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Abstract

In this work we address the problem of finding serendipity versions of approximate de Rham
complexes with enhanced regularity. The starting point is a new abstract construction of general
scope which, given three complexes linked by extension and reduction maps, generates a fourth
complex with cohomology isomorphic to the former three. This construction is used to devise new
serendipity versions of rot-rot and Stokes complexes derived in the Discrete de Rham spirit.
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1 Introduction

In this work we address the question of finding serendipity versions of discrete de Rham complexes
with enhanced regularity. The starting point is a new construction of general scope which, given three
complexes connected by extension and reduction maps in the spirit of [14], generates a fourth complex
with cohomology isomorphic to the former three.

In the context of finite elements, the word “serendipity” refers to the possibility, on certain element
geometries, to discard some internal degrees of freedom (DOFs) without modifying the approximation
properties of the underlying space; see, e.g., [3, 18] for recent developments in the context of the
approximation of Hilbert complexes. In the context of arbitrary-order polyhedral methods, serendipity
techniques were first developed in [5] to build a reduced version of the nodal (H 1—conforming) virtual
space. Similar ideas had been previously followed in [11] to reduce the number of element DOFs in the
framework of discontinuous Galerkin methods and in [17] to eliminate element DOFs in hybrid finite
volume methods; see also [16] on this subject.

When applying serendipity techniques to a discrete complex rather than a single space, one must
make sure that the elimination of DOFs does not alter its homological properties. Compatible serendipity
techniques to reduce the number of face DOFs in virtual element discretizations of the de Rham complex
have been developed in [4, 7], where a direct proof of local exactness properties was provided. A variation
of the discrete complex in the previous reference has been recently proposed in [6], where links with
Discrete de Rham (DDR) methods have also been established. A systematic approach to serendipity
for polyhedral approximations of discrete complexes, including the elimination of both element and face
DOFs, has been recently proposed in [14] and applied to the DDR complex of [13] (see also [15] for
preliminary developments and [8] for an extension to differential forms).

In practical applications, Hilbert complexes different from (but typically linked to [2]) the de Rham
complex are often relevant. Examples include: the rot-rot complex, which naturally arises when con-
sidering quad-rot problems; the Stokes complex, relevant for incompressible flow problems; the div-div
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complex, appearing in the modeling of thin plates. Discretizations of such complexes in the DDR spirit
have been recently proposed in [10], [19], and [12], respectively. To this date, however, the literature on
serendipity techniques for advanced Hilbert complexes is extremely limited. An example in the context
of polyhedral methods is provided by [9], where a serendipity version of the DDR div-div complex is
proposed and studied. The goal of the present work is to fill this gap by proposing a general construction
that makes it possible to derive in a systematic way a serendipity version of an advanced discrete complex
whenever a serendipity version of the underlying de Rham complex is available. The construction is
applied to the derivation and study of discrete versions of the discrete rot-rot and Stokes complexes of
[10, 19].

The rest of this work is organized as follows. In Section 2 we present the abstract construction.
The discrete de Rham complex of [13] along with its serendipity version of [14] are briefly recalled in
Section 3. Serendipity versions of the rot-rot complex of [10] and of the Stokes complex of [19] are
derived and studied in Section 4 and 5, respectively. Section 4 also contains numerical experiments
comparing the performance of the serendipity and original rot-rot complexes on a quad-rot problem.

2 An abstract framework for serendipity complexes with enhanced regularity

In this section we present an abstract framework that, given three complexes linked by suitable reduction
and extension operators, allows one to construct a fourth complex with cohomology isomorphic to the
others. The application that we have in mind is the construction of serendipity versions of the de Rham
complex with enhanced regularity.

2.1 Setting

We consider the situation depicted in the following diagram, involving three complexes (W;, 9;);, (Wi R E?:) is
and (V;, d;);

””””” > Wi Wipr —m7777-7>
/7\ 17\
EVV, ’\ > EVVi RVVHI \ > EWL+1
\\ ai \
********** > Wi Wisg ---------> (2.1)

The complexes (W;, d;); and (Wi, c’9\,~) ; are linked by linear extension and reduction operators E, : Wi —
W; and Rw, : W; — W; that meet the following assumption.

Assumption 1 (Properties of Ew, and ﬁm). It holds:
(AD (RW.EW,), o5, = 1dicer -

(A2) (Ew,,Rw,, —Idwi)(Ker d1) € Im(8;).
(A3) Rw,,,0; = 0;Rw, and E, 0; = &;E,.

By [14, Proposition 2], Assumption 1 guarantees the cohomologies of the complexes (W;, d;); and
(W;, 0;); are isomorphic. Additionally, the upper diagram in (2.1) is commutative and we have:

—~

d; = Rw,,,0;Ew,. (2.2)



Examples of complexes (W;, 9;); and (Wi, (’9\,-),' and of the corresponding reduction and extension operators
that match Assumption 1 are provided by the two- and three-dimensional discrete de Rham complexes
(3.4) and (3.8) below and their serendipity versions recalled in Section 3.

In the applications of Sections 4 and 5 , (V;, d;); is an extended version of (W;, d;); with enhanced
regularity, which is linked to (W;, d;); by the linear extension and reduction operators &; : W; — V; and
Ri : Vi el Wl‘.

Assumption 2 (Properties of &; and R;). It holds:
(B1) R;&E; = 1dw,.

(B2) (Ei+1Riv1 — Idv,,, ) (Ker d;y1) C Im(d;).
(B3) Riy1d; = 0;R; and E;410; = d;E,;.

Remark 3 (Isomorphic cohomologies). Notice that property (B1) is stricter than (A1) since it requires R;
to be a left inverse of &; on the entire space W; and not only on Ker d;. Accounting for this remark and
invoking again [14, Proposition 2], it is easy to see that the cohomologies of (V;, d;); and (W;, 9;); are
isomorphic. As noticed above, the latter is, in turn, isomorphic to the cohomology of (VT/,-, 5,),

The complex (V;, d;); can be illustrated by the discrete rot-rot complex (4.5) or the discrete Stokes
complex (5.5), respectively discussed in Sections 4 and 5 below.

Lemma 4 (Decomposition of V;). Assume (B1) and let
C; = KerR;. 2.3)
Then, we have the following direct decomposition:
Vi=&W; e C;. 2.4)
Under assumption (B3), this decomposition is compatible with d;, in the sense that
diEiW; C E1qWiyq and d;C; C Ciyg. 2.5

Proof. By (B1), R; is surjective and &; is injective. As a consequence of the latter property, |W;| = |&; Wi,
where | - | denotes here the dimension of a vector space. By the rank-nullity theorem, we can also write
|C;i| = Vil = | Im(R;)| = |Vi| — |W;|, where the conclusion follows from the surjectivity of R;. Thus,
|Ci| +|E:Wi| = [Vi| — [Wi| + [W;| = |V;], and this gives

Vi=&W;+ (i,

thus proving (2.4).

Let us now prove that the sum in the above expression is direct. To this purpose, let v € & W; N C;.
Since v € C;, R;v = 0. Since v € E;W;, on the other hand, v can be written as &;v,, for some v,, € W;,
so R;E;ivy, = 0. By (B1), vy, =0, s0v = &;0 =0 (since &; is linear). As a result,

EW,NGC; = {0}

Now, Ri;1d;C; (B=3) 0;R;C; (253) 0, giving that d;C; C C;;1. On the other hand, d;&;W; (B=3) Eir10;W;,

hence d;E;W; € &;41Wiy1. This concludes the proof of (2.5). O



2.2 Construction of a serendipity complex with enhanced regularity
The goal of this section is to construct a new complex (171-, (Z) with operators
Ey, : V, > Vi, Evi Vio Vi, & WiV, R VoW,

that verify conditions similar to the ones in Assumptions 1 and 2, so that (‘7,-, cz-) has the same cohomology
as the three other complexes. The construction is illustrated in the following diagram:

i
”””” i Wi > Wiyl -2
—~ - Y -
’ 1E\w. 4 h
RW;/ i Rw,,,, EW,
/ ! |~ /
v i » 1
~ I i ~ I
ffffffff W Wit -=-7--
N | n |
I I
/I Rl | Si /I Rl+1 | 8i+1
1 1 1 |
I \ I \
—~ 1 — \ — 1 — \
. \ . . \
Rl : 81 \ Rl+1 : 81+1 \ (26)
1 \ dil \
\ \
Y ; Vvl \ “Vi4l T ’
Vo i v e
\ I ¢
\ R /EV, RVi 1//E‘/l+1
v/, e v
\ \
—~ i —~
”””” Vi *Viep

By Lemma 4, a generic element v € V; can be written as v = &;v,, + v, with (vy,,v.) € W; X C;. We
introduce the projector Il¢, onto C; such that, for any v = E;v,, + v,

Hc,v = ve. 2.7)
Notice that, by definition,
I, & = 0. (2.8)
In addition, using the compatibility expressed by (2.5),
I, div =dIc,v, (2.9)
as can be checked writing Ilc,,, d;v = Ilc,,, di(Eivy +ve) =, (di&ivy +dive) @ dive @ dillc,v.

Definition 5 (Complex (\71-, d;), extension and reduction operators). The spaces and differential of the
new complex are respectively given by

Vii= 7= (B o)+ T € Wi and ¥, € Gif, (2.10)
and _ ~
45 = (37, div,) for all T = (9, 7,) € V. @.11)

A

The operators gi : W, — \7,, ﬁ Vi — W,, Ey, : ‘7, — V;, and Evf Vi — \7, relating this new
complex to (Wi, 0;); and (V;, d;);, respectively, are defined as follows:

EVy = (D, 0) for all v, € W, (2.12a)
7’%}-? =, forall v = (Vy,, V) € Vi, (2.12b)
Ey,V = &Ew, v, + V. forall v = (V,,,7,) € V;, (2.12¢)
Ry,v = (Rw,Riv,TIc,v) forall v € V;. (2.12d)



Lemma 6 (Commutation properties). Under Assumptions I and 2, the operators defined by (2.12) satisfy
the following relations:

Rw,R; = RiRy,, (2.13a)
ERw, = Ry, &, (2.13b)
Ew,R; = RiEy,, (2.13¢)
EEw, = Ev.&;, (2.13d)

OiR; = Risid; (2.13¢)

Proof. (i) Proof of (2.13a). For all v € V;, we have

2. 12d) Q2. 12b)

ﬁik\Vi R (Rwﬂ v, HC V) Rwﬂ V.
(>ii) Proof of (2.13b). For all v,, € W;, it holds
~ (2.120) (B1),(2.8) =~ (2.12) =
Ry, Evyy (Rw;RiE v, T, Eivie) = (Rwvig,0) =" EiRw, vy
(i) Proof of (2.13c). For all v = (¥, V) € V;, we have:
5 < (2.120) (B1) 2.120)

EWiRl EW Vyw = QSEWvW+RVC—R(8EWvW+VC) REvv

where we have additionally used the fact that v, € C; to add R;v. = 0 in the right-hand side of the second
equality and the linearity of R; in the third equality.

(iv) Proof of (2.13d). For all v,, € Wi, we can write

S (212 2.120)

EVl.SivW Ev( W,O) 8 EW,VW
(v) Proof of (2.13e). Forallv = (v,,, V) € V:, we have:
G R 39, L R (3. di5e) L Rindm, :

Theorem 7 (Homological properties for (V;, d;); and (\7,-, j,-)). Under Assumptions 1 and 2, the operators
Ry, and Ev, satisfy the following properties:

(I?ViEvi)mer =Ty 7. (2.142)
(Ev,,,Rv,,, —Idy,,,)(Ker diy1) € Im(d;), (2.14b)
RV d = diRV,j and EVi+1 di = thVl (2140)

Proof. (i) Proof of (2.14a). Let v = (¥, V) € Ker d;. We have

2120 &

RViEVi(vw,vc) RV,(8 EWVW+V(,)

L9 (RW RiEEw, vy, ¢, (8 Ew, vy + VC))
(RW,-EWwa,Vc)

(VW, VC)

B, (27)

(AD



where we have used the linearity of R; along with R;v. = 0 (since v, € C;) in the second equality,
while the use of (A1) in the fourth equality is possible since v,, € Ker d;, as can be checked writing

S @12 25 @13 ~_ . . - -~ . .
(3l-vw @120 O RV ehog Ri+1d;v = 0, the conclusion being a consequence of v € Ker d; and the linearity
of R,‘+1.

(i) Proof of (2.14b). Let

(24 .
=" Eirvw + v € Kerd;y1 with (v, v.) € Wigq X Ciyq.

We write

Evy, Ry,,,v—-v =Ey, Ry, (Eivw +ve) = (Eip1v +ve)

2. 12d)
EV,+1 (RW,+1 i+1 (81+1Vw + Vc) HC, (81+1VW + Vc)) (8i+lvw + Vc)
2. 7)
EVL+1 (RW,+1 Rir1Eis1V, Vc) (8i+lvw + vc)
. (2.15)

= EV+1 (RWHl Vi, Vc) (8i+lvw + Vc)
(2.12¢)
= 81+1EW1+1RW Vi + Ve = (Eir1vw +ve)
- 81+1 (EWH.l Wi Vw — VW)’

where, in the third equality, we have additionally used the fact that R;.1v. = O since v, € Ciy1. We

] B1 T
next notice that R;;1v = Riy1(Eixivi + ve) = Riz1Eiv1vw Y Vy. This implies, in turn, d;41vy,, =

0i:1Ris1Vv & Rivadiz1v = Riz20 = 0 since v € Kerd;;1 and R;;9 is linear by definition, giving that
vy € Ker ;. We can therefore use Assumption (A2) on Ew,,, Rw,,, vy, —V,, in (2.15) to infer the existence
of g € W; such that
= (B3)
EV[+1RV5+1V -V = 8,‘+18iq = di(o)iq S Im(d,)

(>ii1) Proof of (2.14c). For all v € V;, we have

(2.12d)

EV[+1div (RW1+1 i+1diV, HC;+1d v)

) (Rw,.,0:Riv. I,

(A3), 29)

diV)

i+1

(81-RW‘ R,-v, diHc.v)

@ d;(Rw,Riv, Tlc,v)

212d -~ =
( )dRV

Forallv = (Vy,V¢) € V;:, on the other hand, we have:

~_ (.11 -
adiv ="Ey, (0ivy,dive)

(2.120) ~_ -
= &EinEw, 0vy +div,

A3), (B3
BB & Ew, Ty + div,

2.120)
d; iEv, (VW’ Vc)
where the conclusion additionally uses the linearity of d;. O

Corollary 8 (Isomorphism in cohomology). Under Assumptions 1 and 2, the cohomologies of all the
complexes in diagram (2.6) are isomorphic.



Proof. Theorem 2.14 gives all the properties needed to invoke [14, Proposition 2] and prove that the
cohomology of the complex Vi, d; i)i is isomorphic to that of (V;, d;);. The latter is, on the other hand,
isomorphic to both the cohomologies of (W;, d;) and (Wl, 6,)1 (see Remark 3). O
3 The discrete de Rham complex and its serendipity version

In this section we recall the Discrete De Rham (DDR) complex of [13] and its serendlplty version
(SDDR) of [14]. These complexes will respectively play the role of (W;, d;); and (W,, 8 ); in (2.6) for the
applications of the following sections. We only give a brief overview of the construction for the sake of
conciseness and refer to [13, 14] for additional details.

3.1 Local polynomial spaces and L>-orthogonal projectors

For a polytope T; embedded in R” with n > d and an integer £ > 0, we denote by P*(T}) the space
spanned by the restriction to 7; of n-variate polynomials. Introducing the boldface notation for the space
of tangential polynomials P¢(T,;) = P¢(Ty;R?) for d € {2, 3}, the following direct decompositions
hold (see, e.g., [1]):
PUT) = G (Tr) & G (To)
with G/(T») = grady, P (T») and G/ (T2) = (x —x7,) P! (T),
where grady, denotes the tangential gradient when T3 is embedded in R3 and v* is obtained rotating v
by 7,
¢ ¢ .t
PT3) = G (T3) ® G~ (T)
with G (T3) = grad P (T3) and G/ (T3) = (x — x7,) x P71(T3),
and, for d € {2, 3},

P(Ta) = RU(Ty) & R (Ty)
with R (T) = roty, P+ (Ty) and RS (Ty) = (x — x7,)P 1 (Ty),
where rotr, = grad%2 and rotz, = curl.
We extend the above notations to negative exponents ¢ by setting all the spaces appearing in the de-

compositions equal to the trivial vector space. Given a polynomial (sub)space X¢(7}), the corresponding
L?-orthogonal projector is denoted by nﬁ( T, Boldface font will be used when the elements of X¢(T})

are vector-valued, and, for X € {R, G}, ﬂ(j\’,de denotes the L2-orthogonal projector on X (T}).
3.2 The two-dimensional discrete de Rham complex
3.2.1 Spaces

Given a two-dimensional polygonal mesh My, we denote by Mo n, M1, and Ma 5, respectively, the
set of vertices Ty, edges 71, and elements 75 of the mesh. Let k > 0 be a given polynomial degree and,
for all T, € My p, ng, and s7, two integers > —1 that we collect in the vectors n = (n7,)7,e My, and
s = (57,)Tye M, ,- The boldface notation is dropped when the values in n and s are all equal.

We define the following discrete counterparts of H' (), H(rot; Q), and L?(Q):

Wenan = { = ((@1)T2e Mo (a1)T1e My > (T Toe Mo 1)
qr, € PpIT2 (TQ) for all T> € MQ,h,
gr, € P*H(T) for all Ty € My,

qr, € Rforall Ty € Mo,h},

7



s,k — _ .
Ecurl,h " {Kw,h - ((V(R,Tz’v;%,Tg)TzeMz,h’ (VTl)TleMl,h) :
VR.T, € R*=1(T;) and v‘;e’TZ € RE*12(T,) for all T, € Mo,

and vy, € PR(Ty) forall Ty € Ml,h},

W£2,h = Pk (MQ,h),

where PX(Ma,j,) denotes the space of broken polynomials on Ms j, of total degree < k. The restriction
of wg;: 4, to an element Ty, d € {1,2}, is obtained collecting the components on 7y and its boundary

and is denoted by K;’;j AT, Similar conventions are used for the restriction of the spaces that will appear
in the rest of the paper as well as their elements.

3.2.2 Discrete vector calculus operators

k-1,k . k . . .
For any edge 71 € M 1, and any 4, € Egra 41 the edge gradient G, 4z, 18 defined as the derivative
k+1

along 77 of the function Y1, 4y € P*+1(T)) such that ygfqu (x1,) = gr, for any vertex Ty of T; of
—11 —11

: k=1 k1, _ : k . yk-1.k k
coordinates x7, and 7T7>’T1’)/T:' 4y, =41:- We next define the gradient GT2 : Egra ot P*(T5) and the

scalar two-dimensional potential ygrl : E;;}i’% — Pk1(Ty) on T, such that, for all 4, € w{g‘;{k&,
£l —_— 2 t]

/ Gljiqu V= _/ qr, diVF v+ Z WT, T, / ’y;{":—qu (V . nTQTl) Vv € Pk(T2)a
T2 - T TieMiT, I -

k+1 . _ k k+1
/ ’)/TQ qT leTQ V= _/ GT2 qT v+ Z wT2T1 / 7T1 qT (v : nTQTl)
T —72 T2 —2 T -

T M, 3.1)

vy € REH2(1y),
where nr,7, is a unit normal vector to 77 lying in the plane of 7> and wr, 1, the orientation of 77 relative

to T2 such that wr, 1, nr, 7, points out of 5.

i i k . wkk k . .
The two-dimensional scalar rotor C7, : ECWLTQ — P*(Tz) and the corresponding vector potential

'yf T _i‘ullfl ™ P*(Ty) (which can be interpreted as a tangential component when 75 is the face of a
k.k
polyhedron) are such that, for all v, € Wty
k k
/ Crvy, 7= / VRT, " TObT, T — Z WTT, / v, r Vr € PH(Th),
T2 T2 TheMir, L
k k
/ Yenlr, (roty, r+w) = / Cr,yr, 7+ Z wWT,T, / VT r+/ v%’TQ - W
T I T e /\/(LT2 h L (3 2)

Y(r,w) € PK(Ty) x REK(Ty).

We will also need the two-dimensional vector rotor C% : Efufl 7, Pk (T,) such that

L C%KTQ W = \/7: VT, rotw + Z WT, Ty / (VT1 . nTQTI)(w . tTl) Yw € Pk(Tg). (3.3)
2 2

T1 EMI,TQ Tl



3.2.3 DDR complex

The two-dimensional DDR complex of degree k reads

a; d,h o h
k-1,k  —srad, k,k rot, k
DDR2d: Egratd,h Erot h VVL2 n’ G.4)

k—1,k k,k
—grad,h Ecurl h’

where the discrete global gradient 3 4.5 and curl 8" ., are such that, for all (q v,)EW

agrad hq ((TrR TQGTQ 1 ﬂR TQGTQq )TQGMQ h’ (GTl qu)TleMl h)

(@ v im = CTQKT2 forall T, € My .

3.3 The three-dimensional discrete de Rham complex
3.3.1 Spaces

Let us now consider a three-dimensional mesh M, with Mg, My, Map, and Ms, denoting,
respectively, the set of vertices Ty, edges 71, faces T», and elements 73. Given four vectors of integers

—1m = (my)15e My 1 = (M) e Moo P = (PT3)T3e Ms,» a0d S = (ST,)The M, » We define the
following discrete counterparts of H(Q), H(curl; Q), H(div; Q), and L?(Q):

E';ar:i};, = {gw,h = ((ng)TgeM&h’ (QTQ)TQEMQ,;,’ (QTl)TleMl,ha (‘ZTO)TOEMO,;,) :
€ P13 (Ts)for all T3 € M3 p,
qr, € P"2(Ty) for all Ty € My p,
gr, € PH(Ty) for all Ty € My,

and g7, € Rforall Ty € Mo,h},

s,k
Ef:Juil,h = {Kw,h = ((VR,T3, vCR,Tg)T3€M3,h’ (VR,Tz’ v;?,TQ)TzeMz,h’ (VTI)TIEMl,h) :
v, € R¥1(T3) and Ve, € ROPT(T3) for all T € M3 p,
vRr.1, € R*"H(T,) and Ve, € RO2(T) forall T, € My p,

and vy, € Pk(Tl) forall Ty € Ml,h},

k . _ .
Ediv,h = {Kw,h = ((wg,Tzs’ng,Tg)TSEM&h’ (WT2)T26M2,h) :
Wg.Ts € G*1(T3) and wcg’T3 € GOK(T3) forall Ty € M3 g,

and wr, € PK(T,) forall Ty € Mg,T?,},

and

W£2 h Pk(/\/[3 h)

When the values in m, n, p and s are all equal, where we drop the boldface notation. With a little abuse
in notation, for the discrete gradient operator defined by (3.9) below as well as for the tail space WL2 B
we use the same symbols as for the DDR2d sequence: all ambiguity will be removed by the context.



3.3.2 Discrete vector calculus operators

The element gradient G%, : WhoLk=Lk _, P*(Ts), the element curl Cl;s L WhEK P*(T3), and the

grad, T3 —curl, 73
element divergence D% : Egiv r, P k(T3) are respectively defined such that, for all q, € W;}}f ]‘T;l’k ,
, 17 ,
k,k,k k
all Vr, € Ecuﬂjs, and all Wr, € Ediv,Tg,
Grg v=- [ gqpdivy+ Z wnr | Yl (v-ng) W e PHT), (3.5)
, D T: T =Tz
3 3 Toe Mo, 2
k k
/ CT3KT3 Z= / VR, T3 -curlz + Z WT3T, / Yo YT, (z % nTz)
T3 T3 ToeMa 1y I (36)
Vz € PX(T3),
DX =— .grad g + Vg € P(T3) (3.7)
T3KT3 q Wg,T; - 8rad g WT3T, wT, 4 q 3)s .
T3 T3 T;
TQEMQ’TS

where nr, is a unit normal vector to 75 and wr,7, is the orientation of 75 relative to 73 such that wr, 7, n7,
points out of T3.

3.3.3 DDR complex
The global three-dimensional DDR complex of degree k is

ak " k ak
k-1,k—-1,k —grad, k. k,k —curl, i k div,h k
DDR3d: wgrad,h Ecurl,h Ediv,h WL2 b’ (3.8)
k k k : ot
where the operators J grad, 0y andd iy, Ar€ obtained projecting the element and face operators onto

} k=1,k-1,k K.k, k k
the component spaces: For all (gh, VW) € Woradn X Weutn X Wi o

k . k-1 k c,k k
agrad,hzh T ((ﬂ’R,TgGngT?)’ﬂR,TgGT3gT3)T3€M3,h’

k-1 k c.k k
(HR,TQ GT2QT2 > ﬂR,T2 GT22T2)T2€M2,I‘L >

(G ar)riemy,)- (3.9)

k (k=1 ik ek ok k
Oeurn¥n = ((”g,Tgchﬁrg’ 76 1, Cr Y1 )T My (CTQKTQ)TQEMQ,h)’

(6<Ii<iv,hmh)|T3 = D%,ETS forall T3 € M3 .

3.4 Serendipity spaces

We now introduce the two- and three-dimensional Serendipity Discrete de Rham (SDDR) complexes that
will play the role of (Wi, 51-)1- in the applications considered in Sections 4 and 5 below.

ForeachT; € My n, d € {2,3}, we select p;, > 2 faces/edges that are not pairwise aligned and such
that T lies entirely on one side of the plane/line spanned by each of those faces/edges and the regularity
assumption detailed in [14, Assumption 12] are satisfied. We then set

de = k+1—7]Td.

These integers are collected in the vector €4 = ({r,)1,e M, ,- The serendipity version of the spaces in
(3.4) and (3.8) are, respectively,

~ k 0ok =k £o+1,k
. 2, = 275,
Egrad,h T Egrad,h’ _Wrot,h - Wrot,h ’ (3.10)
~ k £ lo k =k £3+1,00+1,k ‘
— 3,02, — 3T L.e2TL,
—Wgrad,h '_ —Wgrad,h ’ Ecurl,h - Ecul“l,h )

10



In these spaces, the degree of certain polynomial components inside faces and elements for which n7;, > 2
is lower than in the non-serendipity spaces defined in Sections 3.2.1 and 3.3.1, the more so the larger n7,,.

3.5 Extension and reduction maps between the two-dimensional DDR and SDDR complexes

Following [14, Section 5.3], for a polygon 75 it is possible to define serendipity gradient and rotor

~k ~k
W — PNTy) and S5, 1 : W — PK(Ty) that satisfy the following

k
operators S grad. T rot. T

. grad,T>
properties:

A k
Sgrad Tg—grad qu = gradT2 q Vq P + (TQ),
7
St b,y =V W e PH(T),

where I Loyaq.1, and I I 7, are the standard DDR interpolators on W Worad and W obtained collecting

—rot, 1>’
L?-orthogonal projections on the component spaces. The role of the serendipity operators is to reconstruct

polynomials fields inside 7> from the polynomial components of the serendipity spaces.
In order to define two-dimensional extension maps, we need an operator E ;“;}2 " Woraar,
P*=1(Ty) that satisfies a formal integration by parts with the serendipity gradient: For all w € REK(Ty),

k-1 =~ k -~ -~
/ EP TQq ChVT2 w = —L Sgrad,ngTQ W+ Z WT,T L qr, (w - nT2T1).
2 1

TieMir,
. = - k.k
The extension operators Ey, gradj - Egra an = Eg and Eyw corn: Wr ot.h Wrot’ ,, are defined by
EW,grad,hg (( P T2q )TQEMQ ho (qu)TleMl he (qT())T()EMO h) VC] € Wgrad h (311)
c.k ok
EW rot, hv ((V’R T T R TQSrot TQ—TQ)TQEMQ o (VTl)T1eM1 h) \7(\ € Wrot he (312)
while the reduction operators R, L whkoLk Wk and R L WhE W are such
P —W ,grad,h * grad,h —grad,h =W rot,h * ——rot,h —rot,h
that
5  ((lT2 k-1,k
EW,grad,hgh = ((”P,TQQTz)TQGMz o (@)1 e My 0 (qTO)TOEMO,h) Vq € Wgrad e (3.13)
—~ C fT2+1 I k.k
RW rot,h¥n = ((VR Tz> ”‘R Ty ‘R,T2)72€M2,h,’ (VTl)T1€M1,T2) Vzh € Krot,h' (3.14)

The complexes (W;, 9;); and (Wi, 51‘)1‘ along with the corresponding extension and reduction maps
that will be used in the application of Section 4 are summarized in the following diagram:

k

k-1.k Orad. k,k
DDR2d: —egrad, h —rot,h ok
/ / rot,h
1 , \
I I
~ —~ , k
EW,grad,h : EW,grad,h EW,rot,h ! EW ,rot,h WL2 h (3 1 5)
\ \ 2
\ \
X =k x
SDDR2d v S| gk o
: Kgrad,h E1”013,h

where (9 dh and (’) ot ATC given by (2.2).
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3.6 Extension and reduction maps between the three-dimensional DDR and SDDR complexes

Now, taking a polyhedron 73 and following again [14, Section 5.4], it is possible to define serendipity
~
— P¥(T3) and S* W — PK(T3) that satisfy

gradient and curl operators S* curl Ty

the following properties:

grad,T3 : Egrad,Tg, curl, 73

sk =grad;, g Vg€ PU(Ty),

Ak
grad,T3 —grad T3
Ak
Sk

rot, T3 —curl T3

v=y vy € PX(T3),

and I

where I J p—y

1, are the standard DDR interpolators on W 4. and W .5, obtained collecting
— P*=1(T3) such

Zgrad,T3

. e

2_orthogonal projection on the component spaces. We also deﬁne E ’;)% : Wgrad,rg
that, for all w € R%¥(T3),

k-1~ 1 _ k ~ ~
/ EV”Tng divw = —/ Sgrad’ngT W+ Z WT,T, / qr, (w - nr,),
T3 T3 T>

Toe Mryery

=T

Ry :y’g‘;ﬂ}i”;;l”‘ — PU13(Ty), such that, for all w € RST3*1(Ty),

ot k
TRPTS 4, leW——/ Grq, -w
3

k+l g %)
+ Z WIT; L V1, Ey ,grad, TQBW,grad qu (w-nr,),

TQEMQ’Tg 2
Pkl ok k-1 c.k
andRg 7, : W g, = R (T3) such that, for all w € G“"(T3),

~k-1
'/TRR’TBKTg-curlw:/ CT3VT3
3

Z WTT, / Yt ngw curl, 1 BW cur 1, V7, - (W X 1T3,).
ToeMa 1y

where 7k+1, 7’§,T2’ G%, and Cks, are respectively defined by (3.1), (3.2), (3.5), and (3.6).
Y

. . k-1,k—1,k Lok k,k,k
The extension operators Ey arad i Wgra an = Wgra dh and E Eyw curn: Ecuﬂ, h Ecurl , are

such that, for all g q, € Wgrad ,andallv, € W

—curl,h’

-~ k-1 —~ k=1 =~ -~ -~
EW,grad,hg = ((EP,ng )T3€M3,h7 (EP’T2Q )TQEMg,h,’ (qT1)T1€M1,h,’ (QT())TQEMO,;,,)’

c,k gk c.k gk
EW curl, hv ((V'R T3> T T3Scurl T3_T3)T5€M3 n° (VR Ty g TQScurl TQ_T2)T2€M2 h? (VT1)T1€M1 h)
k=1,k=1,k o k.k,k o~
while the reduction operators are RW erad,h - Egra dh — Wgra an ARy o Weatn = Wewtn
such that, for all q, € Wk 1 k LK and all v, € Wk klljl,

-~ ~LT. lr.
BW,grad,hq = ((RP?TSQ )T3€M3,h’ (”P?TQQB)BEM&M (QT1)T1€M1,11’ (qTO)TOEMO,h)’

= ~k-1 C KT +1 C, fT +1
Ry cur i = (Rg 1Y V1 TR T, VR 1) Tse s VRT2 T 17 Vi 1) Tae Moo ("Tl)n M)
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The complexes (W;, 9;); and (W, 51-)1- for the application of Section 5 along with the corresponding
extension and reduction maps are summarized in the following diagram:

ak
k-1,k-1,k —grad,h kk,k
. >
DDR3d: —grad,h —curl,h 9k
/ / —curl,h
] 1 6(’;. h
= | = | k v, k
Rw grad.n 1 Ew gradn Ry curt ! Ew curt.n Wi Wiay
\ \
X ok X
~k Qgrad,h ~ k 5k Lh
. > —curl,
SDDR3d: Egrad,h Ecurl,h
(3.16)

—~k —~k
where d grad.h and 9, , are given by (2.2).
3.7 Cohomology of the serendipity DDR complexes
We recall the following result from [14] (see, in particular, Lemmas 22 and 26 therein).
Lemma 9 (Cohomology of the DDR and SDDR complexes). The two- and three-dimensional DDR
and SDDR complexes, together with their extension and reduction operators, satisfy Assumption 1. In
particular, this implies that both the cohomologies of the SDDR and DDR complexes are isomorphic to
the cohomology of the corresponding continuous de Rham complex.
4 A serendipity rot-rot complex

We now turn to the first application of the general construction considering the following smoother variant
of the two-dimensional de Rham complex:

grad
HY(Q) ——+ H(rotrot; Q) —2+ H(Q), 4.1

where Q ¢ R? is a polygonal domain and, for a smooth enough vector-valued field v, rot v := div v+.
Diagram (2.6) specialized to the present case becomes

6k
k-1,k —grad,h
DDR2d: Wi,
R 2 R
Jw ,grad,h// /EW,grad,h =W ,rot,h
4
SDDR2d:  W: W
: wgrad,h ~k " Erot,h
—grad,h /7\
!
/l
1
Id ~k |
Id Erot,h :
k
Vk dgrlad h
rot-rot| Yerad,h ‘\
s \
—~ 4 —~
R / R \ ’
_V,grad,h// /Ev,grad,h —V,r\ot, /
/
» \
=k =k
Srot-rot: Kgra dh 3" V. o
—grad,h (42)
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The top horizontal portion of the above diagram corresponds to (3.15). In the rest of this section we
will provide a precise definition of the other spaces and operators that appear in it and, using the abstract
framework of Section 2, show that all the complexes involved have isomorphic cohomologies.

4.1 Discrete rot-rot complex

A discrete counterpart of the complex (4.1) was developed in [10]. We briefly recall its construction here.
We define the discrete head H'(Q), H(rot rot; Q), and tail H'(Q) spaces as follows:

k — wrk—-1,k k — wk.k k-1 Mo, h k — wk.k
Kgrad h* Wgrad,h’ Vrot h* Erot h >< P (Tl) xR ’ VH Lh- Wgrad,h'
TieMip

The discrete gradient and rotor are respectively such that, for all q, € K’g‘ra anandally, = (KW, Ve, ) €
Vk

—rot,h’

k

dgrad h q (agrad,hgh’ Q)’ (4.3)
k

drot hv (arot,hzw,h’ Kc,h) . (44)

The discrete counterpart of (4.1) is then given by:

dk an k
—srad, k k
Krot h v

Ve (4.5)

, k
rot-rot: Veradn

4.2 Extension and reduction maps between the two-dimensional DDR and rot-rot complexes

In order to apply the construction of Definition 5 to define and characterize a serendipity version of this
complex, we need extension and reduction maps between the two-dimensional DDR complex (3.4) and
the discrete rot-rot complex (4.5). Noticing that

Vi = Wiz, X >< P (T x RMon |
TieMyp

the spaces Wrot , and W L2 h inject respectively into Kfot’ , and Z';Il , trough the extension map such that,
forally  , € Emi‘h and all g, € WLQ iy

8rot hvw h = (vw,h’Q) and §§11,hqh = (qh’ Q) (46)
We also define the reduction map such that, for all v, = (vw n V. h) € Vrot , and all q, = = (gqn, q. ) €

k

KHl h’

RV = Vo ad Ry a0 = G 4.7)

The decomposition of Lemma 4 clearly holds by definition, so we have

Vk _ (c)»k

VEon= Wit @Ker RE | and VY, = &k

—Zrot,h—rot,h ® Ker R

—H',h L2h

Theorem 10 (Properties of the extension and reduction maps between the DDR2d and rot-rot complexes).
The maps defined by (4.6) and (4.7) satisfy Assumption 2, i.e.,

(B1) Forally,, , € W h and all gy, € WL2 W

Kfot harot hvw h=Y w,h and RHl hSHl hqh =d4qh. (48)
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(B2) Forally, = (vw V. h) € Kerdrot W
k
érot thot WYn ~Yh € IIn(dgrad h) (49)
(B3) For all q, € Vg]rad e all v, € V ot and all v woh € Wmt w1t holds
k k _ Aak k k _ gk
Rrot hdgrad hgh - Qgrad,hgh’ §rot,thrad,hzh - dgrad hq (410)
k k k k k
R H' h= rot hvh arot,hBrot,hKh’ §H1,harot,hzw,h rot hérot hvw h* (4‘11)

It then follows from Remark 3 that the two-dimensional DDR complex (3.4) and the rot-rot complex (4.5)
have isomorphic cohomologies.

Proof. (i) Proof of (4.8). Forall y,, ,, € W5K Rfot harot on D RE w0y, and, for
(4.6 )
all qh E L2 h’ RZl h8H1 hCIh = Hl h( h,O)

(i) Proof of (4.9). Lety, € Ker d ot.n- Using the definition (4.4) of d* we obtain thaty, = (Kw, n0),

=rot,h’

k k k
80 Srot thot,h—h K - 0 dgrad ho
k 4.3) @)
(iii) Proof of (4.10). For all ¢, € V¢ ,,. we have Rrot Wgaand, = Rin(Ohaand, O
k k (4 +6) . 3)
agrad hq and 8rot hagrad nd 15 (agrad n4 1 O) grad hq
(vi) Proof of (4.11). Forally, = (v,, Ve, n) € th e
k (4.4 4) C) @.7) k
R H' h rot h(vw h’—c h) - 1 h(arot hvw h’—c,h) arot h ~w,h 8rot thot h=h
and, for all Vion € Wfof e
k (4 6) (4. 4) (4 6)
H1 harot hZw.,h (8r0t h w,h’ O) rot h w,h’ 0) rot h§rot hvw h* o

4.3 Serendipity rot-rot complex and homological properties

Lemma 9 and Theorem 10 ensure that the SDDR and rot-rot complexes satisfy Assumptions 1 and 2.
We are now in a position to apply the construction (2.12) to the rot-rot complex in order to derive its
serendipity version and characterize its cohomology.

4.3.1 Serendipity spaces and operators

Recalling (2.10), the serendipity version of spaces K{g‘ and Kfot, ,, can be written as follows:

rad,h
=k =k
Kgrad,h = Egrad,h
4.12)
75— W k-1 M (
Zrot,h T Wrot h x Ker Rrot h — Wrot h X >< P (Tl) X R&On

T, EMLh

. . . . . . o~ sk -~ ~
Accounting for the isomorphism in (4.12), we write a generic elementv, of V ., asy, = =¥ . Ve, V1)

with ¥ wh € WrOt p and v, such that (0 v, h) € Ker RF

~k
Krot’ , according to (2.12a):

Riot.n- We define the extension of Emt’ , into

—~k .
§rot hvw h (vw,h’Q)‘
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The reduction is given by (2.12b):

~k

Brot,h (Kw,h’ Kc,h) = Kw,h'

~k —~ ~k
. vk . vk
The reduction operators Rv gradn - Y -V Vearadn and Ry, o 0 Vi, = Voo, are defined

—grad,h

using (2.12d) and accounting for the isomorphism (4.12): For all q, € Vgra 4., and ally, € th e

—~

> k
Ry orad, n4, EW grad,h 9}, and R V,rot,h¥h (RW,rot,hBrot,hKh’Kc,h)’

with EW’ grad.h and Ew,mt’ ,, respectively defined according to (3.13) and (3.14).

=~k
k .
- Kgrad,h and EV,rot,h : K

. . . =k
Finally, using (2.12¢), the extension operators £, gradp -V roth =

—grad,h

Vk

rot,n are such that, for all ¢ q, € Vgrad , and all (vw wYen) € 1%

—rot,h’

~ k
EV,grad,hgh - EW ,grad, hq and E V ,rot, nY h arot h=W ,rot, hvw nt (0 Vc h)

with £y, erad.h and E rot.h respectively defined according to (3.11) and (3.12).

Using (2.11), the serendipity discrete differential operators are such that, for all (q v,) € Vgrad n X
~k
Zrot,h . . .
igrad,hgh = (Qgrad ha ’0)’
%~ k @4, (412) oz o
irot,hzh . (6rot,hkw,h’ érot,h(g’ Kc,h)) (arot h —w,h’ —c h)
4.3.2 Serendipity rot-rot complex and isomorphism in cohomology
The serendipity rot-rot complex is given by:
~k &
~k ggrad,h ~k grot,h Vk
Srot-rot: Vewaan — " Yoot Vo (4.13)

Theorem 11 (Homological properties of the complexes in (4.2)). All the complexes in the diagram (4.2)
have cohomologies that are isomorphic to the cohomology of the continuous de Rham complex.

Proof. Lemma 9 and Theorem 10 ensure that Assumptions 1 and 2 are satisfied. We can therefore invoke
Corollary 8 to infer that the cohomology of the Srot-rot complex (4.13) is isomorphic to the cohomology
of the rot-rot complex (4.5), of the DDR2d complex (3.4), and, therefore, of the continuous de Rham
complex. O

4.4 Numerical examples

In order to show the effect of serendipity DOF reduction, we consider the quad-rot problem of [10,
Section 5.2] and compare the results obtained using the original and serendipity spaces in terms of error
versus dimension of the linear system (after elimination of Dirichlet DOFs). The errors are defined as
the difference between the solution of the numerical scheme and the interpolate of the exact solution.
Specifically, denoting respectively by (u u,.p ) and (u n P ) the numerical solutions obtained using
standard and serendipity spaces, we set

o k o k
e, =uy, — Iy ,u gp =0, ~Lyup;
-~ =k . =k
e, =u, Iy ,u g =0, Ly ups

16



,k —~
k k
where ¥ Ly - Ly Iy ), and I): 5 respectively denote the interpolators on Vgra ar Yeradn» Yiotn» and

~k
Zrot,h'

consistently with [10], respectively denoted by || - ||v.;, for Ké‘r and Vgrad pand || - ||z, for Kfot, 5 and

The errors are measured by L2-like operator norms defined in the spirit of [13, Section 4.4] and,

Efot ,, (we do not distinguish the notation for the norms on the standard and serendipity spaces, as they
have formally the same expression and the exact meaning is made clear by the argument). On the latter
spaces, we additionally consider the norm || - ||xot rot,k» an L2-like norm of the discrete rot-rot operator
defined as in [10, Eq. (4.29)]. The problem data, meshes, and polynomial degrees are exactly the same
as in the above reference, so we do not repeat these details here, while the number of edges n, for each
edge T} € My, is chosen the same way as in [14]. The various error measures displayed in Figures 1-3
show that a given precision is invariably obtained with fewer DOFs using serendipity spaces, the more so
the higher the degree. A comparison in terms of error versus meshsize %, not reported here for the sake of
conciseness, shows that the serendipity and non-serendipity schemes yield essentially the same solution
for a given mesh and polynomial degree, with visible differences only for the pressure errors ||, ||v,x,

€NV .hs ”dgrad nEnllg > and ”dgrad nEnllg,j for k = 3.
5 A serendipity Stokes complex

In this section we discuss a second application of the general construction considering the three-
dimensional Stokes complex, another smoother variant of the three-dimensional de Rham complex.
Let Q c R? be a polyhedral domain. The Stokes complex reads:

curl

H(Q) H' (curl; Q) —— H'(Q) LX), oD
Diagram (2.6) specialized to the present case becomes
ak
k-Lk-1k _ Zeadh oukkk
DDR3d: Egrad,h —curl h %‘
R g 5
=W .grad,h /;W erad, —W curl,h,’/ /,E Ediv h
v ; ;
—~k , k
SDDR3d: W ] Lh ', &
v ! —cur s X !
| 7 ! I/
I I| ’/ " | l
, rad,h | —grad,h I url,h !
I
'I v\ " ‘\ 1
| \ ! ! k l
ﬁk : gk \ ~k I, Sk \ Bdiv,h I.
=grad,h | =gradih —curl,h | “eurl ‘
X \ k | \ !
| k ggrad h |
. \
StO]‘(eS. Kgrad,h —CllI‘l h —curl h \\
\ - 4 \ \
—~ 7 ’
R \ / g k
LV grad /Ev,grad h By C‘“l _V curl,h Ldiv,h
SStokes: V.,
tokes: Kgrad,h —k —curl h _curl h

(5.2)
The top horizontal portion of this diagram corresponds to (3.16). In the rest of this section we will
provide precise definitions of the remaining spaces and operators involved in the construction.
5.1 Discrete Stokes complex
We will start by giving a brief overview of the construction of a discrete counterpart of the complex (5.1)
developed in [19].
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5.1.1 Discrete spaces

For each edge 71 € M, we will need the following space spanned by vector-valued polynomial
functions that are normal to 77:

Pﬁ(Tl) = {p1n1 + pa2h2 : p1,p2 € Pk(Tl)} ,
where n; and ng are two arbitrary orthogonal unit vectors normal to 77. The discrete counterparts of the
spaces H2(Q), H' (curl; Q), H' (Q), and L?(Q) read:

k _ wk-1,k k k _ wk.k k k k k
Zgrad h* Wgrad h X Vgrad c,h’ Kcurl h Wcurl h X Kcurl c,h’ lev h Wle h X Kdlv ,C,h

where the additional components with respect to the standard three-dimensional DDR spaces are given
by

Veradon = >< PE1(Ty) x >< Pk (1y) x R3Moa

ToeMa TieEMyp
Vewton = >< (Pk*l(ﬁ) x G*(Ty) X Qc’k(TQ))
Toe Mo
k k 2
x S (PHUTSRY) x Ph(T) ) x (R¥Mo ]
TleMl,h
Vieen= X (6" @) x 6 m)x Y P*1isw?),
T2eMa,p TieMyip

YewLn We have decomposed the space ﬁk”(MLh;R:‘) in [19, Definition (3.3)] as

XrieMi, (Pk(Tl) x Pk (Tl)) x R3Mo. and P (T;; R?) denotes the space of vector-valued functions
over 71 whose components are in " (7}) and are continuous on 77.

where, to write vk

5.1.2 Discrete gradient
Letgh = (g e, ) € Vgradh with

— k
gc,h T ((Gq,Tz)TzeMz,w (GQaTl )TlE/\/h,h7 (GCI,T())TOEMO,h) € Kgrad,c,h’

where G, 1,, G4, 1, and G, 1, have, respectively, the meaning of a normal gradient to the face T,
a normal gradient to the edge 77, and a full gradient at the vertex 7p. The DDR discrete gradient is

completed to map from Vk ad.h 1O vk Vewln OY adding the following component:

k — k k
dgl‘ad’c’hgc,h - ((Gq’T2’ ﬂQ,TzRGTz g TQRGTQ )T2€M2,h’
7’
(Gq,Tl ’ le X tT1)T1€M1,]17
k
(Gq’TU’ O)TOEMO,h) € Kcurl,C,h’

where 4, is the restriction of q, , 0 the elements neighbooring 7, RG§2 is the rotor of the normal

gradient deﬁned by
/ RG’I&QETQ W= —/ Gq,Tg rotw — Z WT,T, / (Gq,Tl . nTQ)(w . tTl) Yw € Pk(TQ),
I I TieMi T, n
and vT is the derivative along the edge 77 of the function vz, such that np o = G4,1, and for all
To € Mo, vt (x1) = G4 1. The discrete gradient g grad.h ° V{g{ra an Kcuﬂ p 18 then given by
k — [qk k
igrad,h ﬂh T (Qgrad,hgw’h’égrad,c,hzc’h) . (53)
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5.1.3 Discrete curl

Fory, = (v, ,.v.,) €V the component v, is given by

—curl h’

— c k
Kc,h = ((vTQ, Rv,g,TQ, RV’Q’TQ)TQGMQ,,,, (Rv,Tl’ Vn,Tl)TleMl,ha (vTo’ Rv,TO)TOEMO,h) € Kcurl,c,h’

where vr,, (Rv,Q,Tz’Ri,g,TQ)’ R, 7, and (vy,R, 1,) have, respectively, the meaning of the normal
flux accross the face 75, the normal gradient of the tangential components to the face 75, the tangential
component of the curl plus the normal gradient of the tangential component to the edge 71, and the value

of the function and of its curl at the vertex Ty. The discrete curl in the DDR complex (3.8) is completed

by adding the following component in order to obtain a map from chrl , o thv’ e
k k c
icurl c, hvc h ((”g TQCTQKC T>° RV,Q,TP CTzvc 15> RV,Q,TQ)T2€M2,h’

k k
(CT1KC,T1)TIEMl,h) € Viiv.cn

where v, is the restriction of v, to the elements sharing T2, v, ;. the restriction of y_, to the

elements sharing 77, C ;2 is the face curl defined in (3.3), and C7. k is such that C % Ver (x1,) =R, 1, and
k+1 C% Yer, = Rum - v;l,Tl X tr,, with v, 7, such that ¥

v,,,T1 (xTO) = v71,. The discrete curl is then given by

p.r,Vn.1y = Va1 and for all Ty € Mo,

k — k k
icurl,h Kh T (chrl,hzw,h’ gcurl,c,hzc,h) . (54)

5.1.4 Discrete divergence
The discrete divergence is nothing but the original DDR divergence defined by (3.9) but with domain

koo koo _ k
Vi, instead of W, - Forallw, = (w,, ;. w.,) € Vg,

k
Ay Wi = ‘9d1v hWaw
5.1.5 Discrete Stokes complex

The discrete counterpart of the Stokes complex (5.1) which appears at the bottom and back of diagram
(5.2) is given by:

k k
4curl,h k ddiv,h

—div,h

dk
—grad,h k k
|4 Wi, s

—curl,h

(5.5)

k
Stokes: Veraa n

5.2 Extension and reduction maps between the three-dimensional DDR and Stokes complexes

We next define extension and reduction operators between the three-dimensional DDR complex (3.8) and
the discrete Stokes complex (5.5) that satisfy Assumption 2. The proof is similar to that of Theorem 10
and is omitted for the sake of brevity. It follows once again from Remark 3 that (3.8) and (5.5) have
isomorphic cohomologies.

The extension operators are such that: For all ¢ e whk-Lk=Lk i Von € Wk ok
—w,h —-w,

Worad L and all

L4 w,h € Wle h’

Q{g(rad,hgw,h = (Qw’h’Q)’ §5m1,h2w,h = (Kw,h’g)’ anv,hﬁw,h = (w,, 5 0).

The reduction map is such that, for all 4, = (g ) e vk
)y e VK

k
—grad,h’ all Y = (V h’ h) 4 —curl, i’ and

allw, = (w

wh’—ch —div,h’

k k
Rgradhq =4, Rewrtn?n = Y Raivnn = Woo e
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For future reference, we note the following isomorphisms, which are a direct consequence of the above
definitions:
~ Vk

—curl,h = =curl,c,h’

Ker RX

Rovadn = =~ yk ,, and Ker RK (5.6)

—grad,c,
5.3 Serendipity Stokes complex and homological properties

Applying the construction of Section 2 to the Stokes complex and recalling the isomorphisms (5.6), we

obtain the following serendipity version of the spaces V' V radh and chrl e

~k —~k ~k —

14 E K Wcurl h x V

. k
—grad,h "~ —grad,h X Zgrad,c,h’ (5.7

curl,h = —curl,c,h’

where W 4. and W , are the serendipity DDR spaces deﬁned by (3.10).

—curl,

We write generic elements ¢ 4q, of V , and v, of V url.h respectively as q = (q o4 h) and

—grad,

—curl,h’ curl,c,h’
According to (2. 12a) we define the extens10ns of the SDDR spaces into serendipity Stokes spaces as

5 ~ ~ k
—(vwh,v h)w1thq eWgradh, WheW andq eVgradchandv hEV

follows: For all g 4, ., € Wgrad n and all v, woh € Wcurl e

~k =

Earadnd,, ), = @W,h 0) and Scurl Wi = Py 0)-

The reduction map between the SStokes and the SDDR complexes is given by (2.12b): For all
—~ k
(z ’ q ) € Vgrad h and all (V h’ —c, h) eV —curl, i’

~k -~ —
Bgrad,h(gw’h’gc’h) = zw, and Ecurl h(vw h’ ~c, h) w,h'

By (2.12d), the reduction map from the Stokes to the SStokes complexes are given by: For all

qh:(gw’ )eVg dhandallvh—(vwh,_ch)ethh,

B — (% k 5 k
Ry grad.nd;, = (BW,grad,thrad,hgh’gc,h) and RV curl, h¥p - (RW curl,h Rour, n¥ > Ve h)

The extension operators from the SStokes to the Stokes complexes are defined according to (2.12¢): For

allq eV handallvheV

—grad, curl, i’

k - —~
Ey .grad, hq Sgrad hEwW grad,h4,, + ©, q ),

k
Ey comn¥n = Sean nE Wcurlhvwh+(0 "ch)

. .. . . . ~ ~ =k
Using (2.11), the serendipity discrete differential operators are such that, for all (gh, v,) € Vgrad, n X

~k
\ 4

—curl, i’
~k ~ gk ~ —~ (5.3).(5.7) k
dgrad,hgh T (Qgrad,hgh’ igrad,h(g’ C] )) (6grad hqh dgrad c, hq )

~k —~ ~k (5. 4) 5.7 —~ k
gcurl,hzh T (acurl hKW h’ dcurl h(O’ —c, h)) (chrl hKW h’ gcurl c, hKc h)

This completes the definition of the serendipity Stokes complex corresponding to the bottom front
complex in diagram (5.2). The following theorem can be proved using arguments similar to Theorem 11.
The details are omitted for the sake of brevity.

Theorem 12 (Homological properties of the complexes in (5.2)). All the complexes in the diagram (5.2)
have cohomologies that are isomorphic to the cohomology of the continuous de Rham complex.
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—a— k =1 (rot-rot) —=— k = 2 (rot-rot) —=— k = 3 (rot-rot)
-m- k =1 (Srot-rot) - m- k = 2 (Srot-rot) - m- k = 3 (Srot-rot)
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Figure 1: Errors norm vs. linear system size using the standard (continuous lines) and serendipity spaces
(dashed lines) to solve the quad-rot problem of [10, Section 5.2] on the Cartesian orthogonal mesh family.
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-m- k =1 (Srot-rot) - m- k = 2 (Srot-rot) - m- k = 3 (Srot-rot)
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Figure 2: Errors norm vs. linear system size using the standard (continuous lines) and serendipity spaces
(dashed lines) to solve the quad-rot problem of [10, Section 5.2] on the triangular mesh family.
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—a— k =1 (rot-rot) —=— k = 2 (rot-rot) —=— k = 3 (rot-rot)
-m- k =1 (Srot-rot) - m- k = 2 (Srot-rot) - - k = 3 (Srot-rot)
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Figure 3: Errors norm vs. linear system size using the standard (continuous lines) and serendipity spaces
(dashed lines) to solve the quad-rot problem of [10, Section 5.2] on the hexagonal mesh family.

25



	Introduction
	An abstract framework for serendipity complexes with enhanced regularity
	Setting
	Construction of a serendipity complex with enhanced regularity

	The discrete de Rham complex and its serendipity version
	Local polynomial spaces and L2-orthogonal projectors
	The two-dimensional discrete de Rham complex
	Spaces
	Discrete vector calculus operators
	DDR complex

	The three-dimensional discrete de Rham complex
	Spaces
	Discrete vector calculus operators
	DDR complex

	Serendipity spaces
	Extension and reduction maps between the two-dimensional DDR and SDDR complexes
	Extension and reduction maps between the three-dimensional DDR and SDDR complexes
	Cohomology of the serendipity DDR complexes

	A serendipity rot-rot complex
	Discrete rot-rot complex
	Extension and reduction maps between the two-dimensional DDR and rot-rot complexes
	Serendipity rot-rot complex and homological properties
	Serendipity spaces and operators
	Serendipity rot-rot complex and isomorphism in cohomology

	Numerical examples

	A serendipity Stokes complex
	Discrete Stokes complex
	Discrete spaces
	Discrete gradient
	Discrete curl
	Discrete divergence
	Discrete Stokes complex

	Extension and reduction maps between the three-dimensional DDR and Stokes complexes
	Serendipity Stokes complex and homological properties


