing method of order sr (like the number of vanishing moments of a kernel). This
idea is behind the use of some regularised discretisation methods, whose approxima-
tion properties are the subject of this paper. We decipher the interplay of sa and sr
for reconstructing a smooth function on regular bounded domains from n measure-
ments with noise of order σ. We establish that for certain regimes with small noise
σ depending on n, when sa > sr, statistical smoothing is not necessarily the best op-
tion and not regularising is more beneficial than statistical regularising. We precisely
quantify this phenomenon and show that the gain can achieve a multiplicative order
n(sa−sr)/(2sr+d). We illustrate our estimates by numerical experiments conducted in
dimension d = 1 with P1 and P2 finite elements.

Mathematical Subject Classification (2020): 62-08; 62C99; 62G05.
Keywords: mollified basis, discretisation, nonparametric smoothing, finite elements.

1 Introduction

1.1 Motivation

Let Ω be a smooth bounded connected open subset of Rd for some d ⩾ 1. We are interested
in reconstructing a smooth function

f : Ω → R

from its values on a fixed design given by n points xi ⊂ Ω. These values are moreover
corrupted by noise. The points xi should be thought of as forming a mesh of the set Ω.
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†MAP5, UMR UMR 8145, Université Paris Cité, camille.pouchol@u-paris.fr
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We focus on reconstruction methods that rely on regularised basis functions or molli-
fied basis functions, as introduced in [BS77, Tho77]. Specifically, we are concerned with
the case where functions are naturally (according to some given discretisation procedure)
represented as linear combination of basis functions ϕi: in other words, the function f is
approximated by

n∑
i=1

f(xi)ϕi. (1)

Typical examples include discretisation of PDEs, where the ϕi are e.g. basis functions
associated to Pk finite elements [Tho07, QQ09]. Informally, given a partition of Ω, the ϕi
form a basis of the space of continuous functions on Ω whose restriction to each piece of
the partition is a polynomial of degree k.

We will use the shorthand notation u ≲ v (or v ≳ u) whenever there exists a constant
C > 0 independent of n, σ and β (see below for a precise definition of the bandwidth
parameter β and the noise level σ) such that u ⩽ Cv for all n > 0, σ > 0 and β > 0.
We will write A ∼ B whenever A ≲ B and B ≲ A hold simultaneously. We also find it
convenient to introduce a discretisation parameter h > 0 satisfying

h ∼ n−1/d.

Of course, one could simply set h = n−1/d, but in applications such as finite elements,
there is a natural parameter h which matches n−1/d up to multiplicative constants only.

In the setting of (1), one typically has an estimate of the form

sup
f∈F

∥∥∥f −
n∑

i=1

f(xi)ϕi

∥∥∥ ∼ hsa ∼ n−sa/d,

where ∥ · ∥ stands for the L2(Ω)-norm, sa > 0 for the order of the approximation method,
and F a class of sufficiently smooth functions. In practice, because of measurement,
numerical or roundoff errors, the sum

∑n
i=1 f(xi)ϕi is rather given by

n∑
i=1

(yσ)i ϕi,

with
(yσ)i = f(xi) + σξi, i = 1, . . . , n,

where our noise model is given by the ξi, assumed to be independent random variables,
centred with unit variance, so that the parameter σ ⩾ 0 quantifies the noise level as the
common standard deviation to each measurement error.

A common and standard approach in alleviating the corresponding error is to operate
some linear regularisation on the data given in the form

∑n
i=1(yσ)i ϕi, like e.g. convolution

or projection onto low dimensional vector spaces. By regularisation, we mean that we are
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given a family of linear operators (Rβ)β⩾0 indexed by a smoothing parameter β ⩾ 0 such
that R0 = Id and regularisation order sr. These typically satisfy estimates of the form

sup
f∈F

∥Rβf − f∥ ∼ βsr ,

where, as before, F is a class of sufficiently smooth functions. This leads to estimators of
the form

Rβ

( n∑
i=1

(yσ)i ϕi

)
=

n∑
i=1

(yσ)iRβϕi,

and these natural candidate estimators for approximating f are therefore based on the
finite-dimensional subspace generated by the n mollified basis functions Rβϕi.

Of course, there are many other, potentially better, estimators at reconstructing f
from the data (yσ)i without necessarily relying on regularised basis functions. There is
immense literature on the subject in the field of nonparametric statistics; see e.g. the
textbooks [GKK+02, Tsy08]. That our estimators are linear in particular means that one
cannot hope for better approximation properties than those imposed by the Kolmogorov-
n-width of the class F [DL93, LvGM96].

Our main reason for sticking to this rigid reconstruction framework is that mollifying
basis functions is actually quite common practice: such an approach dates back to the
works [BS77, Tho77] for parabolic equations. Indeed, these can lead to improved conver-
gence estimates, and more pragmatically, they tend to stabilise the output. Extensions of
this framework to hyperbolic equations also exist [ML78, CLSS03], and these methods are
still of current interest for applications [FOC21]. The so-called Reproducing Kernel Ele-
ment Method introduced in the series of papers [LHL+04, LLH+04, LLSJ+04, SJLLL04]
also relies on similar ideas, see Chapter 6 of [LL07].

However, up to the best of our knowledge, the analysis of such methods does not
include statistical errors such as the σξi that are quantified in order by the standard
deviation parameter σ, to be compared with n or h. A natural question is therefore to
understand how the presence of noise (i.e. σ > 0 in our model) impacts the previous
analysis. In particular, can we optimally quantify the interplay between σ and n (or
equivalently between σ and the mesh size h)? In other words, how best to mollify basis
functions in the presence of noise, if mollifying is needed at all? This is the topic of the
paper.

1.2 Main results

Given the setting and methodology described above, our overarching goal is to choose
a regularisation parameter β appropriately as a function of the other parameters (i.e.
sa, sr, σ, n, d), so that the reconstruction error when regularising at the order β converges
to 0 as fast as possible as the number of observed data n grows to infinity. Here the

3



reconstruction error is defined by

e(β, σ, n) := sup
f∈F(s,R)

E
[∥∥∥f −Rβ

( n∑
i=1

(yσ)i ϕi

)∥∥∥2]1/2, (2)

where E[·] denotes mathematical expectation w.r.t. the error distributions (ξi)1⩽i⩽n and
F(s,R) is a smoothness class of order s > 0 in L2, with radius R > 0 (a Sobolev ball, see
the precise definition (10)). It is common statistical knowledge, see e.g. [Tsy08], [GN90],
that a good choice for β as a function of other parameters is given by

β⋆(σ, n) ∼ σ2/(2sr+d)n−1/(2sr+d). (3)

as soon as s ⩾ sr. The purpose of this work is to discuss regularisation strategies as
functions of all involved parameters and to compare them to the common one given by (3),
or even to the possible strategy of possibly not regularising at all (i.e. when β = 0 and
then R0 = Id).

We focus on a sufficiently simple and tractable setting as follows:

• We consider functions with sufficiently many derivatives vanishing on the boundary
of Ω thus avoiding inessential boundary issues,

• We quantify smoothness with a number of derivatives in L2, hence considering
Sobolev balls in Hs

0(Ω),

• We quantify estimation and reconstruction in integrated L2-error loss,

• We restrict regularisation to the case of convolution with a kernel possessing vanishing
moment properties.

The modelling framework developed in the present work could also serve as a stepping
stone to analyse similar issues in the context of ill-posed inverse problems, i.e. when one
has access to (noisy approximations of) Af(xi) with A a given compact operator from some
Hilbert space to L2(Ω). When A is associated to an underlying partial differential equation,
discretisation is naturally involved, while regularisation becomes necessary not only to cope
with measurement errors, but also with the ill-posed nature of the problem [EHN96, K+11].

A general estimate

We gather our two main results by means of informal statements; the precise hypotheses
are to be found in Section 2. Our first result gives precise estimate of the error as a function
of all the parameters.

Theorem 1. The error defined in (2) satisfies

e(β, σ, n) ≲ σmin(β−1n−1/d, 1)d/2 + n−sa/d + βsr .

In particular

inf
β>0

e(β, σ, n) ≲

{
σ + n−sa/d if σ ≲ n−sr/d

σ2sr/(2sr+d)n−sr/(2sr+d) + n−sa/d otherwise
.
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These two estimates are given in Proposition 2. The first estimate, valid in the regime
σ ≲ n−sr/d, is obtained in the limit β → 0. This is consistent with what can be achieved by
not regularising, see Proposition 1. The second estimate, valid in the regime σ ≳ n−sr/d,
is obtained by choosing β according to (3).

The effect of not regularising versus regularising via (3)

In order to compare the effect of not regularising versus regularising via (3), we need lower
bounds. We explicitly compare σ and n by writing σ = σ(n) ∼ n−λ/d ∼ hλ. The parameter
λ ⩾ 0 quantifies the noise level, with λ = 0 corresponding to the largest possible noise
level, i.e. when σ is of order 1. In this setting, the two errors we are interested in are given
by

ereg(n) := e (β⋆(σ(n), n), σ(n), n)

and
enoreg(n) := e (0, σ(n), n) ,

corresponding to regularising (via (3)), or not regularising at all, i.e. ignoring the possible
effect of the noise, deemed sufficiently negligible. Theorem 1 establishes the existence of
two regimes, depending on the relative positions of sa and sr. In the case where sa ⩽ sr,
it is always at least as good to regularise by means of the rule (3), see Proposition 4. This
is a rather intuitive result, since regularisation in this case is of higher order, and hence
cannot jeopardise the approximation property associated to discretisation.

The interesting situation is when sa > sr, in which case we uncover regimes when the
option not to regularise is actually better! The interplay between the different parameters
is a bit intricate: it involves the following non-standard threshold

λM := sa +
d

2

(
sa
sr

− 1

)
. (4)

More precisely, we obtain the following regimes depending on λM , as follows.

Theorem 2. Assume that sa > sr. We have

ereg(n) ∼ n−
2λ+d
2sr+d

sr
d and enoreg(n) ∼ n−

λ
d if λ ⩽ sa,

ereg(n) ∼ n−
2λ+d
2sr+d

sr
d and enoreg(n) ∼ n−

sa
d if sa < λ < λM ,

ereg(n) ≲ n−
sa
d and enoreg(n) ∼ n−

sa
d if λ ⩾ λM .

.

Figure 1 gives a schematic description of the situation when sa > sr. It depicts the
order of convergence to 0 of ereg(n) and enoreg(n), respectively, as a function of λ, in the
regime 0 ⩽ λ ⩽ λM . For such values of λ, Theorem 2 yields

enoreg(n) ∼ n−
1
d
min(λ,sa), enoreg(n) ∼ n−

2λ+d
2sr+d

sr
d .
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0 sr sa λM

sr
2sr+d

sa
d

without regularisation β = 0
with regularisation β = β?

to regulariseto regularise not to regularise

Figure 1: For 0 ⩽ λ ⩽ λM , plot of the order of convergence of enoreg(n) and ereg(n) towards
0, as given by Theorem 2. In red, the function is λ 7→ 1

d min(λ, sa), and in blue λ 7→ 2λ+d
2sr+d

sr
d .

Parameters for this figure are chosen to be d = 2, sa = 3, sr = 2, for which λM = 3.5.

The proofs are given in Proposition 5.

Several remarks are in order: 1) Theorem 2 suggests the following alternative when hav-
ing to choose between not regularising versus regularising through (3): regularise through (3)
whenever λ < sr, but do not regularise whenever sr < λ < λM . 2) It is easily seen that
the highest gain in not regularising occurs for λ = sa, value for which

ereg(n) ∼ n−
2sa+d
2sr+d

sr
d enoreg(n) ∼ n−

sa
d

One can hence gain up to the order sa−sr
2sr+d . 3) We also have dependence of our estimates with

respect to the dimension d. In the limit d→ ∞, the regime where regularising through (3)
is optimal reduces to the single value λ ∈ {0}, whereas in the regime where not regularising
is better, it becomes λ ∈ (0, 12(

sa
sr

− 1)). However, the gain in not regularising through (3)
vanishes in the limit d → ∞, as the maximal gain sa−sr

2sr+d converges to 0. 4) Theorem 2
is for instance relevant to the work [FOC21], where finite element methods of order up to
sa = 4 are regularised with nonnegative kernels, whose order cannot exceed (and actually
equals) sr = 2.

Organisation of the paper

In Section 2, we lay out the mathematical framework and provide all the hypotheses
required for our main results Theorem 1 and 2 to hold. Section 3 gathers upper bounds
for the errors either with β = 0 or with fixed β > 0, which lead to Theorem 1. We then
compare the two main strategies, thanks to lower bounds at fixed β; these results are
developed in Section 4 and yield Theorem 2. Finally, Section 5 is devoted to numerical
experiments confirming our theoretical results, by means of examples in dimension d = 1.
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2 Mathematical framework

We work in an arbitrary fixed dimension d ∈ N∗, with Ω a smooth bounded connected
open subset of Rd. We let Hs(Ω) denote the fractional Sobolev space of order s ⩾ 0,
endowed with its natural norm ∥ · ∥s that corresponds (for s ∈ N) to functions having s
distributional derivatives in L2(Ω). The L2(Ω)-norm is written ∥ · ∥ (rather than ∥ · ∥0),
with inner product ⟨·, ·⟩. We let Hs

0(Ω) denote the closure of the space C∞
c (Ω) of infinitely

differentiable compactly supported functions for the ∥ · ∥s norm. For basic definitions and
results on fractional Sobolev spaces, we refer to the classical paper [DNPV12].

2.1 Statistical model and sampling

We wish to reconstruct (equivalently estimate nonparametrically) a function f ∈ Hs
0(Ω) for

s > d/2, from n noisy measurements on a fixed design of n points xi ∈ Ω, with i = 1, . . . , n.
Thanks to the Sobolev injection Hs(Ω) ↪→ C0(Ω) valid for s > d/2 [DNPV12], the sampled
values f(xi) are well-defined. We correspondingly define a sampling operator

En : f ∈ Hs
0(Ω) 7−→ (f(xi))1⩽i⩽n ∈ Rn. (5)

Our noisy measurements are given by the vector yσ ∈ Rn via the data

(yσ)i = f(xi) + σξi = (Enf)(xi) + σξi, i = 1, . . . , n.

Here, measurement noise is modelled by independent random variables σξi, i = 1, . . . , n,
where the ξi are centred with unit variance.

2.2 Discretisation

Recall that the variable h is related to n by h ∼ n−1/d. We sometimes prefer to give our
estimates in terms of h rather than n, since the parameters h and β are homogeneous
and therefore naturally compare. We assume that we are given a discretisation operator
Pn : Rn → L2(Ω) defined by means of basis functions ϕi ∈ C0(Ω), i = 1, . . . , n. via the
reconstruction formula

∀z ∈ Rn, Pnz =
n∑

i=1

ziϕi. (6)

We will throughout assume that the basis functions are positive in a neighbourhood of size
about h around xi, and vanish outside of a larger neighbourhood still of size about h. Our
precise hypothesis reads as follows: there exist m > 0, C > c > 0 independent of i and n
such that

ϕi(xi + hz)

{
⩾ m for |z| ⩽ c

= 0 for |z| ⩾ C.
(7)

All the symbols ≲ and ∼ below should also be understood to be uniform with respect to
i = 1, . . . , n.
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In particular, (7) ensures the inclusion B(xi, ch) ⊂ supp(ϕi) ⊂ B(xi, Ch), where
B(x0, r) = {x ∈ Ω, |x − x0| ⩽ r} denotes the closed Euclidean ball with center x0 and
radius r ⩾ 0. We moreover assume

∥ϕi∥L∞(Ω) ≲ 1, (8)

which in turn entails the estimates1

∥ϕi∥ ∼ hd/2 and ∥ϕi∥L1(Ω) ∼ hd. (H∼
ϕ )

Note that the estimates (H∼
ϕ ) are those essential for our results. We introduce the sufficient

hypotheses (7) and (8) explicitly because they are more easily checked in practice.

We have a natural notion of accuracy of reconstruction that combine both the discreti-
sation operator Pn defined in (6) and the sampling operator En defined in (5).

Definition 1. We say that the discretisation-sampling pair (Pn, En) has order (at least)
sa > 0, if for every s ⩾ sa,

∥PnEnf − f∥ ≲ ∥f∥sahsa . (9)

for every f ∈ Hs
0(Ω). We say that the discretisation-sampling pair (Pn, En) has order

exactly sa if
sup

f∈F(s,R)
∥PnEnf − f∥ ∼ hsa , (H∼

a )

for every R > 0, s ⩾ sa.

We use Sobolev balls as smoothness classes:

F(s,R) :=
{
f ∈ Hs

0(Ω), ∥f∥s ⩽ R
}
, R > 0. (10)

It is known that under fairly general hypotheses, Pk finite elements satisfy (H∼
a ) with

sa = k + 1, see for instance [Tho07].

2.3 Regularisation

Pick a smooth and compactly supported kernel K over Rd, that satisfies in particular∫
Rd

K(x) dx = 1.

We let Kβ := β−dK(β−1·), and we note that

∥Kβ∥L1(Rd) ≲ 1, ∥Kβ∥L2(Rd) ≲ β−d/2.

1For the lower bounds, the first inequality of (7) entails
∫
Ω
|ϕi(x)|2 dx ⩾ m2|B(xi, ch)| ∼ hd,∫

Ω
|ϕi(x)| dx ⩾ m|B(xi, ch)| ∼ hd which shows ∥ϕi∥ ≳ hd/2, and ∥ϕi∥L1(Ω) ≳ hd. The uniform com-

pact support given by (7) combined with (8) leads to ∥ϕi∥2 =
∫
Ω
|ϕi(x)|2 dx ≲ |B(xi, Ch)| ∼ hd,

∥ϕi∥L1(Ω) =
∫
Ω
|ϕi(x)| dx ≲ |B(xi, Ch)| ∼ hd.
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For a function f ∈ L2(Ω), we define the convolution

∀x ∈ Rd, (Kβ ∗ f)(x) =
∫
Ω
Kβ(x− y)f(y) dy.

We also assume that K reproduces moments up to the degree sr − 1 ∈ N∗, but does
not reproduce at least one moment of degree sr, i.e.,

∀(r1, . . . , rd) ∈ Nd, 1 ⩽ |r| ⩽ sr − 1,

∫
Rd

xr11 . . . xrdd K(x) dx = 0,

∃(r1, . . . , rd) ∈ Nd, |r| = sr,

∫
Rd

xr11 . . . xrdd K(x) dx ̸= 0.

(11)

Under the above assumptions and if s ⩾ sr, we have

sup
f∈F(s,R)

∥Kβ ∗ f − f∥ ≲ βsr . (12)

In fact, the estimate above is sharp thanks to the assumption that K does not reproduce
at least one moment of degree sr. In other words, for all s ⩾ sr and R > 0 we have

sup
f∈F(s,R)

∥Kβ ∗ f − f∥ ∼ βsr . (H∼
r )

Although these estimates are common, one is usually interested in the upper bound (12),
with Ω = Rd and integer parameter s. For completeness, we thus provide a proof of (H∼

r )
in our setting, which we postpone to Appendix A.

Remark 1. Many common kernels (integrating to 1) are nonnegative (K ⩾ 0) and sym-
metric (K(x) = K(−x) for all x ∈ Rd). The nonnegativity assumption prevents one from
numerical instabilities. However, these kernels are of order sr = 2 and not more since some
moments of order 2 are not reproduced.

Recapitulating our assumptions

From now on, we always assume that (H∼
ϕ ), (H∼

a ) and (H∼
r ) hold. Some of the results will

in fact require weaker hypotheses, for instance in the form of upper bounds ≲ rather than
equality ∼. The proof of each specific result will make it clear what is actually necessary
for the claimed statement to hold.

2.4 Reconstruction errors

The case with no regularisation

The first estimator is given by Pnyσ. The corresponding error is

enoreg(σ, h) := sup
f∈F(s,R)

E
[
∥Pnyσ − f∥2

]1/2
. (13)
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The case with regularisation

The second estimator consists in adding regularisation, the estimator being now given by
Kβ ∗ (Pnyσ). The corresponding errors is

eoptreg(σ, h) := inf
β>0

e(β, σ, h),

with
e(β, σ, h) := sup

f∈F(s,R)
E
[
∥Kβ ∗ Pnyσ − f∥2

]1/2
.

3 Upper estimates

3.1 The case with no regularisation (β = 0)

We first analyse the error enoreg(σ, h), associated to the estimator Pnyσ when no regulari-
sation is involved.

Proposition 1. Assume that s ⩾ sa. For every R > 0, we have

enoreg(σ, h) ≲ σ + hsa .

Proof. Writing

Pnyσ − f = (Pnyσ − Pny) + (Pny − f) = Pn(yσ − y) + (PnEnf − f) ,

since the random variables ξi are centred with unit variance, we obtain

E
[
∥Pnyσ − f∥2

]
= E

[
∥Pn(yσ − y)∥2

]
+ ∥PnEnf − f∥2

= σ2E
[∥∥ n∑

i=1

ξiϕi
∥∥2]+ ∥PnEnf − f∥2

= σ2
n∑

i=1

∥ϕi∥2 + ∥PnEnf − f∥2 .

Owing to ∥ϕi∥2 ≲ hd which follows from (H∼
ϕ ) we derive

E
[
∥Pnyσ − f∥2

]
≲ σ2hdn+ ∥PnEnf − f∥2 ∼ σ2 + ∥PnEnf − f∥2 .

Using Assumption (9), taking square root and supremum over f ∈ F(s,R), we obtain the
result.
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3.2 The case with regularisation

We now study eoptreg(σ, h), associated with the estimator Kβ ∗ Pnyσ. Note first that
Young’s inequality yields

∥Kβ ∗ f∥ ⩽ ∥Kβ∥L1(Rd) ∥f∥L2(Ω)

and
∥Kβ ∗ f∥ ⩽ ∥Kβ∥L2(Rd) ∥f∥L1(Ω).

Proposition 2. Assume that s ⩾ max(sr, sa). For every R > 0, we have

e(β, σ, h) ≲ σmin(β−1h, 1)d/2 + hsa + βsr . (14)

In particular

eoptreg(σ, h) ≲


σ + hsa if σ ≲ hsr ,

σ2sr/(2sr+d)hdsr/(2sr+d) + hsa otherwise.

The above alternative is obtained by letting β → 0 and β = β⋆(σ, h) respectively, with

β⋆(σ, h) ∼ σ2/(2sr+d)hd/(2sr+d).

Proof. In the same way as in the proof of Proposition 1, we have

E
[∥∥Kβ ∗ Pnyσ − f

∥∥2] = σ2
n∑

i=1

∥Kβ ∗ ϕi∥2 + ∥Kβ ∗ Pny − f∥2 .

The second term may be estimated thanks to (9) and (12). This yields

∥Kβ ∗ Pny − f∥ ⩽ ∥Kβ ∗ (PnEnf − f)∥+ ∥Kβ ∗ f − f∥
⩽ ∥Kβ∥L1(Rd) ∥PnEnf − f∥+ ∥Kβ ∗ f − f∥

≲ ∥PnEnf − f∥+ ∥Kβ ∗ f − f∥
≲ ∥f∥sahsa + ∥f∥srβsr .

Two upper bounds may be derived for the first term, by means of two applications of
Young’s inequality, together with (H∼

ϕ ), namely

∥Kβ ∗ ϕi∥2 ⩽ ∥Kβ∥2L1(Rd) ∥ϕi∥
2 ≲ ∥ϕi∥2 ≲ hd

and
∥Kβ ∗ ϕi∥2 ⩽ ∥Kβ∥2L2(Rd) ∥ϕi∥

2
L1(Ω) ≲ β−d ∥ϕi∥2L1(Ω) ≲ β−dh2d.

The first choice leads to the following bound, valid for any β > 0:

e(β, σ, h) ≲ σ + hsa + βsr . (15)
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The second choice leads to

e(β, σ, h) ≲ σβ−d/2hd/2 + hsa + βsr . (16)

Combining the two estimates, we obtain (14). Let us now minimise (15) and (16) with
respect to β. For β ≲ h, (15) is sharper while for β ≳ h (15) prevails. For (15) we achieve
a minimum or order σ + hsa by letting β → 0. Taking derivatives, (16) is minimal for
β ∼ β⋆(σ, h) with corresponding minimum of order σ2sr/(2sr+d)hdsr/(2sr+d) + hsa . Finally,
β⋆(σ, h) ≲ h if and only if σ ≲ hsr , from which we infer

eoptreg(σ, h) = inf
β>0

sup
f∈F(s,R)

E
[
∥Kβ ∗ Pnyσ − f∥22

]1/2

≲


σ + hsa if σ ≲ hsr

σ2sr/(2sr+d)hdsr/(2sr+d) + hsa else

= min(σ, σ2sr/(2sr+d)hdsr/(2sr+d)) + hsa .

4 Regularisation versus no regularisation

We wish to compare the effect of not regularising (i.e. β = 0) versus regularising, with the
(optimal) choice

β = β⋆(σ, h) ∼ σ2/(2sr+d)hd/(2sr+d). (17)

In order to do so, we establish lower bounds for enoreg(σ, h) defined in (13) and

ereg(σ, h) := e(β∗(σ, h), σ, h).

4.1 Estimates from below

Lemma 1. Assume s ⩾ sa. For every R > 0, we have:

enoreg(σ, h) ∼ σ + hsa .

Proof. Recall the identity

enoreg(σ, h)
2 = σ2

n∑
i=1

∥ϕi∥2 + sup
f∈Fs,R

∥PnEnf − f∥2 ,

from which the result follows thanks to (H∼
ϕ ) and (H∼

a ).

Observe in particular the identity

e(β, σ, h)2 = σ2
n∑

i=1

∥Kβ ∗ ϕi∥2 + sup
f∈F(s,R)

∥Kβ ∗ Pny − f∥2 .

12



Lemma 2. Let s ⩾ max(sr, sa). For every R > 0, we have

e(β, σ, h) ≳ βsr/2(βsr/2 − hsa/2).

Proof. For f ∈ F(s,R), we write

∥Kβ ∗ Pny − f∥2 = ∥Kβ ∗ (PnEnf − f) + (Kβ ∗ f − f)∥2

= ∥Kβ ∗ (PnEnf − f)∥2 + 2⟨Kβ ∗ (PnEnf − f), (Kβ ∗ f − f)⟩+ ∥Kβ ∗ f − f∥2

⩾ 2⟨Kβ ∗ (PnEnf − f), (Kβ ∗ f − f)⟩+ ∥Kβ ∗ f − f∥2

⩾ −2 ∥Kβ ∗ (PnEnf − f)∥ ∥Kβ ∗ f − f∥+ ∥Kβ ∗ f − f∥2

≳ −2 ∥PnEnf − f∥ ∥Kβ ∗ f − f∥+ ∥Kβ ∗ f − f∥2

≳ −2∥f∥sahsa∥f∥srβsr + ∥Kβ ∗ f − f∥2

⩾ −2R2hsaβsr + ∥Kβ ∗ f − f∥2 ,

where we used both (9) and (12). Thanks to (H∼
r ), this yields

sup
f∈F(s,R)

∥Kβ ∗ Pny − f∥22 ≳ −hsaβsr + sup
f∈F(s,R)

∥Kβ ∗ f − f∥22

≳ −hsaβsr + β2sr = βsr(βsr − hsa),

and finally
e(β, σ, h) ≳ βsr/2(βsr/2 − hsa/2).

Remark 2. A more comprehensive understanding of lower bounds for errors at fixed
β > 0 would notably require lower estimates for the norms ∥Kβ ∗ ϕi∥. We were only
able to establish such estimates under restrictive assumptions, namely when K ⩾ 0 and
assuming β = β(h) = o(h). Since this result is only partial and does not happen to
be necessary for the comparison between the two analysed strategies (not regularising or
regularising through (3)), we delay these estimates until Appendix B.

In order to compare enoreg(σ, h) and ereg(σ, h) := e(β∗(σ, h), σ, h) as functions of the
noise level σ, we let

σ = σ(h) ∼ hλ, with λ ⩾ 0.

It follows that
β⋆(σ, h) ∼ σ2/(2sr+d)hd/(2sr+d) ∼ h

2λ+d
2sr+d

now only depends on h. For conciseness, we write β⋆(h) = h
2λ+d
2sr+d .

Both errors now depend on h solely; abusing notation slightly, we write enoreg(h) and
ereg(h), respectively. Under (H∼

a ) and according to Lemma 1,

enoreg(h) ∼ σ(h) + hsa ∼


hλ if λ ⩽ sa

hsa if λ > sa

= hmin(λ,sa).

(18)
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We will also need the following elementary useful facts:

β⋆(h)sr ≲ σ(h) ⇐⇒ h ≲ β⋆(h) ⇐⇒ λ ⩽ sr,

and
hsa ≲ β⋆(h)sr ⇐⇒ λ ⩽ λM

where
λM := sa +

d

2

(
sa
sr

− 1

)
.

We note that if sa ⩽ sr, we may have that λM is negative and λM ⩽ sa ⩽ sr, whereas if
sa > sr, then sr < sa < λM always.

Proposition 3. Assume that s ⩾ max(sr, sa). For every R > 0, we have
ereg(h) ∼ h

2λ+d
2sr+d

sr if λ ⩽ λM ,

ereg(h) ≲ hsa if λ > λM .

Proof. Back to the estimate of Proposition 2, we have

ereg(h) ≲ σ(h)min(β⋆(h)−1h, 1)d/2 + hsa + β⋆(h)sr = min(σ(h), β⋆(h)sr) + hsa + β⋆(h)sr

≲ hsa + β⋆(h)sr ,

and we infer

ereg(h) ≲


h

2λ+d
2sr+d

sr if λ ⩽ λM

hsa if λ > λM ,

It remains to show
ereg(h) ≳ h

2λ+d
2sr+d

sr

whenever λ ⩽ λM . This is a consequence of Lemma 2 which gives

ereg(h) ≳ β⋆(h)sr/2(β⋆(h)sr/2 − hsa/2) ≳ β⋆(h)sr = h
2λ+d
2sr+d

sr

since hsa ≲ β⋆(h)sr under the assumption λ ⩽ λM .

Remark 3. We do not know whether the tighter estimate ereg(h) ∼ hsa is valid for λ > λM
under our set of hypotheses, or if additional realistic assumptions can be made to establish
it.

We now highlight situations where it is strictly more advantageous not to regularise via
the rule (17) and ignore the effect of the regularisation.
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4.2 The case when sa ⩽ sr

Our first result is that such a scenario does not occur whenever sa ⩽ sr.

Proposition 4. If sa ⩽ sr ⩽ s, then for every R > 0,

ereg(h) ∼ h
2λ+d
2sr+d

sr and enoreg(h) ∼ hλ if λ ⩽ λM ,

ereg(h) ≲ hsa and enoreg(h) ∼ hλ if λM < λ < sa,

ereg(h) ≲ hsa and enoreg(h) ∼ hsa if λ ⩾ sa.

In particular, it is strictly better to regularise through (17) whenever λ < sa, in which case
we have

ereg(h) = o(enoreg(h)).

It is better to regularise through (17) whenever λ ⩾ sa, in which case we have

ereg(h) ≲ enoreg(h).

Proof. Recall that λM ⩽ sa ⩽ sr. All cases are obtained by combining Proposition 3 with
the estimate (18).

4.3 The case when sa > sr

In that case, it is indeed possible to find situations where it becomes strictly more advan-
tageous not to regularise via the rule (17) and ignore the effect of the regularisation, a
perhaps surprising result.

Proposition 5. If s ⩾ sa > sr, then for every R > 0,

ereg(h) ∼ h
2λ+d
2sr+d

sr and enoreg(h) ∼ hλ if λ ⩽ sa,

ereg(h) ∼ h
2λ+d
2sr+d

sr and enoreg(h) ∼ hsa if sa < λ < λM ,

ereg(h) ≲ hsa and enoreg(h) ∼ hsa if λ ⩾ λM .

In particular, it is strictly better to regularise through (17) whenever λ < sr, in which case
we have

ereg(h) = o(enoreg(h)).

It is strictly better not to regularise through (17) whenever sr < λ < λM , in which case we
have

enoreg(h) = o(ereg(h)).

Finally, it is better to regularise through (17) whenever λ ⩾ λM , in which case we have

ereg(h) ≲ enoreg(h).
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Proof. Recall that sr < sa < λM . Again, all cases are obtained by combining Proposition 3
with the estimate (18).

As mentioned earlier, we can go further and estimate the level of noise with highest
gain in not regularising compared to regularising in the regime sa > sr. We find it more
transparent to express this gain in terms of sampling size n rather than in terms of the
mesh size h, since n may be regarded as the actual cost of measuring f over the design xi,
i = 1, . . . , n. Recall that σ(h) = σ(n) ∼ n−

λ
d with λ ⩾ 0. The highest gain happens when

λ = sa for which

ereg(n) ∼ h
2sa+d
2sr+d

sr ∼ n−
2sa+d
2sr+d

sr
d , enoreg(n) ∼ hsa ∼ n−

sa
d .

One can hence gain up to a polynomial (in n) factor of order sa−sr
2sr+d which vanishes for

large d. This is consistent with the condition s > d/2 which somehow enforces f to be
smoother as d increases.

5 Numerical simulations

5.1 Setting

We work in dimension d = 1 with Ω = (0, 1). We are mostly interested in situations where
regularisation might be detrimental, i.e, when sr < sa. Hence, we choose kernels of order
sr = 1 and sr = 2 respectively, and approximation methods of order sa = 2 and sa = 3.
These are defined below.

Regularisation

We consider two kernels K and H, given by

K := 1[0,1], and H := 1
21[−1,1].

They satisfy sr = 1 and sr = 2 respectively. The kernel K is not standard: it is not
centred, hence its low order of convergence. We make this rather artificial choice in order
to better illustrate our results which are most visible when the gap sa − sr gets larger,
especially in small dimensions.

Approximation

We consider P1 and P2 finite elements. We make sure to be consistent with our choice
that n represents the number of basis functions. In doing so, the definitions below slightly
differ from usual definitions which have h rather than n as the defining parameter.

P1 finite elements. We let n ⩾ 3 be given. We define h := 1
n−1 , and for i = 1, . . . , n, we

denote xi := (i− 1)h. Defining the shape function

∀x ∈ [0, 1], φ(x) := (1− |x|)1[−1,1](x),
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the basis functions are then given as follows, for i = 1, . . . , n:

∀x ∈ [0, 1], ϕi(x) = φ
(x− xi

h

)
.

These basis functions clearly satisfy (7) and (8), so that (H∼
ϕ ) holds. Furthermore, the

approximation operator PnEn associated to P1 finite elements satisfies sa = 2.

P2 finite elements. We let n ⩾ 3 be an odd interger. We define h := 2
n−1 , and for

i = 1, . . . , n,, we set xi := (i− 1)h2 . Defining the shape functions

∀x ∈ [0, 1], φ(x) := (1− |x|)(1− 2|x|)1[−1,1](x), ψ(x) := (1− 4x2)1[− 1
2
, 1
2
](x),

the basis functions are then given as follows, for i = 1, . . . , n:

∀x ∈ [0, 1], ϕi(x) =


φ
(
x−xi
h

)
if i is odd,

ψ
(
x−xi
h

)
if i is even.

These basis functions clearly satisfy (7) and (8), so that (H∼
ϕ ) holds. The approximation

operator PnEn associated to P2 finite elements satisfies sa = 3.

5.2 Methodology

In order to illustrate our theoretical results, we aim at computing, for a given function
f ∈ Hs

0(Ω) with s > d/2 = 1/2, the two errors for various noise levels σ = σ(h) = hλ,
which corresponds to σ = σ(n) = n−λ/d. More precisely, we are interested in finding how
quickly the two errors

E
[
∥Pnyσ − f∥2

]1/2
and E

[∥∥Kβ⋆(h)Pnyσ − f
∥∥2]1/2

vanish as n grows, as a function of the noise level defined by the parameter λ. Recall
that the regularisation is made with a parameter β chosen to be β⋆(h) given by (17).
Mathematically, for a given choice of λ, a given error is of order n−γ(λ) and our goal
is to estimate the function γ over a given interval for λ. Hence, for a given choice of
approximation method, we have a function λ 7→ γnoreg(λ) defined by

E
[
∥Pnyσ − f∥2

]1/2
∼ n−γnoreg(λ), (19)

and for a given choice of kernel and approximation method, we have a function λ 7→ γreg(λ)
defined by

E
[∥∥Kβ⋆(h)Pnyσ − f

∥∥2]1/2 ∼ n−γreg(λ). (20)

From our theoretical results, recalling that d = 1, we expect

∀λ ⩾ 0, γnoreg(λ) = min(λ, sa), and ∀λ ∈ [0, λM ], γreg(λ) =
2λ+ 1

2sr + 1
sr.
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For λ > λM , we recall our upper bound for the error which translates into the lower bound
γreg(λ) ⩾ sa. When plotting functions γnoreg and γreg, we pay specific attention to the
regime

λ ∈ [0, λM ] =

[
0, sa +

1

2

(
sa
sr

− 1

)]
,

but we will consider the larger interval [0, 5]; the latter contains [0, λM ] in all cases.
When estimating the error without regularisation, we consider both P1 and P2 finite

elements.

When estimating the error with regularisation, we consider all 4 possible scenarios,
corresponding to choosing the kernel to be either K or H, and the approximation method
to be either P1 or P2 finite elements. Note that only in the case where the kernel is H and
with P1 finite elements does one have sr = sa; in all other cases sr < sa.

Estimating orders of convergence

For a fixed choice of λ ⩾ 0, we must evaluate how quickly a given error tends to 0 as
a functions of n. In order to do so, we choose n = 10, 102, 103 (which corresponds to
h ∼ 10−1, 10−2, 10−3 respectively), and compute the slope of both errors in log-log scale.

Estimating expectations

For a fixed choice of n, this means we have to compute the above errors; we evaluate the
expectations by means of 103 draws for the random variables ξi (chosen to be normally
distributed).

Estimating norms

For a given draw, L2-norms ∥ · ∥ are estimated by Simpson’s rule with 105 points, in order
to ensure accurate estimates that do not compete with the expected orders of convergence.

Estimating convolutions

Let us stress that other integrals are involved in the process of computing the error, when
regularisation is involved. Those are inherent in evaluating the convolution Kβ ∗ Pnyσ,
which in turn boils down to evaluating all functions Kβ ∗ ϕi, i = 1, . . . , n. In order for
these computations to not impact the orders of convergence, we analytically rather than
numerically compute these functions. This is possible for our choices of kernels and finite
element functions.

In practice, however, these integrals would be computed with errors. All other things
being equal, these errors can only further reduce the quality of regularising compared to
not regularising.
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Figure 2: No regularisation: plot of λ 7→ γnoreg(λ) defined by (19). The left panel shows the
case of P1 finite elements, the panel right that of P2 finite elements. In both cases, the theoretical
curve λ 7→ min(λ, sa) is plotted in orange against the numerically obtained curve, in magenta.

5.3 Numerical results

For all numerical experiments, we choose

f : x 7→ (1− x)2 sin2(4x) (21)

which satisfies f ∈ Hs
0(Ω) with s > 3, so that we will always have s ⩾ sr as well as s ⩾ sa.

P1 and P2 finite elements

The orders of convergence obtained numerically match the theoretical ones, as shown by
Figure 2. One indeed expects the function γnoreg(λ) : λ 7→ min(λ, sa) and this is exactly
what is found.

The kernel K with P1 and P2 finite elements

In this case, sr = 1, with either sa = 2 or sa = 3. In the case of P1 finite elements, one has
λM = 2.5, while in the second λM = 4. The orders of convergence obtained numerically are
a good match to the theoretical ones, as shown by Figure 3. The match is almost perfect
in the P1 case. In the second case of P2 finite elements, discrepancies may be observed as
λ approaches λM = 4.

The kernel H with P1 and P2 finite elements

In this case, sr = 2, with either sa = 2 or sa = 3. In the first case, one has λM = sr = sa =
2, while in the second λM = 3.25. The orders of convergence obtained numerically are a
good match to the theoretical ones, as shown by Figure 4. In both cases, there is little
difference between the two theoretical curves, making it more difficult to clearly distinguish
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Figure 3: Regularisation with kernel K: plot of λ 7→ γnoreg(λ) defined by (19), with regu-
larisation through the kernel K. The left panel shows the case of P1 finite elements (λM = 2.5),
the panel right that of P2 finite elements (λM = 4). In both cases, the theoretical curves without
regularisation λ 7→ min(λ, sa) and with regularisation λ 7→ 1

3 (2λ+1) are plotted in orange and blue,
respectively. The numerically obtained curve (with regularisation through K) is plotted in green.

Figure 4: Regularisation with kernel H: plot of λ 7→ γreg(λ) defined by (19), with
regularisation through the kernel H. The left panel shows the case of P1 finite elements
(λM = 2), the panel right that of P2 finite elements (λM = 3.25). In both cases, the
theoretical curves without regularisation λ 7→ min(λ, sa) and with regularisation λ 7→
2
5(2λ + 1) are plotted in orange and blue, respectively. The numerically obtained curve
(with regularisation through H) is plotted in green.
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the numerically-built curve from the two theoretical ones.

In this 1-dimensional setting, the actual improvement obtained by not regularising
whenever this is superior to the regularisation by (3) is hardly visible at the level of
reconstructions. This is why we do not provide examples of such reconstructions.
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A A proof of the estimate (H∼
r )

We here prove the estimate (H∼
r ). We let s ⩾ sr.

Lower bound

We start with the easiest part, namely the lower bound, which comes from the assumption
that K does not reproduce one moment of order sr, which we denote P (x) = xr11 . . . xrdd
with r1 + . . . + rd = sr. Without loss of generality, we may assume that 0 ∈ Ω and we
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consider the function f = χP where χ ∈ C∞
c (Ω) equals 1 in a neighbourhood of 0. Hence

we have f ∈ Hs
0(Ω).

For β small enough and a sufficiently small neighbourhood of 0 (which we denote by Ω0)
we may write Kβ ∗ f(x)− f(x) = Kβ ∗ P (x)− P (x) for all x ∈ Ω0, where we use that K
has compact support. For x ∈ Ω0 and β small enough so that β−1(x− Ω) ⊂ supp(K) for
all x ∈ Ω0, we have

Kβ ∗ P (x)− P (x) =

∫
β−1(x−Ω)

K(u)P (x− βu) du− P (x)

=

∫
supp(K)

K(u)P (x− βu) du− P (x).

When expanding the product P (x − βu) = (x1 − βu1)
r1 . . . (xd − βud)

rd and integrating
against K, all terms but two vanish since K reproduces moments up to order sr − 1, and
we are left with

Kβ ∗ P (x)− P (x) =

∫
supp(K)

K(u)(P (x) + (−1)sdβsrP (u)) du− P (x)

= P (x)

(∫
supp(K)

K(u) du− 1

)
+ (−1)sdβsr

∫
supp(K)

K(u)P (u) du

= (−1)sdβsr
∫
supp(K)

K(u)P (u) du,

where the last constant appearing is non-zero by assumption. As a result, we may write

∥Kβ ∗ f − f∥L2(Ω) ⩾ ∥Kβ ∗ f − f∥L2(Ω0) ≳ βsr .

Uo to changing f to R
∥f∥sr

f , we thus have found some f ∈ F(s,R) such that ∥Kβ ∗f−f∥ ≳
βsr , and it follows that

sup
f∈F(s,R)

∥Kβ ∗ f − f∥ ≳ βsr .

Upper bound

Now let f ∈ Hs
0(Ω). We start with the case of Ω = Rd. For x ∈ Rd, we have

Kβ∗f(x)−f(x) =
∫
Rd

(f(x− βy)− f(x))β−dK(β−1y) dy =

∫
Rd

(f(x− βy)− f(x))K(y) dy.

Since K has ⌊s⌋ vanishing moments, we may replace f(x) by the Taylor polynomial of f
of order ⌊s⌋ at the point x, evaluated at −βy, which we denote P⌊s⌋(x,−βy). Hence we
find

f(x)−Kβ ∗ f(x) =
∫
Rd

(
f(x− βy)− P⌊s⌋(x,−βy)

)
K(y) dy.
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Next, we apply Minkowski’s integral inequality (for the Lebesgue measure dx and the
measure |K(y)| dy) to obtain

∥f −Kβ ∗ f∥2L2(Rd) =

∫
Rd

∣∣∣∣∫
Rd

(
f(x− βy)− P⌊s⌋(x,−βy)

)
K(y) dy

∣∣∣∣2 dx
⩽
∫
Rd

(∫
Rd

∣∣f(x− βy)− P⌊s⌋(x,−βy)
∣∣ |K(y)| dy

)2

dx

⩽

(∫
Rd

(∫
Rd

∣∣f(x− βy)− P⌊s⌋(x,−βy)
∣∣p dx)1/2

|K(y)| dy

)2

=

(∫
Rd

∥∥f(· − βy)− P⌊s⌋(·,−βy)
∥∥
L2(Rd)

|K(y)| dy
)2

.

We may now use the estimate for the remainder term in the Taylor expansion [dTGCV20],
which for a function in f ∈ Hs(Rd) reads

∀z ∈ Rd,
∥∥f(· − z)− P⌊s⌋(·, z)

∥∥
L2(Rd)

≲ |z|s∥f∥Hs(Rd).

We end up with

∥f −Kβ ∗ f∥L2(Rd) ≲ βs
(∫

Rd

|y|s|K(y)| dy
)
∥f∥2Hs(Rd) ≲ βs∥f∥Hs(Rd) ≲ βsr∥f∥Hs(Rd),

where we used s ⩾ sr. The result is proved for Ω = Rd. It remains to consider the case
where Ω is a smooth domain. For f ∈ Hs

0(Ω), its extension f̃ by 0 to the whole of Rd

satisfies f̃ ∈ Hs(Rd), in which case one may use the above estimate∥∥∥Kβ ∗ f̃ − f̃
∥∥∥
L2(Rd)

≲ ∥f̃∥Hsr (Rd)β
sr = ∥f∥srβsr .

This in turn leads to a bound for the error between Kβ ∗ f and f in L2(Ω),

∥Kβ ∗ f − f∥ ⩽
∥∥∥Kβ ∗ f̃ − f̃

∥∥∥
L2(Rd)

≲ ∥f∥srβsr ,

and concludes the proof.

B Further estimates

Lemma 3. Assume that (7) holds, and that K ⩾ 0. Then if β = β(h) = o(h), there holds
∥Kβ ∗ ϕi∥ ≳ hd/2.

Proof. Let 0 < r < c be fixed with c given by (7). We also pick M > 0 such that K(z) = 0
for |z| > M . Let us evaluate Kβ ∗ϕi(x) for x ∈ B(xi, rh)∩Ω. For any y ∈ Ω, we shall prove
that Kβ(x− y) > 0 =⇒ y ∈ B(xi, ch). Indeed, the first condition imposes |y − x| ⩽Mβ,
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hence |y − xi| ⩽ |y − x| + |x − xi| ⩽ Mβ + rh ⩽ ch for h small enough since β = o(h).
Owing to K ⩾ 0, this allows us to write for x ∈ B(xi, rh)

Kβ ∗ ϕi(x) =
∫
Ω
Kβ(x− y)ϕi(y) dy ⩾ m

∫
Ω
Kβ(x− y) dy = m

∫
β−1(x−Ω)

K(z) dz.

For a given x ∈ B(xi, rh), β−1(x − Ω) contains a ball of the form {z ∈ Rd, |z| ⩽ εβ−1h}
for some ε small enough, and since 1 = o(β−1h), the latter ball contains the support of K
for h small enough, leading to

Kβ ∗ ϕi(x) = m

∫
β−1(x−Ω)

K(z) dz ≳ m

∫
Rd

K(z) dz ≳ 1.

where ≳ is uniform with respect to x ∈ B(xi, rh). We conclude that

∥Kβ ∗ ϕi∥2 ⩾
∫
B(xi,rh)

|Kβ ∗ ϕi(x)|2 dx ≳ |B(xi, rh)| ∼ hd.

Lemma 4. Under the assumptions of Lemma 3, if β(h) = o(h), we have

e(β(h), σ, h) ≳ σ.

Proof. This is a direct consequence of Lemma 3, since one then has

e(β, σ, h)2 ⩾ σ2
n∑

i=1

∥Kβ ∗ ϕi∥22 ≳ σ2
n∑

i=1

hd = σ2nhd ∼ σ2.
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