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Abstract
The	ever-	increasing	and	expanding	globalisation	of	trade	and	transport	underpins	
the escalating global problem of biological invasions. Developing biosecurity in-
frastructures is crucial to anticipate and prevent the transport and introduction 
of invasive alien species. Still, robust and defensible forecasts of potential invad-
ers	are	rare,	especially	for	species	without	known	invasion	history.	Here,	we	aim	
to	support	decision-	making	by	developing	a	quantitative	invasion	risk	assessment	
tool	based	on	 invasion	syndromes	 (i.e.,	generalising	 typical	attributes	of	 invasive	
alien	 species).	We	 implemented	 a	workflow	 based	 on	 ‘Multiple	 Imputation	with	
Chain	 Equation’	 to	 estimate	 invasion	 syndromes	 from	 imputed	 datasets	 of	 spe-
cies'	 life-	history	 and	 ecological	 traits	 and	macroecological	 patterns.	 Importantly,	
our	models	disentangle	the	factors	explaining	(i)	transport	and	introduction	and	(ii)	
establishment.	We	showcase	our	tool	by	modelling	the	invasion	syndromes	of	466	
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1  |  INTRODUC TION

The	realisation	of	the	damages	and	risks	of	alien	species	 invasions	
to	 ecosystems	 and	 socio-	economy	 (Bacher	 et	 al.,	 2018; Diagne 
et al., 2021;	Hawkins	et	al.,	2015)	have	prompted	countries	world-
wide to develop and enforce biosecurity policies and strategies 
(Kunming-	Montreal	 Global	 Biodiversity	 Framework—Convention	
on Biological Diversity, 2022;	 IPBES,	 2023).	 Yet,	 decades	 after	
the initial calls for improved management of invasive alien spe-
cies	 (Drake	 et	 al.,	 1989; Williamson et al., 1986),	 the	 global	 prob-
lem	 of	 biological	 invasions	 continues	 to	 escalate	 (Fenn-	Moltu,	
Ollier, Bates, et al., 2023a;	Fenn-	Moltu,	Ollier,	Caton,	et	al.,	2023b; 
Leroy	et	al.,	2023;	Pili	et	al.,	2023; Richardson et al., 2023; Seebens 
et al., 2017),	 reflecting	 systemic	 failures	 in	 meeting	 biosecurity	
targets	 (IPBES,	2023;	 Latombe	 et	 al.,	2023).	Notably,	 a	 crucial	 bi-
osecurity oversight is the integration of, and increasing access to, 
new	source	regions	 into	the	global	flows	of	alien	species	 (Hudgins	
et al., 2023),	notwithstanding	the	shifting	importance	and	the	emer-
gence	of	new	 transport	and	 introduction	pathways	 (Hulme,	2009; 
Hulme	&	Firn,	2015;	Leroy	et	al.,	2023; Seebens et al., 2018;	Toomes	
et al., 2019).	Thus,	an	integrated	biosecurity	plan	that	can	anticipate	
and prevent future alien invaders and their invasions is needed now 
more	 than	 ever	 (Finnoff	 et	 al.,	2007;	 Leung	 et	 al.,	2002;	 Pyšek	&	
Richardson, 2010).	 This	would	be	 the	most	 cost-	efficient	 route	 to	
meeting	global	targets	(e.g.,	Kunming-	Montreal	Global	Biodiversity	
Framework	Target	6:	reduce	rates	of	introduction	and	establishment	
by	at	least	50%	by	2030;	Convention	on	Biological	Diversity,	2022)	
since	 managing	 alien	 species'	 invasions	 becomes	 exponentially	
more	difficult	and	expensive	as	species	transcend	the	stages	of	the	

invasion	process	(transport,	introduction,	establishment	and	spread;	
Ahmed	et	al.,	2022;	Blackburn	et	al.,	2011;	Pyšek	&	Richardson,	2010; 
Simberloff et al., 2005;	Wittenberg	&	Cock,	2001).

A	fundamental	component	of	preventative	biosecurity	strategies	
is	warning	list	systems	(a.k.a,	blacklist,	alert	list,	watch	list;	Dawson	
et al., 2022;	Essl	et	al.,	2011;	Faulkner	et	al.,	2014; Roy et al., 2019; 
Roy et al., 2014).	Warning	lists	help	guide	preventative	biosecurity	
policies	and	strategies	by	identifying	which	alien	species	pose	a	risk	
of	becoming	 invasive	 if	 introduced.	Preventative	biosecurity	might	
include banning the import of listed species, intercepting them at 
the source region or at the border or closely monitoring them upon 
entry. Developing warning lists involves assessing the invasion 
risk	of	alien	species	before	they	arrive,	based	on	their	likelihood	of	
succeeding at each stage of the invasion process, as well as their 
environmental	 and	 socio-	economic	 impacts	 (Heger	&	Trepl,	2003; 
Hulme,	 2006;	 Kolar	 &	 Lodge,	 2001).	 By	 identifying	 beforehand	
which	 species	 have	 a	 risk	 of	 invasion	 if	 introduced,	 warning	 lists	
provide	the	much-	needed	science-	based	decision	support	 for	pre-
ventative	biosecurity	 (Heger	&	Trepl,	2003;	Hulme,	2006;	Kolar	&	
Lodge,	2001;	Leung	et	al.,	2002, 2005).	The	usefulness	of	warning	
lists	is	globally	recognised.	For	example,	a	horizon-	scanning	exercise	
by	Roy	et	al.	(2014)	in	2013	resulted	in	a	ranked	list	of	species	likely	
to	invade	Great	Britain	over	the	following	decade.	And	within	2 years	
of	 its	publication,	seven	of	 their	 top-	listed	species	were	newly	 re-
corded	in	the	country	(Aldridge	et	al.,	2014; Roy et al., 2019).	But,	
notably,	the	criteria	used	in	developing	warning	lists	(Figure 1a)	come	
with	caveats.	For	instance,	well-	known	trade	and	transport	proxies	
poorly	predict	propagule	pressure	or	transport	risk	(Pili	et	al.,	2023; 
Seebens et al., 2018, 2017; Suhr et al., 2019).	Meanwhile,	assessing	

amphibians	and	reptile	species	with	invasion	history.	Then,	we	project	these	mod-
els	to	amphibians	and	reptiles	worldwide	(16,236	species	[c.76%	global	coverage])	
to	identify	species	with	a	risk	of	being	unintentionally	transported	and	introduced,	
and	risk	of	establishing	alien	populations.	Our	invasion	syndrome	models	showed	
high predictive accuracy with a good balance between specificity and generality. 
Unintentionally	transported	and	introduced	species	tend	to	be	common	and	thrive	
well	in	human-	disturbed	habitats.	In	contrast,	those	with	established	alien	popula-
tions	tend	to	be	large-	sized,	are	habitat	generalists,	thrive	well	in	human-	disturbed	
habitats,	and	have	large	native	geographic	ranges.	We	forecast	that	160	amphib-
ians	 and	 reptiles	without	 known	 invasion	history	 could	be	unintentionally	 trans-
ported	and	introduced	in	the	future.	Among	them,	57	species	have	a	high	risk	of	
establishing alien populations. Our reliable, reproducible, transferable, statistically 
robust	and	scientifically	defensible	quantitative	invasion	risk	assessment	tool	is	a	
significant	new	addition	to	the	suite	of	decision-	support	tools	needed	for	develop-
ing	a	future-	proof	preventative	biosecurity	globally.

K E Y W O R D S
biodiversity	informatics,	blacklist,	global	biodiversity	data,	herpetofauna,	invasive	alien	
species, macroecology, pathways, phylogenetic imputation
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environmental	suitability	or	geographic	invasion	risk	is	challenged	by	
ecological	 niche	 shifts	 and	 environmental	 non-	equilibrium	 in	 alien	
species'	invasions	(Pili	et	al.,	2020).	Altogether,	these	caveats	under-
mine	the	confidence	of	invasion	risk	assessments	and	limit	their	ca-
pacity to robustly and defensibly forecast potentially invasive alien 
species	(Bomford,	2008;	Hayes	&	Barry,	2007;	Pili	et	al.,	2020, 2023).

Arguably,	 the	 most	 limiting	 criterion	 of	 warning	 lists	 is	 their	
reliance	 on	 invasion	 history—whether	 a	 given	 species	 has	 a	 his-
tory	 of	 invasion	 elsewhere	 (Figure 1a; Bomford et al., 2005; 
Faulkner	 et	 al.,	2014;	 Hulme	&	 Firn,	2015;	 Kulhanek	 et	 al.,	2011; 
Ricciardi, 2003;	 Richardson	&	Thuiller,	2007).	 The	use	of	 invasion	
history arises from a deceptively simple premise: species that have a 
history of invasion possess intrinsic and/or inherent attributes that 
may	also	allow	them	to	become	invasive	elsewhere	(hereafter	‘inva-
sion	syndromes’;	Hayes	&	Barry,	2007;	Novoa	et	al.,	2020).	But	the	
logical flaw in using this criterion is that many species, despite hav-
ing some or all attributes consistent with invasion syndromes, are 
yet to be transported, introduced, and/or establish alien populations 
beyond their native ranges and, therefore, have no invasion his-
tory	(hereafter	‘potential	invaders’;	Figure 1b; Bomford et al., 2005; 
Kulhanek	et	al.,	2011; Ricciardi, 2003;	Richardson	&	Thuiller,	2007; 
Seebens et al., 2021).	 Given	 the	 escalating	 rate	 of	 new	 biological	
invaders	 and	 invasions	 (Fenn-	Moltu,	 Ollier,	 Bates,	 et	 al.,	 2023a; 
Fenn-	Moltu,	Ollier,	Caton,	 et	 al.,	2023b;	 Pili	 et	 al.,	2023; Seebens 
et al., 2017;	 Toomes	 et	 al.,	 2019;	 Turner	 et	 al.,	 2021),	 relying	 on	

information	on	invasion	history	may	overlook	a	large	proportion	of	
current	 and	 future	 invasions	 (Figure 1b).	 Consequently,	 there	 is	 a	
pressing need to advance warning lists so that they can robustly and 
defensibly	assess	the	invasion	risk	of	species	with	no	prior	history	of	
invasion.	Ultimately,	 this	 is	a	 fundamental	prerequisite	 in	 forecast-
ing and responding to the escalating global problem of alien species 
invasions.

In	this	study,	we	advance	quantitative	invasion	risk	assessment	
tools to allow invasion biologists and biosecurity authorities to iden-
tify invasion syndromes and forecast potential invaders. Following 
a	 MICE	 workflow	 (Multiple	 Imputation	 with	 Chained	 Equation;	
Figure 2; White et al., 2011),	our	tool	first	statistically	estimates	the	
values	of	missing	data	(i.e.,	 imputation)	in	datasets	of	two	types	of	
predictor	variables.	These	predictors	characterise	species'	inherent	
and	intrinsic	attributes:	(i)	life-	history	and	ecological	traits	(hereafter	
‘traits’)—organismal-	level	 intrinsic	 attributes	 depicting	 how	 typical	
individuals of a species allocate time and energy to reproduction, 
growth	and	survival	(Ricklefs	&	Wikelski,	2002; Stearns, 1992),	and	
(ii)	macroecological	 patterns—species-	level	 inherent	 attributes	 de-
scribing	 species	 distribution,	 abundance	 and	 resource	 use	 (Keith	
et al., 2012).	 Second,	 the	 trait	 and	macroecological	 data	 are	 used	
to model invasion syndromes. Recognising that only a subset of 
species has had the opportunity to go through invasion stages after 
transportation	(Blackburn	et	al.,	2011;	Chapple	et	al.,	2012; Sinclair 
et al., 2019),	 our	 tool	 follows	 a	 two-	step	 modelling	 process	 by	

F I G U R E  1 Strong	and	commonly	used	criteria	in	horizon-	scanning	exercises	for	developing	warning	lists:	invasion	history—does	
the	species	have	a	history	of	invasion	elsewhere?	propagule	pressure—does	the	species	have	the	opportunity	to	be	transported	and	
introduced	into	a	jurisdiction?	and	environmental	suitability—can	the	species	survive,	reproduce	and	establish	an	alien	population	given	
the	environmental	conditions	in	a	jurisdiction?	(a)	Species	that	satisfy	these	three	criteria	are	included	in	warning	lists.	(b)	Our	tool	
complements	current	horizon	scanning	for	developing	warning	lists	by	identifying	species	worldwide	with	no	prior	history	of	invasion,	but	
likely	to	have	some	or	all	attributes	consistent	with	invasion	syndromes.	The	Venn	diagram	is	modified	from	Faulkner	et	al.	(2014—Biological	
Conservation).
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4 of 22  |     PILI et al.

separately	identifying	the	invasion	syndromes	of	(1)	transported	and	
introduced	alien	species	and,	among	them,	(2)	species	that	have	es-
tablished	alien	populations.	The	first	and	second	steps	are	replicated	

a hundred times to capture uncertainties brought by the imputation 
process. Finally, the outputs of the replicates of the invasion syn-
drome models are pooled and summarised. Our tool has the potential 

F I G U R E  2 Our	quantitative	invasion	risk	assessment	tool.	Our	tool	follows	a	Multiple	Imputation	with	Chain	Equation	Approach	(MICE),	
comprising	three	steps:	(1)	multiple	imputation—estimating	the	values	of	missing	entries	(i.e.,	imputation)	in	life-	history	and	ecological	
traits	dataset	and	macroecological	patterns	dataset.	This	is	repeated	100	times	to	capture	uncertainties	in	estimated	values;	(2)	modelling	
invasion	syndromes—each	imputed	dataset	are	used	to	fit	models	for	identifying	the	attributes	of	successful	biological	invaders	(i.e.,	
invasion	syndromes).	Steps	1	and	2	are	replicated	a	hundred	times.	(3)	pooling	model	outputs—all	models'	inference	on	variable	importance,	
evaluation	metrics	and	predictions	of	invasion	risk	are	pooled	and	summarised.
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to improve the effectiveness of warning lists because it is not limited 
to the subset of species with a history of invasion. Instead, it uses all 
information available at the organismal and species level to predict 
invasion	risks.	Because	of	the	two-	step	modelling	process,	our	tool	
disentangles	the	syndromes	explaining	(i)	transport	and	introduction	
and	 (ii)	 establishment,	 and	 predicts	 separate	 risk	 assessments	 for	
each invasion stage to species worldwide. We demonstrate here our 
framework	in	addressing	three	guiding	research	questions:

Research	 question	 1	 [invasion syndromes]:	 what	 are	 the	 differ-
ences in the invasion syndromes of transported and introduced 
species	compared	to	those	with	established	alien	populations?	The	
invasion process involves a series of stages, with each stage filtering 
a	taxonomically	biased	subset	of	species	from	advancing	to	subse-
quent	stages	through	combinations	of	filters	(Blackburn	et	al.,	2011; 
Chapple	 et	 al.,	 2012; Sinclair et al., 2019).	 Given	 this,	 we	 predict	
that the syndromes of a typical transported and introduced species 
(attributes	 that	 help	 in	 overcoming	 entrance,	 survival	 and	 exit	 fil-
ters; Sinclair et al., 2019)	are	not	necessarily	 the	same	as	 those	of	
species	that	have	established	alien	populations	(attributes	that	help	
in	 overcoming	 environmental	 and	 demographic	 filters;	 Blackburn	
et al., 2011).

Research	question	2	 [life- history and ecological traits vs. macro-
ecological patterns]:	are	macroecological	patterns	better	than	traits	
in predicting invasions? Studies have primarily focused on traits 
associated with invasion success, and they have so far found that 
(1)	different	traits	are	correlated	with	each	invasion	stage;	(2)	there	
are few traits strongly or significantly correlated with success in 
each	 invasion	 stage;	 and	 (3)	 there	 has	 not	 been	 a	 consistent	 trait	
of	 invasiveness	across	taxa,	 (4)	nor	among	groups	of	species	using	
different	 pathways	 (Bernery	 et	 al.,	 2022;	 Hayes	 &	 Barry,	 2007; 
Heger	&	Trepl,	2003;	Pysek	et	al.,	2011; Sol et al., 2012).	What	has	
been consistent across studies is that species with large geographic 
range	 size	 are	more	 likely	 to	 succeed	 in	establishing	alien	popula-
tions	(Cadotte	et	al.,	2006; Duncan et al., 2001; Forsyth et al., 2004; 
Gallien	et	al.,	2019;	Hayes	&	Barry,	2007;	Hui	et	al.,	2011).	Notably,	
commonness in the native range, habitat generalism and tolerance to 
human disturbance are other macroecological patterns suggested to 
be	strong	predictors	of	invasion	success	(Duncan	&	Williams,	2002; 
Gallien	et	al.,	2019;	Hayes	&	Barry,	2007;	Jeschke	&	Strayer,	2006).	
Thus,	we	predict	that	macroecological	patterns	are	relatively	better	
than traits in predicting success across invasion stages.

Research	question	3	[potential invaders]:	which	(and	how	many)	
species worldwide with no prior history of invasion have attributes 
consistent with syndromes that predispose them to be transported 
and	introduced?	And	among	them,	which	also	have	attributes	con-
sistent with syndromes of species that have established alien pop-
ulations? Studies have shown that the rate of species establishing 
alien populations is continuously increasing, with no signs of sat-
uration	 in	 the	 near	 future	 (Seebens	 et	 al.,	2017, 2021).	Moreover,	
the	 tens	 rule—a	 classical	 null	 hypothesis	 in	 invasion	 biology—sug-
gests that only a tenth of species will successfully overcome the 
consecutive	stage	of	the	invasion	process	(Jeschke	&	Pyšek,	2018; 
Jeschke	 et	 al.,	 2012;	 Williamson	 &	 Brown,	 1986;	 Williamson	 &	

Griffiths,	1996).	Thus,	we	expect	that	only	a	tenth	of	species	world-
wide have attributes consistent with invasion syndromes that will 
help them succeed in each consecutive stage of the invasion process.

We	answered	these	questions	by	applying	our	tool	to	uninten-
tionally	 transported	 and	 unintentionally	 introduced	 species	 (here-
after	‘unintentionally	transported	and	introduced	species’)	because	
of	 this	 pathway's	 increasing	 importance	 to	 the	 current	 and	 future	
global	 flows	 of	 alien	 species	 (Kraus,	2009;	 Pili	 et	 al.,	2019, 2023; 
Turner	et	al.,	2021; Wilson et al., 2009).	Such	species	are	uninten-
tionally transported by humans as contaminants of commodities 
or	 stowaways	of	 transport	vectors	 (Harrower	et	al.,	2018; Scalera 
et al., 2016).	 Especially	 in	 jurisdictions	 lacking	 biosecurity	 infra-
structures, unintentionally transported alien species tend to be di-
rectly	 introduced	 into	 novel	 areas	 (Blackburn	 et	 al.,	2011; Sinclair 
et al., 2019).	While	intentionally	transported	and	introduced	species	
are oftentimes used by humans because of specific traits, uninten-
tionally transported and introduced species can have traits that fa-
cilitate	their	undetected	transportation	or	escape.	Thus,	the	drivers	
and dynamics of the unintentional transport and introduction path-
way	 are	 sufficiently	 unique	 to	 warrant	 separate	 studies	 (Bernery	
et al., 2022;	Chapple	et	al.,	2012;	Measey	et	al.,	2019;	Mohanty	&	
Measey,	2019;	Pysek	et	al.,	2011;	Tingley	et	al.,	2010).

Moreover,	we	focused	on	amphibians	and	reptiles	worldwide	as	
a	case	study.	These	taxa	are	quintessential	examples	of	unintention-
ally	 transported	and	 introduced	species	 that	are	often	overlooked	
or	neglected	by	biosecurity	agencies	worldwide	(Pysek	et	al.,	2008)	
despite the many studies showing their concerning environmental 
and	socio-	economic	impacts	(Kraus,	2015;	Measey	et	al.,	2016; Soto 
et al., 2022).	Many	amphibians	and	reptiles	are	among	the	world's	
worst	 invasive	 alien	 species	 (Lowe	 et	 al.,	 2000)	 for	 causing	 mas-
sive	 and	 irreversible	 impacts	 across	 ecological	 scales	 (reviewed	 in	
Kraus,	2015;	also	see	Holsbeek	&	Jooris,	2010;	Measey	et	al.,	2016; 
Savidge, 1987;	von	Takach	et	al.,	2022).	The	global	economic	costs	
of damages wrought by and management of invasive alien amphibian 
and	reptile	invasions	amount	to	more	than	US$17.0 billion	between	
1986	and	2020	(Soto	et	al.,	2022).

2  |  MATERIAL S AND METHODS

The	glossary	of	key	terms	used	throughout	the	paper	is	presented	
in Box 1.

2.1  |  Data

2.1.1  |  Invasion	history

We compiled a global list of amphibians and reptiles that have been 
unintentionally	 transported	and	 introduced.	Among	 these,	we	also	
identified those that have successfully established alien populations. 
These	 data	 sources	 include	 online	 databases,	 published	 scientific	
literature	 and	 reports	 (species	 list	 and	 references	 are	 provided	 in	
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6 of 22  |     PILI et al.

Table S1 in Supporting Information S1).	We	defined	‘unintentionally	
transported	and	introduced	species’	as	any	species	that	has	contami-
nated	 a	 commodity	 (i.e.,	 contaminant)	 or	 entered	 a	 transport	 vec-
tor	 (i.e.,	stowaway)	destined	to	be	moved	into	 locations	beyond	its	
native	or	invaded	range	(Harrower	et	al.,	2018; Scalera et al., 2016; 
Sinclair et al., 2019).	 Therefore,	we	excluded	 species	 that	 are	only	
known	to	have	been	intentionally	transported	and	introduced	(e.g.,	
pet	trade,	aquaculture	and	aesthetic	improvement)	from	our	analysis.	
Notably,	we	included	in	our	analysis	species,	such	as	the	cane	toad	
(Rhinella marina),	 that	 were	 initially	 intentionally	 transported	 and	
introduced but later used unintentional transport and introduction 
pathways	in	their	spread	(secondary	long-	distance	dispersal	events;	
Pili	et	al.,	2019, 2023).	Meanwhile,	we	defined	‘established	species’	as	

those	that	survived,	reproduced	and	maintained	self-	sustaining	pop-
ulations	in	sites	where	they	were	introduced	(Blackburn	et	al.,	2011).

About	488	species	 (171	frogs	 [Order	Anura],	nine	salamanders	
[Order	Urodela],	179	lizards	[Suborder	Sauria],	119	snakes	[Suborder	
Serpentes]	 and	 five	 turtles	 [Order	 Testudines])	 of	 amphibians	 and	
reptiles have a history of being unintentionally transported and in-
troduced,	among	which	129	species	(39	frogs,	two	salamanders,	68	
lizards,	17	snakes	and	three	turtles)	have	established	alien	popula-
tions. Due to a low number of representative species, we only anal-
ysed	frogs,	snakes	and	lizards	to	avoid	compromising	the	robustness	
of	our	statistical	analysis.	In	subsequent	analysis,	we	separately	ana-
lysed	the	invasion	syndromes	of	frogs,	snakes	and	lizards.

2.1.2  |  Life-	history	and	ecological	traits

We	 retrieved	 15	 traits	 of	 5836	 frog	 species	 worldwide	 from	
AmphiBIO	(V1;	Oliveira	et	al.,	2017).	We	retrieved	17	traits	of	7235	
lizard	 species	 and	 five	 traits	 of	 4046	 snake	 species	worldwide	by	
harmonising	multiple	published	datasets	(Feldman	et	al.,	2015, 2016; 
Meiri,	2018;	Meiri,	Avila,	et	al.,	2020a;	Meiri,	Feldman,	et	al.,	2020b; 
Slavenko	et	al.,	2022;	Zimin	et	al.,	2022).	These	traits	describe	the	
species'	activity	time,	diet,	fecundity,	microhabitat	preference,	mode	
of	reproduction,	size	and	substrate	preference	(see	Tables S2.1–3 in 
Supporting Information S2).

2.1.3  | Macroecological	patterns

We	 retrieved	 or	 quantified	 21	 variables	 describing	 species'	
macroecological	 patterns.	 These	 variables	 relate	 to	 geographic	
range	 size,	 commonness,	 habitat	 generalism	 and	 tolerance	 to	
human	disturbance	(Tables S2.1–3 in Supporting Information S2).	
Although	presumed	to	be	independent,	these	three	macroecologi-
cal patterns are triangularly correlated, and one is not necessar-
ily	 a	 good	 predictor	 of	 another	 (see	Supporting Information S4; 
Rabinowitz,	1981;	Yu	&	Dobson,	2000).	We	retrieved	 the	native	
geographic	range	of	species	from	online	databases	(International	
Union	 for	 the	 Conservation	 of	 Nature	 Red	 List	 v.	 2022-	2	 and	
the	 Global	 Assessment	 of	 Reptile	 Distributions	 v.	 1.7;	 Gumbs	
et al., 2020;	IUCN,	2022; Roll et al., 2017)	or	estimated	them	based	
on	 10-	km-	radius	 buffers	 of	 species'	 occurrence	 records	 (GBIF.
org, 2023a, 2023b).	We	estimated	 species'	 commonness	using	 a	
metric	of	the	species'	relative	abundance,	measured	by	summing	
the	 raw,	 cleaned	 and	 thinned	 species'	 occurrence	 records	 in	 its	
native	geographic	range	(Enquist	et	al.,	2019).	We	estimated	spe-
cies'	habitat	generalism	using	metrics	that	describe	the	diversity	of	
habitats	within	the	species'	native	geographic	range	(International	
Union	 for	 Conservation	 of	 Nature	 (IUCN)	 habitat	 classification	
scheme	v.3.1;	Jung	et	al.,	2020).	We	estimated	the	species'	toler-
ance to human disturbance by summarising the human pressures 
index	scores	across	the	species'	native	geographic	range	 (Venter	
et al., 2016).	 Moreover,	 we	 also	 quantified	 the	 accessibility	 of	

BOX 1 Glossary of key terms.

Warning list—list	 of	 alien	 species	 that	 are	 currently	 not	
occurring	 in	 a	 jurisdiction,	 but	 with	 a	 risk	 of	 invasion	 if	
introduced.

Invasion history—whether	a	given	species	has	a	history	of	
invasion elsewhere.

Invasion syndromes—the	set	of	inherent	and	intrinsic	attrib-
utes that predispose a species to being transported, intro-
duced, and/or establishing alien populations.

Life- history and ecological traits—organismal-	level	 intrinsic	
attributes depicting how typical individuals of a species 
allocate time and energy to reproduction, growth and 
survival.

Macroecological patterns—species-	level	inherent	attributes	
describing species distribution, abundance, and resource 
use.

Unintentionally transported and introduced species—any	spe-
cies	that	has	contaminated	a	commodity	(i.e.,	contaminant)	
or	entered	a	transport	vector	(i.e.,	stowaway)	destined	to	
be	moved	into	locations	beyond	the	species'	native	or	cur-
rent invaded range.

Established alien species—alien	species	that	survived,	repro-
duced	and	maintained	self-	sustaining	populations	 in	 sites	
where they were introduced.

Imputation—a	process	of	statistically	estimating	the	value	
of missing data points to allow for complete data analysis.

Imputed dataset—a	dataset	whose	missing	values	have	been	
estimated via imputation.

Potential invaders—species	 with	 no	 invasion	 history	 but	
have syndromes of transported and introduced alien spe-
cies	(transport	and	introduction	risk	score ≥ 30).

High- invasion risk species—potential	invaders	that	also	have	
syndromes of species that have established alien popula-
tions	(establishment	risk	score ≥ 30).
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    |  7 of 22PILI et al.

transport vectors for the species based on the number of airports 
and seaports, as well as the amount of trade outflows and outgo-
ing	passengers	 from	these	ports,	 across	 the	species'	native	geo-
graphic	 range	 (The	World	Bank,	2020a, 2020b).	 See	Supporting 
Information S3	for	more	details	on	how	we	quantified	macroeco-
logical patterns.

2.1.4  |  Data	harmonisation

We harmonised invasion history, traits and macroecological patterns 
data	(hereafter	‘harmonised	dataset’;	following	best	practice	recom-
mendations	of	Grenié	et	al.,	2022)	using	standardised	and	updated	
taxonomies	for	global	amphibians	 (Amphibians	of	the	World	v.6.2;	
Frost, 2023;	accessed	on	1	July	2023	using	the	‘AmphiNom’	package	
v.1.0	 in	R;	Liedtke,	2018)	and	 reptiles	 (accessed	on	1	March	2023	
using	the	‘taxize’	package	v.0.9.99	in	R;	Chamberlain	&	Szöcs,	2013; 
Uetz	et	al.,	2022).	For	species	that	had	been	grouped	into	one	spe-
cies	after	data	harmonisation	(e.g.,	cases	of	recent	taxonomic	revi-
sion),	we	took	the	median	(continuous	variables)	or	mode	(categorical	
data)	of	multiple	trait	entries.

2.1.5  |  Exploratory	data	analysis

We	quality-	checked	the	data	by	exploring	the	distribution	of	each	
variable, inspecting outliers and analysing the correlation structure 
among	variables	(see	Figures S4.1—6 in Supporting Information S4).	
We also assessed the proportion of species with data for each vari-
able	through	a	missing	data	exploratory	analysis	(using	the	‘naniar’	
package	 v.0.6.1	 in	 R;	 Tierney	&	Cook,	2023; see Tables S2.1–3 in 
Supporting Information S2).

2.2  |  Multiple imputation with chained equation

Overview. Data missing not at random have the potential to bias sta-
tistical	analyses	(Little	&	Rubin,	2019),	and	this	is	the	case	for	biodi-
versity	data	 (Hortal	et	al.,	2015;	Penone	et	al.,	2014).	To	minimise	
biases brought by missing data and, in turn, optimise confidence 
in statistical inference and predictions, we modelled the inva-
sion	 syndromes	 of	 alien	 amphibians	 and	 reptiles	 under	 a	Multiple	
Imputation	 using	 the	 Chained	 Equation	 approach	 (MICE;	 Little	 &	
Rubin, 2019; White et al., 2011).	Our	MICE	approach	involves	three	
steps	(Figure 2):	(1)	multiple imputation—we	estimated	the	values	of	
the	missing	data	(i.e.,	imputed)	in	the	harmonised	dataset	using	a	ran-
dom forest approach. We separately imputed the dataset of traits 
and	the	dataset	of	macroecological	patterns.	Each	variable	was	im-
puted using the rest of the variables in the dataset as predictors; but 
for	traits,	we	additionally	used	phylogenetic	information	(i.e.,	phylo-
genetic	imputation;	Penone	et	al.,	2014).	We	repeated	this	multiple	
times to capture the variability of the imputation process, resulting 
in	 100	 imputed	 datasets.	 (2)	 modelling invasion syndromes—each	

imputed dataset was used to fit a random forest model of invasion 
syndromes.	We	employed	a	 two-	step	modelling	process,	whereby	
we first fitted random forest models of the invasion syndrome of 
unintentionally transported and introduced alien species and then 
a separate set of models for the invasion syndrome of species that 
have established alien populations. For each invasion syndrome 
model, the predictive performance and variable importance were 
measured. We also projected each invasion syndrome model to data 
on amphibian and reptile species worldwide to forecast species with 
some or all attributes consistent with the syndrome of unintention-
ally	transported	and	introduced	species	(i.e.,	potential	invaders)	and	
among those species that have established alien populations. Finally 
(3),	pooling model outputs—We pooled and summarised the output of 
invasion	syndrome	models	and	their	predictions.	The	advantage	of	
MICE	over	other	imputation	approaches	is	that	it	provides	informa-
tion on variability/uncertainty in inferences and predictions brought 
by the data imputation process.

2.2.1  | Multiple	imputation

Selection of variables
Because of varying degrees of data missingness across variables 
(4%–94%;	 see	also	Tables S2.1—3 in Supporting Information S2),	
we opted to first reduce the harmonised dataset by selecting the 
most	ecologically	relevant	variable(s)	among	highly	correlated	sets	
of	variables.	We	then	gradually	removed	species	(rows),	traits	and	
macroecological	 patterns	 (columns)	 with	 too	 many	 missing	 val-
ues	until	we	arrived	at	a	subset	with	a	maximum	of	60%	missing	
values	 (hereafter	 ‘working	 dataset’;	 see	 Tables S1 in Supporting 
Information S1).	The	working	dataset	 retained	5,	10	and	3	 traits	
for	frogs,	lizards	and	snakes,	respectively,	whereas	all	macroeco-
logical	patterns	were	retained.	Moreover,	the	working	dataset	re-
tained	5817,	6516	and	3525	 species	of	 frogs,	 lizards	 and	 snakes	
(~76%	global	coverage	for	amphibians	and	reptiles,	or ~ 85%	cov-
erage	for	these	taxonomic	subgroups).	Notably,	only	157	species	
of	 frogs	 (out	of	171),	173	species	of	 lizards	 (out	of	179)	and	108	
species	of	snakes	(out	of	119)	with	a	history	of	unintentional	trans-
port	and	 introduction	were	 retained	 (see	Table S1 in Supporting 
Information S1).

Random forest imputation
We separately imputed traits and macroecological patterns using 
a	 random	 forest	 multiple	 imputation	 approach	 (using	 the	 mi-
ceRanger	package	in	R	v.1.5.1;	Wilson,	2021).	Here,	each	variable	
is	imputed	using	the	information	on	all	other	variables.	Life-	history	
and ecological traits are often shaped by evolutionary history 
(Diniz-	Filho	 et	 al.,	 2012, 2015;	 Guénard	 et	 al.,	 2013),	 and	 thus,	
accounting for phylogenetic information can potentially increase 
the	accuracy	of	imputation	(Penone	et	al.,	2014; Swenson, 2014).	
Here,	 we	 accounted	 for	 phylogenetic	 information	 when	 imput-
ing trait data. We retrieved the phylogenetic trees of amphibians 
and	reptiles	worldwide	from	TimeTree	(v.5,	retrieved	2023-	04-	15;	
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Kumar	et	al.,	2022)	and	used	these	to	quantify	100	phylogenetic	
eigenvectors	using	a	Phylogenetic	Eigenvector	Mapping	approach	
(See	 Supporting Information S6	 for	 more	 details;	 Diniz-	Filho	
et al., 2015;	 Guénard	 et	 al.,	 2013).	 This	 series	 of	 phylogenetic	
eigenvectors holds information on the phylogenetic distances 
among species and clades, as well as the overall topology of the 
tree	(Diniz-	Filho	et	al.,	1998, 2012).	We	used	these	Phylogenetic	
eigenvectors	 as	 additional	 imputation	 predictors	 of	 traits	 (sensu 
Phylogenetic	 Imputation;	Penone	et	al.,	2014).	Although	suppos-
edly captured by phylogenetic eigenvectors, we also included fam-
ily	 taxonomic	 information	 as	 an	 additional	 predictor.	 Contrarily,	
we did not use phylogenetic information to impute macroecologi-
cal patterns because of insufficient evidence to soundly assume 
that macroecological patterns of global amphibians and reptiles 
are strongly shaped by evolutionary history.

In	 imputation,	 random	 forest	models	were	 fitted	with	 a	maxi-
mum of five iterations, as this level reached optimal correlation con-
vergence and optimal values of central measures, dispersion and 
accuracy.	 Moreover,	 we	 configured	 the	 random	 forest	 models	 to	
implement	a	predictive	‘mean	matching’	approach	in	selecting	which	
values	 were	 imputed	 from	 model	 predictions.	 This	 selection	 ap-
proach is most useful when variables to be imputed are multimodal, 
skewed	or	integers,	which	is	the	case	for	all	included	traits.	We	iter-
ated this imputation procedure to produce 100 imputed datasets of 
traits and macroecological patterns.

Imputation accuracy
We measured the accuracy of the random forest imputation mod-
els	by	computing	their	out-	of-	box	accuracy	(R-	squared	for	numeric	
variables	and	classification	accuracy	 rate	otherwise)	 for	each	vari-
able	and	at	the	final	iteration.	About	90%	of	variables	showed	high	
out-	of-	box	accuracy	rates	of	>0.75	(see	Figures S7.1–7.3, Supporting 
Information S7).

2.2.2  | Modelling	invasion	syndromes

To	compare	invasion	syndromes	for	successfully	transported	and	in-
troduced	species	and	for	successfully	established	species	(research	
question	1),	we	fitted	random	forest	models	(different	from	the	ran-
dom	forest	models	used	in	the	imputation	process)	with	traits	and	
macroecological	 patterns	 (Breiman,	2001;	Malley	 et	 al.,	2012; im-
plemented	in	‘ranger’	package	v.	0.15.1	in	R;	Wright	&	Ziegler,	2017).	
We	employed	a	two-	step	modelling	approach.	We	first	modelled	the	
traits and macroecological patterns of unintentionally transported 
and introduced species contrasted against those of species world-
wide.	Here,	we	assumed	that	all	species	worldwide	have	had	the	op-
portunity to be unintentionally transported, as it has been shown 
that alien species intercepted in a given region originated from all 
across the world, irrespective of the magnitude of international 
trade	 (Fenn-	Moltu,	Ollier,	 Bates,	 et	 al.,	2023a;	 Fenn-	Moltu,	Ollier,	
Caton,	et	al.,	2023b;	Pili	et	al.,	2023;	Turner	et	al.,	2021).	We	subse-
quently	modelled	the	traits	and	macroecological	patterns	of	species	

that	have	established	alien	populations	(only	those	that	had	initially	
or	 secondarily	 been	 unintentionally	 transported	 and	 introduced)	
contrasted	 against	 all	 species	 known	 to	 have	 been	 unintention-
ally	 transported	 and	 introduced.	 This	 two-	step	 approach	 allowed	
us to disentangle the syndromes of each invasion stage and sepa-
rately	predict	the	species'	risk	of	succeeding	in	each	invasion	stage.	
Notably,	each	 invasion	syndrome	model	was	replicated	100	times,	
wherein each replicate model is fitted with one of the 100 imputed 
datasets.

To	assess	the	relative	importance	of	traits	and	macroecolog-
ical	 patterns	 in	 explaining	 invasion	 syndromes	 (research	 ques-
tion	 2),	 we	 refitted	 invasion	 syndrome	 models,	 but	 this	 time	
with only trait data, only macroecological patterns data, and an 
optimal	 subset	 of	 traits	 and	macroecological	 patterns	 (for	 the	
latter, we conducted a stepwise variable selection to select vari-
ables contributing the most amount of information to the model; 
Coelho	et	al.,	2019).	This	allowed	us	to	investigate	whether	mod-
els	 fitted	with	 (1)	a	combination	of	all	 traits	and	macroecologi-
cal	patterns,	(2)	traits	only,	(3)	macroecological	patterns	only	or	
(4)	an	optimal	 subset	of	both	 types	of	variables	were	better	 in	
predicting	 invaders	 (See	details	 in	Tables S2.1–3 in Supporting 
Information S2).

In	total,	we	fitted	2400	invasion	syndrome	models	(three	taxo-
nomic groups × two invasion stages × four alternative models × 100	
replicates	corresponding	to	each	imputed	dataset).

Model fine- tuning and evaluation
To	 balance	 model	 complexity	 and	 generality,	 we	 fine-	tuned	 each	
invasion syndrome model by optimising the number of variables 
to	split	in	each	node	(mtry argument of ranger()	function).	Here,	we	
implemented a k- fold	cross-	validation	approach	in	evaluating	model	
accuracy—we	 first	 randomly	 partitioned	 the	 working	 dataset	 into	
five	(i.e.,	k- folds),	each	partition	having	an	approximately	equal	sam-
ple	size.	We	then	 fitted	 five	 invasion	syndrome	models	using	 four	
of	 five	 (i.e.,	 k−1)	partitions	of	 the	working	dataset	 for	 training	and	
the remaining partition for testing. We addressed class imbalance 
by	 down-	sampling	 (Chen	 et	 al.,	 2004).	 For	 example,	 in	 modelling	
invasion syndromes of unintentionally transported and introduced 
species,	we	randomly	down-	sampled	species	worldwide	to	equal	the	
number of unintentionally transported and introduced species. We 
iteratively fitted the five invasion syndrome models by incrementally 
increasing the number of variables to split in each node from 1 to the 
total number of predictor variables while leaving the other param-
eters to their default values. We evaluated accuracy by summarising 
the	five	invasion	syndrome	models'	out-	of-	box	accuracy	rate,	mean	
absolute	error	(MAE),	area	under	the	receiver	operating	character-
istic	 curve	 (AUC),	Boyce	 Index,	 precision,	 recall	 and	F1	 score	 (see	
Table S8.1 in Supporting Information S8 for definitions and interpre-
tation	of	 evaluation	metrics).	Well-	performing	models	would	have	
high	scores	for	the	Boyce	Index,	AUC,	precision	and	F1	score,	and	
low	scores	for	recall,	MAE	and	out-	of-	box.	We	identified	the	optimal	
mtry as the one that resulted in an invasion syndrome model with the 
highest	Boyce	Index.
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Variable importance
We measured the importance of each variable based on the accuracy 
lost	from	variable	permutation	(i.e.,	measuring	how	randomly	shuffling	
a	variable's	values	reduces	model	accuracy),	averaged	across	all	trees.

Prediction
To	 forecast	 potential	 future	 invaders	 (research	 question	 3),	 we	
used the invasion syndrome models fitted with the optimal set of 
variables to predict the probability of unintentional transport and 
introduction and the probability of establishment of amphibians 
and	reptiles	worldwide.	We	also	binarised	the	probabilities	(1 = has	
some	or	all	attributes	consistent	with	 invasion	syndrome;	0 = has	
very	few	or	no	attributes	consistent	with	invasion	syndrome)	using	
a	 threshold	 where	 positive	 observations	 are	 just	 as	 likely	 to	 be	
wrong	 as	 negative	 observations	 (‘sens = spec’	 criteria	 of	 the	 op-
timal.	 thresholds()	 function	of	PresenceAbsence	package	v.1.1	 in	
R;	Freeman	&	Moisen,	2008).	Furthermore,	we	quantified	for	un-
certainty	caused	by	prediction	extrapolation	and	flagged	species	
which have at least one variable with a value beyond the minimum 
or	 maximum	 limits	 of	 that	 used	 to	 train	 the	 invasion	 syndrome	
models	 (using	 MESS()	 function	 of	 modEvA	 package	 v.3.11	 in	 R;	
Barbosa et al., 2024).

2.2.3  |  Pooling	model	outputs

We pooled and summarised the outputs of the 100 replicates of 
invasion syndrome models. We calculated the mean and stand-
ard	 deviation	 of	 evaluation	 metrics,	 each	 variable's	 importance	
statistic,	and	each	species'	predicted	probability	of	unintentional	
transport	and	introduction	and	probability	of	establishment.	The	
standard deviation of these outputs represents the uncertainty 
brought by the multiple imputation process. We also computed 
a	 ‘transport	 and	 introduction	 risk	 score’	 and	 ‘establishment	 risk	
score’	by	summing	species'	binarised	predicted	probability	of	un-
intentional transport and introduction and binarised predicted 
probability of establishment, respectively, across 100 model 
replicates.	 These	 risk	 scores	 thus	 range	 from	 0	 to	 100	 and	 can	
be intuitively interpreted as the confidence level of whether the 
species have some or all attributes consistent with invasion syn-
dromes and, thus, a predisposition to succeed in the respective 
invasion stages.

We inspected the traits and macroecological patterns of the 
predicted species for plausibility, starting with those predicted 
by	the	most	number	of	 invasion	syndrome	model	replicates	(risk	
scores).	We	 performed	 a	 basic	 scan	 online,	 searching	 for	 scien-
tific publications and unpublished reports that stated or inferred 
that a predicted species had been transported or introduced. We 
used	the	search	query	‘species'	scientific	name’	AND	‘introduced’	
OR	 ‘transported’	 in	 Google	 on	 21	 January	 2024.	We	 inspected	
the first five pages. We found that species predicted by less 
than	30	of	100	 invasion	syndrome	model	 replicates	are	unlikely	
to be unintentionally transported, introduced and establish alien 

populations	 (e.g.,	 species	 are	 endangered	 or	 restricted	 to	 close	
canopy	forests).

We	 classified	 species	 into	 three	 classes:	 (1)	 potential	 invad-
ers—species	with	no	 invasion	history	but	with	 a	 transport	 and	 in-
troduction	risk	score	of	30;	(2)	high-	invasion	risk	species—potential	
invaders	with	an	establishment	risk	score	of	30;	(3)	uncertain	risk—all	
other species that do not fall into the first two groups.

2.3  |  R codes

The	R	script	of	our	quantitative	invasion	risk	assessment	tool	work-
flow	can	be	accessed	in	Zenodo	at	https://	zenodo.	org/	doi/	10.	5281/	
zenodo.	11533251	 and	 in	 GitHub	 at	 https:// github. com/ arman pili/ 
Forec astin gInva ders.

3  |  RESULTS

3.1  |  Differences in the invasion syndromes of 
transported and introduced species and established 
alien species

Among	 traits,	 measures	 of	 body	 size	 (e.g.,	 snout-	to-	vent	 length	
for	 frogs	and	 lizards,	 total	 length	 for	 lizards	and	mass	 for	 lizards	
and	 snakes)	 and	 reproductive	output	 (e.g.,	 clutch	 size	 for	 lizards	
and	clutch	number	 for	 frogs)	were	 the	most	 important	 variables	
in	predicting	both	invasion	stages	(Figure 3).	Notably,	these	traits	
were relatively more important in predicting species with estab-
lished alien populations than those unintentionally transported 
and	introduced.	Other	traits	with	notable,	albeit	weak,	importance	
in predicting unintentionally transported and introduced species 
were	diurnal	and	crepuscular	activity	times	for	frogs	and	 lizards,	
and	diet,	microhabitat,	and	saxicolous	and	arboreal	substrates	for	
lizards.

Macroecological	 patterns	 are	 important	 variables	 in	predicting	
both invasion stages and are relatively more important than traits 
(Figure 3).	This	is	especially	the	case	for	unintentionally	transported	
and introduced species, where commonness, followed by tolerance 
to	humans	(maximum	human	footprint	index),	and	then	distributional	
overlap with ports with high outgoing passengers and outflows 
of commodities were consistently the most important variables 
across	 taxonomic	groups.	Meanwhile,	 for	 species	with	established	
alien	populations,	human	tolerance	(maximum,	median	or	minimum	
human	footprint	index),	habitat	selectivity	(proportional	similarity	of	
occupied	vs	available	habitats),	habitat	diversity	(normalised	Levin's	
index	of	habitat	diversity)	and	native	geographic	range	size	were	the	
most	 important	variables,	albeit	with	varying	ranking,	across	taxo-
nomic	groups.	Nonetheless,	commonness	was	also	a	highly	import-
ant	variable	for	frogs	and	snakes	with	established	alien	populations.	
Notably,	 the	 ranking	of	 relative	variable	 importance	did	not	differ	
among	alternative	invasion	syndrome	models	(see	Figures S8.1–8.3 
in Supporting Information S8).
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3.2  |  Relative importance of macroecological 
patterns and traits in predicting invasions

Across	taxonomic	groups	and	 invasion	stages,	and	considering	dif-
ferent evaluation metrics, invasion syndrome models fitted only 
with	macroecological	patterns	(yellow	points	in	Figure 4)	often	per-
formed	substantially	better	than	those	fitted	only	with	traits	 (blue	

points in Figure 4).	 This	 is	 indicated	 by	 the	 higher	 scores	 for	 the	
Boyce	 Index,	AUC,	precision	and	F1	score,	as	well	as	 lower	scores	
for	recall,	MAE	and	out-	of-	box	error.	Meanwhile,	invasion	syndrome	
models fitted with all or an optimal subset of traits and macroeco-
logical patterns performed slightly better than those fitted only with 
macroecological	 patterns.	 This	 indicates	 that	 traits	 complement	
macroecological patterns in increasing the predictive performance 

F I G U R E  3 Relative	importance	of	life-	history	and	ecological	traits	and	macroecological	patterns	(y-	axis)	on	the	invasion	syndrome	models	
of	unintentionally	transported	and	introduced	species	(blue)	and	species	that	have	established	alien	populations	(yellow).	For	life-	history	and	
ecological	traits,	we	indicated	‘f’,	‘l’	or	‘s’	in	parenthesis	if	the	variables	were	used	to	fit	invasion	syndrome	models	of	frogs,	lizards	or	snakes,	
respectively.	Variable	importance	was	summarised	from	invasion	syndrome	models	fitted	with	all	life-	history	and	ecological	traits	and	
macroecological	patterns	and	was	max-	min	standardised	to	scale	from	0	to	1;	points	indicate	the	mean,	and	error	bars	indicate	one	standard	
deviation summarised from 100 model replicates.
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of	invasion	syndrome	models.	Notably,	aligning	with	the	principle	of	
parsimony, the invasion syndrome models fitted with an optimal sub-
set	of	traits	and	macroecological	patterns	were	more	balanced	(more	
plausible level of specificity and generality, as indicated by balanced 
precision,	 recall,	 F1	and	out-	of-	box	error	 statistics;	 see	Table S8.1 
in Supporting Information S8 for definitions and interpretation of 
evaluation	metrics)	 than	 those	 fitted	with	all	 traits	and	macroeco-
logical patterns. Inspecting the predictions of invasion syndrome 
models	 fitted	with	an	optimal	 subset	of	variables,	all	 frogs,	 lizards	
and	snakes	with	a	history	of	unintentional	transport	and	 introduc-
tion	were	correctly	predicted	 (based	on	binarized	probabilities)	by	
at	 least	87	of	100	model	replicates.	Meanwhile,	84.7%,	96.5%	and	
100%	of	frogs,	lizards	and	snakes,	respectively,	with	a	history	of	un-
intentional transport and introduction were correctly predicted by 

all	100	model	replicates.	These	invasion	syndrome	models	were	as	
accurate	for	 lizards	and	snakes,	but	 less	so	for	 frogs,	 in	retrospec-
tively	predicting	species	that	established	alien	populations:	55.6%,	
97.6%	 and	 100%	 of	 frogs,	 lizards	 and	 snakes	 were	 correctly	 pre-
dicted by all 100 model replicates.

3.3  |  Forecasting potential invaders

A	total	of	80	frogs,	73	lizards	and	7	snakes	worldwide	(160	species	
in	total)	with	no	invasion	history	were	forecasted	to	have	attributes	
consistent with invasion syndromes of unintentionally transported 
and	introduced	species	(‘potential	invaders’;	Figure 5).	Among	them,	
9	frogs,	45	lizards	and	3	snakes	(57	species	in	total)	have	attributes	

F I G U R E  4 Relative	performance	of	alternative	invasion	syndrome	models	in	predicting	unintentionally	transported	and	introduced	
amphibian	and	reptile	species	and,	among	them,	species	with	established	alien	populations.	Alternative	invasion	syndrome	models	were	
fitted	with	life-	history	and	ecological	traits	only	(‘LHET’),	macroecological	patterns	only	(‘MP’),	both	traits	and	macroecological	patterns	
(‘LHET	+	MP’),	and	an	optimal	subset	of	traits	and	macroecological	patterns	(‘optimal	subset’).	Predictive	performance	was	measured	based	
on	seven	evaluation	metrics	(x-	axis):	Boyce	Index,	area	under	the	receiver	operating	characteristic	curve	(AUCroc),	precision,	recall,	F1	score,	
mean	absolute	error	(MAE)	and	out-	of-	box	error	rate	(OOBerror).	Points	indicate	the	mean	and	error	bars	indicate	the	standard	deviation	
summarised from the outputs of 100 invasion syndrome model replicates.
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consistent with invasion syndromes of a typical species that has es-
tablished	alien	populations	(‘high-	invasion	risk	species’;	Figure 5; see 
also Table S1 in Supporting Information S1 for the predicted invasion 
risk	of	all	species).

We also inspected our model forecasts on species that have been 
unintentionally transported and introduced but have not established 
alien	populations.	Among	them,	three	frogs	have	attributes	consis-
tent with invasion syndromes of species that have established alien 
populations.	Meanwhile,	 among	 species	 that	have	a	history	of	 es-
tablishing	 alien	 populations	 but	 are	 not	 known	 to	 be	 unintention-
ally	 transported	 and	 introduced,	 our	 models	 forecasted	 six	 frogs	
(out	of	22),	 five	 lizards	 (out	of	51)	and	two	snakes	 (out	of	17)	also	

have attributes consistent with syndromes of species that have been 
unintentionally	transported	and	introduced	(Table S1 in Supporting 
Information S1).

The	 tens	 rule	 states	 that	 10%	 of	 species	 worldwide	 could	 be	
successfully transported; of these, 10% could successfully be intro-
duced;	and	of	these,	10%	could	successfully	established.	Thus,	for	
our	 analysis,	 the	null	 expectation	 is	 that	1%	of	 species	worldwide	
could be transported and introduced, and among which, 10% could 
established.	Combining	our	models'	forecasts	and	list	of	species	with	
invasion history, the proportion of species predicted to succeed on 
each	consecutive	 invasion	stage	 is	higher	 than	expected	based	on	
the	tens	rule:	the	models	predict	3.4%	(257	of	7565	species)	of	frogs,	
3.5%	(257	of	7310	species)	of	lizards	and	3.2%	(128	of	4038	species)	
of	 snakes	worldwide	 could	 be	 unintentionally	 transported	 and	 in-
troduced	based	on	their	invasion	syndromes	(null	expectation = 1%).	
Among	these,	20.3%	(51	of	251	species)	of	frogs,	44.8%	(113	of	252	
species)	 of	 lizards	 and	 15.9%	 (20	 of	 126	 species)	 of	 snakes	 could	
successfully establish alien populations based on their invasion syn-
dromes	(null	expectation = 10%).

4  |  DISCUSSION

Responding to the escalating global problem of biological inva-
sions	 requires	 an	 integrated	 biosecurity	 infrastructure	 with	 a	
future-	proof	 preventative	 strategy	 (Ahmed	 et	 al.,	 2022; Finnoff 
et al., 2007;	IPBES,	2023;	Leung	et	al.,	2002;	Pili	et	al.,	2023;	Pyšek	
&	Richardson,	2010).	Here,	we	showcase	a	quantitative	tool	for	as-
sessing	the	invasion	risk	of	species	worldwide.	Our	tool	allowed	us	
to	successfully	forecast	160	species	of	frogs,	lizards	and	snakes	with	
no	prior	history	of	invasion	that	have	a	risk	of	being	unintentionally	

F I G U R E  5 Amphibian	and	reptile	species	with	no	invasion	
history,	but	with	concerning	risk	of	unintentional	transport	and	
introduction	(x-	axis)	and	establishing	alien	populations	(y-	axis).	
Amphibian	and	reptile	species	with	>30	risk	score	for	unintentional	
transport	and	introduction	are	‘potential	invaders’;	among	them,	
species with >30	risk	score	for	establishing	alien	populations	are	
‘high-	invasion	risk	species’.	Risk	scores	were	based	on	the	number	
of	invasion	syndrome	model	replicates	(out	of	100)	that	identified	
the species as having some or all attributes consistent with invasion 
syndromes.	The	size	of	the	dots	increases	with	the	risk	score	for	
both	invasion	stages.	The	red	point	is	Tenuidactylus caspius whose 
first introduced population was reported in September 2023, 
just	days	after	the	conclusion	of	our	analysis.	The	orange	points	
are	species	that	have	native	exotic	populations	or	populations	
with	reduced	genetic	diversity	due	to	suspected	recent	human-	
mediated	dispersal	(Lizards:	Agama picticauda, Plestiodon fasciatus, 
Hemidactylus robustus, Scleroporus grammicus; Frogs: Rhaebo 
blombergi).	Blue	points	are	species	regulated	by	CITES	(Frogs:	
Agalychnus callidryas, Euphylyctus hexadactylus;	Lizards:	Chamaeleo 
dilepis, C. gracilis, C. zeylanicus, Ctenosaura hemilopha, Phrynosoma 
blainvillii, Strophurus spinigerus, Tiliqua rugosa, Varanus albigularis, V. 
bengalensis, V. exanthematicus, V. gouldi, V. varius;	Snakes:	Eunectes 
murinus).	See	also	Tables S1 in Supporting Information S1 for 
predictions for amphibians and reptiles worldwide.
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transported and introduced, and among them, 57 species have a 
high	 risk	 of	 establishing	 alien	 populations.	We	 find	 that	 a	 typical	
unintentionally transported and introduced species tends to be 
more	common,	can	thrive	well	in	human-	disturbed	habitats	and	has	
more access to transport vectors within its native geographic range. 
Among	these	species,	those	that	have	so	far	successfully	established	
tend	to	be	larger	in	body	size,	are	habitat	generalists,	also	thrive	well	
in	human-	disturbed	habitats	and	have	large	geographic	range	sizes.	
Overall, macroecological patterns were more important than life 
history	and	ecological	 traits	 in	explaining	successful	 transport	and	
introductions, and successful establishment of alien populations. 
Notably,	the	most	accurate	models	were	those	fitted	with	an	optimal	
subset of traits and macroecological patterns.

4.1  |  What factors determine whether a species 
will be an invader or not?

Understanding	 which	 attributes	 determine	 species'	 invasion	 po-
tential is a classic and still largely unanswered research objective in 
invasion	science	 (Drake	et	al.,	1989; Richardson, 2011; Richardson 
&	 Pyšek,	 2008; Williamson et al., 1986).	 Our	 findings	 show	 that	
traits	 are	 relatively	 weak	 predictors	 for	 unintentional	 transport	
and	 introduction.	Counter	 to	 the	presumption	that	unintentionally	
transported and introduced alien species would have relatively small 
body	sizes,	which	would	allow	them	to	easily	contaminate	or	hitch-
hike	on	goods	and	vehicles	unnoticed	(Chapple	et	al.,	2011;	García-	
Díaz	et	al.,	2019;	Kraus,	2009;	Toomes	et	al.,	2019),	we	found	that	
these	species	range	in	body	size	from	small	to	large.	It	is	also	for	this	
same reason that our findings do not align with previous analyses 
on	introduced	alien	amphibians	and	reptiles	(Allen	et	al.,	2017; see 
Supporting Information S9 for a table of studies on alien amphibian 
and	 reptile	 invasion	 success);	 however,	 these	 previous	 studies	 did	
not distinguish the traits of alien species that have been intentionally 
vs. unintentionally transported and introduced, which may have con-
founded	their	analysis	(Pysek	et	al.,	2011).	It	is	important	to	note	that	
we	fitted	the	models	with	species'	adult	body	sizes,	which	was	the	
only	widely	available	variable	describing	species'	body	size.	Juveniles	
and	sub-	adults,	which	are	smaller	in	body	size,	would	be	in	the	most	
dispersive	life	stages	(Sinsch,	2014)	and,	thus,	would	likely	hitchhike	
on	transport	vectors	or	contaminate	commodities.	Although	age	and	
size	have	a	logarithmic	relationship	(Von	Bertalanffy	growth	curves;	
Fabens, 1965)	 and,	 thus,	 a	 correlation	between	 juvenile	 and	 adult	
body	sizes,	 it	 is	still	 interesting	to	 investigate	whether	 intercepted	
individuals	are	more	likely	to	be	juveniles	or	sub-	adults	and	whether	
juvenile	body	size	would	be	a	stronger	and	more	important	predic-
tor	of	unintentional	transport	and	introduction.	Another	interesting	
trait,	albeit	with	weak	 importance	to	the	model,	was	that	arboreal	
(i.e.,	 living	in	trees)	and	saxicolous	(i.e.,	 living	among	rocks)	species	
are	more	 likely	 to	 be	 unintentionally	 transported	 and	 introduced.	
Species with such a propensity to climb on objects can end up living, 
coincidentally find themselves in, and/or depositing their eggs on  
artificial habitats, such as commodities, storage materials or vehicles 

destined to be transported. Overall, our findings show no generalis-
able	life-	history	and	ecological	trait	among	frogs,	lizards	and	snakes	
that	contaminate	commodities	and	hitchhike	on	transport	vectors.

Measures	of	body	size	were	the	most	important	variable	for	es-
tablishment,	at	 least	for	frogs	and	snakes.	Differences	 in	the	body	
size	distribution	 (see	Figures S5.1–6 in Supporting Information S5)	
show that established species tend to have relatively larger body 
sizes	than	those	that	failed	to	establish	(or	have	not	yet	established).	
Given	 that	 large	body	size	 is	 indicative	of	a	 slow	 life	 strategy,	our	
findings	coincide	with	the	inference	of	Sol	et	al.	 (2012)	 in	invading	
birds that species with a slow life strategy would be more successful 
in establishing alien populations, particularly when starting from a 
small	 founding	population	size,	 such	as	 is	 the	case	of	unintention-
ally	 transported	 and	 introduced	 species	 (Pili	 et	 al.,	 2023; Wilson 
et al., 2009).	Species	with	slow	life	strategies	prioritise	future	over	
current reproductive returns: they grow relatively slower, but have 
large	adult	body	sizes,	and	survive	 longer	 (Blackburn	et	al.,	2009).	
Altogether,	this	allows	them	to	distribute	their	reproductive	effort	
across	multiple	 breeding	 events	 (i.e.,	 bet-	hedging;	 Stearns,	2000),	
temporally spreading out reproductive failure due to demographic 
and	 environmental	 stochasticity	 (Duncan	 et	 al.,	 2014;	 Melbourne	
&	Hastings,	2009).	Notably,	this	inference	on	slow	life	strategies	of	
established alien species is counter to the findings of previous stud-
ies	on	alien	amphibian	and	reptile	establishment	and	spread	(Allen	
et al., 2013, 2017);	but	then	again,	their	analysis	did	not	disentangle	
differences brought by varying pathways of transport and introduc-
tion	(Pysek	et	al.,	2011).	As	shown	here,	only	a	few	life-	history	and	
ecological traits strongly determine whether a species could become 
invasive.

In our search for alternative or complementary predictors, 
we uncovered the potential of species macroecological patterns 
in	 assessing	 species'	 invasion	 risk.	 Species'	macroecological	 pat-
terns—particularly	geographic	range	size,	commonness	and	habi-
tat	generalism—have	been	central	 to	extinction	risk	assessments	
(e.g.,	 IUCN	 red	 list	 assessments;	 IUCN	 Standards	 and	 Petitions	
Committee,	2022;	Rabinowitz,	1981;	Yu	&	Dobson,	2000).	In	an-
other light, we have shown how macroecological patterns can also 
play	a	foremost	role	in	assessing	species'	invasion	risk.	Our	findings	
are consistent with previous studies in showing that species with 
large	native	geographic	ranges	are	more	 likely	to	be	transported	
and	 introduced	 (García-	Díaz	 et	 al.,	 2019;	 Tingley	 et	 al.,	 2010)	
and	succeed	 in	establishing	alien	populations	 (Allen	et	al.,	2013; 
Cadotte	 et	 al.,	 2006; Duncan et al., 2001; Forsyth et al., 2004; 
Hayes	&	Barry,	2007;	Hui	et	al.,	2011).	Notably,	geographic	range	
size	 has	 been	 used	 chiefly	 as	 a	 surrogate	 for	 more	 ecologically	
direct	 measures	 of	 invasion	 potential	 (Dukes	 &	 Mooney,	 1999; 
Peterson	 et	 al.,	 2011;	 Williamson	 &	 Griffiths,	 1996).	 Here,	 we	
provide	empirical	evidence	on	the	long-	standing	presumptions	of	
how	macroecological	patterns—particularly	commonness,	habitat	
generalism,	human	tolerance	and	access	to	transport	vectors—de-
termine	 invasion	 risk.	 We	 find	 that	 unintentionally	 transported	
and introduced species tend to be more common, more tolerant to 
human disturbance, and are distributed in areas with higher total 
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trade	outflows	and	outgoing	passengers	across	ports.	This	makes	
sense since being locally and/or widely abundant while having ac-
cess to plenty of transport vectors would together increase the 
chances that individuals of these species will be unintentionally 
transported	and	introduced	(Hulme	et	al.,	2008).	Meanwhile,	hab-
itat generalism, tolerance to human disturbance and large native 
geographic	 range	 size	 were	 the	 strongest	 macroecological	 pre-
dictors of establishment success. Such species would have better 
prospects of finding suitable conditions in sites where they are 
introduced,	 which	 are	 often	 in	 human-	modified	 habitats	 (Dukes	
&	Mooney,	1999;	Hufbauer	 et	 al.,	2012; Stringham et al., 2018; 
Williamson	&	Griffiths,	1996),	ultimately	aiding	in	their	population	
establishment. In the same way that it has played a major role in 
conservation science, the foremost novelty of our study and our 
tool is in showing how a diverse range of variables describing spe-
cies'	 macroecological	 patterns	 hold	 much	 promise	 in	 advancing	
invasion science by allowing us to understand the determinants 
of	invasion	success	better,	to	forecast	potential	invaders	and	high-	
invasion	 risk	 species	and,	 thereby,	 to	 inform	preventative	biose-
curity robustly.

4.2  |  How can knowledge of invasion syndromes 
be used to develop effective management strategies?

Our	quantitative	risk	assessment	tool	identified	160	frogs,	lizards	
and	snakes	as	species	with	high	potential	to	be	unintentionally	in-
troduced. We additionally identified 13 species that already estab-
lished alien populations elsewhere but have not yet been recorded 
to use unintentional transport and introduction pathways yet 
show	the	potential	 to	do	so	 (e.g.,	 stratified	 long-	distance	spread	
and bridgehead invasions; Bertelsmeier et al., 2021;	 Capinha	
et al., 2023;	Pili	et	al.,	2019;	Roura-	Pascual	et	al.,	2004).	Some	of	
the forecasted potential invaders are also using intentional trans-
port	pathways,	such	as	the	pet	trade	(Figure 5; Frogs: Agalychnus 
callidryas, Euphylyctus hexadactylus;	Lizards:	Chamaeleo dilepis, C. 
gracilis, C. zeylanicus, Ctenosaura hemilopha, Phrynosoma blainvil-
lii, Strophurus spinigerus, Tiliqua rugosa, Varanus albigularis, V. ben-
galensis, V. exanthematicus, V. gouldi, V. varius;	 Snakes:	 Eunectes 
murinus;	CITES	Secretariat	and	UNEP-	WCMC,	2023).	More	inter-
estingly, some of the forecasted potential invaders have or may 
have	already	been	introduced	outside	their	native	ranges.	For	ex-
ample,	an	introduced	population	of	the	Caspian	Bent-	toed	Gecko	
Tenuidactylus caspius	 was	 observed	 in	 Georgia	 in	 August	 2023	
(Figure 5;	 reported	 by	 K.	 Prondzynska	 in	 iNaturalist	 on	 2023-	
08-	29,	around	the	 time	our	analysis	was	concluded).	Meanwhile,	
molecular biogeography studies found reduced genetic diversity 
in	 some	 populations	 of	 the	Heyden's	 gecko	Hemidactylus robus-
tus	 and	 the	 Mesquite	 lizard	 Sceloporus grammicus, suggesting 
possible	 human-	mediated	 transport	 in	 recent	 history	 (Figure 5; 
Arévalo	et	al.,	1991;	Šmíd	et	al.,	2013).	These	unpublished	reports	
and scientific inferences independently validate the statistical ro-
bustness	of	our	 tool's	 forecasts	 and,	 together	with	our	 findings,	

highlight the urgency in addressing unintentional transport and 
introduction pathways to put a stop to the global problem of bio-
logical invasions.

Our	tool's	forecast	of	potential	invaders	can	directly	guide	pre-
ventative biosecurity of nations worldwide. For instance, national 
horizon-	scanning	exercises	for	developing	warning	lists	can	include	
our	 tool's	 forecasted	 potential	 invaders	 alongside	 the	 list	 of	 spe-
cies	with	 invasion	history	(Figure 1b)	to	assess	which	species	have	
a	high	risk	of	being	unintentionally	transported	and	introduced	and	
establish alien populations in their jurisdictions. Such warning lists 
identify which alien species should be prioritised by preventative 
biosecurity	strategies	(e.g.,	sanitation	policies,	inspections	and	quar-
antine)	and	which	species	should	be	banned	from	import	if	not	mon-
itored.	 Given	 recent	 studies	 showing	 unintentionally	 transported	
species	can	come	from	anywhere	in	the	world	(Fenn-	Moltu,	Ollier,	
Bates, et al., 2023a;	 Fenn-	Moltu,	 Ollier,	 Caton,	 et	 al.,	 2023b;	 Pili	
et al., 2023),	nations	should	anticipate	the	forecasted	potential	 in-
vaders to arrive past their borders, especially for the vast majority of 
countries	that	lack	preventative	biosecurity	infrastructures	(Latombe	
et al., 2023).	But	should	all	the	forecasted	potential	invaders	be	pre-
vented	from	entry?	For	instance,	as	shown	here,	only	57	of	the	160	
forecasted potential amphibian and reptile invaders have some or 
all attributes consistent with syndromes across all invasion stages. 
Should we also be concerned about the forecasted potential invad-
ers with no or few attributes consistent with syndromes predispos-
ing them to establish alien populations? We stress the importance of 
the	higher	complexity	required	in	predicting	establishment	success,	
which warrants predictors beyond intrinsic and inherent species at-
tributes	(Catford	et	al.,	2022;	Robeck	et	al.,	2024).	A	comprehensive	
assessment	of	establishment	risk	should	account	for	propagule	pres-
sure, suitability to environmental conditions and biotic community, 
among	 others	 (Bomford	 et	 al.,	 2008;	Cassey	 et	 al.,	 2018;	Catford	
et al., 2022;	Hayes	&	Barry,	2007;	Herborg	et	al.,	2007; Wittenberg 
&	Cock,	2001).	Ultimately,	the	most	fool-	proof	approach	would	be	
to	uphold	the	Precautionary	Principle	(Kumschick	et	al.,	2023)	and	
expect	 the	worst	outcomes	 from	the	arrival	of	 the	 forecasted	po-
tential invaders.

4.3  |  Progress in quantitative invasion 
risk assessment

Our	 quantitative	 invasion	 risk	 assessment	 tool	 is	 a	 significant	
advancement	 and	 addition	 to	 the	 existing	 arsenal	 of	 biosecurity	
decision-	support	 tools—the	 majority	 of	 which	 are	 qualitative	 or	
semi-	quantitative.	The	key	qualities	that	make	our	tool	appealing	
and	complementary	to	existing	warning	lists	are	its	reproducibil-
ity, transferability, statistical robustness and scientific defensibil-
ity.	The	underlying	code	to	run	our	tool	is	readily	accessible	online	
(https:// github. com/ arman pili/ Forec astin gInva ders)	 and	 ade-
quately	documented	and	maintained,	following	best	practices	for	
reproducible	computational	research	(Jenkins	et	al.,	2023).	As	the	
framework	builds	on	widely	accessible	traits	and	macroecological	
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patterns,	 it	 is	 easily	 transferable	 to	 other	 taxonomic	 groups	 be-
yond	frogs,	lizards	and	snakes	(Fournier	et	al.,	2019).	As	we	have	
shown here, invasion syndrome models fitted only with macro-
ecological patterns may be sufficient, as they resulted in high pre-
dictive	accuracy	(Figure 4).	Macroecological	patterns	of	different	
taxonomic	 groups	 are	 widely	 available	 from	 and/or	 quantifiable	
using	open-	source	biodiversity	databases	(i.e.,	occurrence	records,	
shapefiles	of	geographic	range	sizes,	and	biogeographic	regions).	
This	highlights	the	integral	role	of	big	open	biodiversity	data,	 in-
cluding	data	on	 invasion	histories,	 in	 tackling	global	 biodiversity	
issues	(Kelling	et	al.,	2015;	Pagad	et	al.,	2018; Seebens et al., 2017; 
Wüest et al., 2020).	Meanwhile,	traits	for	fitting	invasion	syndrome	
models	would	vary	among	taxonomic	groups,	and	we	thus	advise	
to	separately	train	models	for	different	taxonomic	groups	rather	
than	forecasting	across	them.	For	instance,	although	body	size	is	
a strong indicator of establishment success among unintention-
ally	transported	and	introduced	frogs,	snakes	(as	shown	here)	and	
birds	(Sol	et	al.,	2012),	this	is	not	true	for	lizards	(as	shown	here)	
and	likely	other	taxonomic	groups.	Similarly,	the	model	framework	
could	also	extend	to	other	 invasion	pathways,	for	example	to	 in-
tentionally	 transported	and	 introduced	alien	 species	 (e.g.,	 exotic	
pet	 trade)	 to	 investigate	 factors	 that	 determine	 drivers	 and	 dy-
namics	 of	 these	 intentional	 introductions	 (Bernery	 et	 al.,	 2022; 
Measey	et	al.,	2019;	Mohanty	&	Measey,	2019;	Pysek	et	al.,	2011).	
Finally,	our	tool's	MICE	backbone	is	a	significant	advancement	in	
quantitative	 biosecurity	 and,	 more	 broadly,	 macroecology.	 This	
backbone	 implements	 cutting-	edge	 statistical	 approaches	 in	
every	 step	 (Diniz-	Filho	et	 al.,	1998, 2015;	Guénard	et	 al.,	2013),	
allowing us to circumvent and account for uncertainties brought 
by	 the	 highly	 biased	 and	 inherently	 limiting	missing	 data	 in	 life-	
history	trait	databases	(Diniz-	Filho	et	al.,	2015;	Lall,	2016;	Penone	
et al., 2014;	Taugourdeau	et	al.,	2014),	and	ultimately	to	forecast	
potential invaders among species worldwide.

Of course, our tool comes with caveats. In applying our tool to 
other	 taxonomic	 groups,	 the	most	 important	 limiting	 requirement	
would be data on invasion history, which is hampered by delays in 
reporting,	 if	 not	 underreporting	 due	 to	 alien	 species'	 low	 detect-
ability	 and	 invasion	 lags	 or	 due	 to	 low	monitoring	 effort	 (Robeck	
et al., 2024).	As	was	the	case	here,	insufficient	data	on	invasion	his-
tory prevented us from modelling the invasion syndromes of other 
amphibian and reptile groups, such as salamanders, crocodiles and 
turtles.	 However,	 future	 studies	 can	 test	 or	 optimise	 the	 cross-	
taxonomic	 predictive	 power	 of	 invasion	 syndrome	 models	 fitted	
only with macroecological patterns; these models performed bet-
ter than models fitted with traits only, and macroecological patterns 
are	easily	quantifiable	variables	comparable	across	the	tree	of	 life.	
Finally,	many	of	 the	predictor	variables	are	expected	 to	change	 in	
the	future—taxonomic	changes	are	common,	new	species	are	being	
described	(e.g.,	Uetz	et	al.,	2022),	new	alien	species	are	regularly	re-
ported	 (Pagad	et	al.,	2018; Seebens et al., 2017),	 species	distribu-
tion	data	are	increasingly	made	available	(Kelling	et	al.,	2015; Wüest 
et al., 2020),	new	airports	and	shipping	ports	open	up,	globalisation	
increases	 and	 shifts	 global	 trade	 dynamics	 (Seebens	 et	 al.,	 2018),	

among	 many.	 Thus,	 for	 predictions	 to	 stay	 abreast	 of	 changes	 in	
input	data,	our	tool	must	be	regularly	re-	run.

5  |  CONCLUSION

‘An	ounce	of	prevention	is	better	than	a	pound	of	cure’—is	the	most	
crucial	guiding	principle	of	global	biosecurity	(Ahmed	et	al.,	2022; 
Hulme,	 2021;	 Leung	 et	 al.,	 2002)	 and	 continues	 in	 relevance	
(Convention	on	Biological	Diversity,	2022;	 IPBES,	2023).	Crucial	
to preventing biological invasions are warning lists, which identify 
what arriving alien species to watch out for, prevent from entry or 
closely	monitor	 because	 they	 run	 the	 risk	of	 becoming	 invasive.	
We showcase here a reliable, reproducible, transferable, statisti-
cally	robust,	and	scientifically	defensible	quantitative	invasion	risk	
assessment tool that allows invasion scientists and biosecurity 
authorities to identify invasion syndromes and forecast potential 
invaders.	By	integrating	our	tool	to	horizon-	scanning	exercises	for	
developing	warning	 lists,	 risk	 assessments	 are	 no	 longer	 limited	
to species with invasion history but a much broader range of spe-
cies worldwide with some or all attributes consistent with inva-
sion syndromes. Our tool is a significant new addition to the suite 
of	 decision-	support	 tools	 needed	 for	 developing	 future-	proof	
preventative biosecurity strategies against the escalating global 
problem of biological invasions.
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