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Hybrid Energy-Efficient Local Path Planning for Autonomous Vehicles
in Dynamic Environments

Fadel Tarhini1, Reine Talj1 and Moustapha Doumiati2

Abstract— Efficient trajectory planning plays a crucial role
in the development of autonomous vehicles, ensuring safe and
optimized navigation in dynamic environments. This paper
proposes a novel energy-efficient hybrid trajectory planning
by integrating a sampling-based method with an optimization-
based path refining method. It uses the strength of the sampling-
based methods to reduce the solution space and generate
a reactive trajectory in a dynamic environment. Following
path selection, a septic path is generated and utilized as
a reference for an energy-efficient path-refining optimization
problem, producing a jerk-controlled trajectory with enhanced
computational efficiency. Simulation results, conducted in a
joint-simulation between Simulink/Matlab and the Scaner Stu-
dio simulator, demonstrate the effectiveness of our approach,
achieving over 20 % energy savings while adeptly addressing
dynamically changing environments.

I. INTRODUCTION

Advancements in automated driving mark a paradigm shift
in transportation, promising enhanced safety, efficiency, and
productivity. Central to this revolution is trajectory planning,
a pivotal process enabling vehicles to navigate dynamic and
unpredictable environments with precision and intelligence
[1]. As vehicles traverse complex terrains, trajectory plan-
ning harmonizes a delicate balance, leveraging sophisticated
decision-making to chart optimal paths while adhering to
various constraints [2].

A trajectory planning problem entails determining the
most efficient path, velocity, and orientation from the ve-
hicle’s current state to a designated goal configuration. Such
optimization tasks aiming to minimize specific objectives
while adhering to various constraints are recognized as
PSPACE-hard problems [3]. Therefore, path-speed decoupled
approaches are utilized to divide the complex problem into
two distinct subproblems: spatial path planning initially,
followed by speed planning. This approach enables a step-
by-step process, enhancing efficiency and tractability by
addressing each component independently [4].

Trajectory planning methodologies are typically catego-
rized into four main groups: learning-based, search-based,
sampling-based, and optimization-based methods. Search-
based methods, such as A* and state-lattice [5], [6], employ
graph-based search techniques. These methods discretize the
configuration space using predefined motion primitives and
proactively construct a search graph for structured trajectory
exploration. With appropriate heuristics and search strategies,
these methods demonstrate efficacy in low-speed unstruc-
tured environments [7]. However, poorly designed search
spaces can limit the solution space, resulting in suboptimal
solutions or even solution unavailability despite existence.
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Additionally, the paths produced by graph-based methods
frequently exhibit discontinuities in curvature, contributing
to elevated energy consumption and rendering them un-
suitable for high-speed autonomous driving. While post-
smoothing procedures can make these paths viable for on-
road scenarios, they compromise the collision-free assurance
initially provided by the search-based generation. Learning-
based methods typically involve training a model on large
datasets of sensor data and expert demonstrations to learn
the mapping between input features and optimal paths [8].
For instance, [9] developed a reinforcement learning agent
based on the potential field to generate a collision-free path
for path tracking. While these methods have robustness to
uncertainties, and the ability to incorporate complex and
non-linear relationships between input features and optimal
trajectories, they require extensive training data and compu-
tational resources and may struggle to generalize to unseen
situations.

Sampling-based strategies can utilize random techniques
like Rapidly-exploring Random Trees [10] or deterministic
approaches, including control state and state space sampling
methods [11], [12], [13]. The paths generated by random
sampling methods often exhibit jerky motion, redundancy,
and lack of curvature continuity, making them unsuitable
for autonomous driving applications at high speeds. Fur-
thermore, the runtime of these methods is unpredictable,
limiting their practical utility in real-time applications. In
contrast, deterministic sampling-based methods reduce the
solution space by leveraging the structure of roadways,
enhancing predictability in planner behavior and reducing
the selection of impractical sampling seeds. However, the
optimality of the selected path is directly related to the
longitudinal and lateral resolution of the generated path
candidates. Improving path optimality involves reducing the
resolution of generated paths, albeit increasing computational
complexity. Optimization-based methods tackle two-point
boundary value problems through nonlinear optimization
techniques [14]. These methods excel in providing optimal
solutions featuring high-order or dense waypoint curves.
However, alongside computational complexity, they face
challenges in managing environmental complexity which is
dictated by the number of obstacles and the geometric shape
of the free space.

To overcome the limitations of individual strategies, recent
studies have explored integrating sampling methods with
optimization techniques [15], [16], [17]. Following path
selection, a refinement process is executed through nonlinear
optimization aims to minimize predefined cost functions.
The authors of [16] and [17] advocate similar approaches
to optimize paths selected from a set of quintic-polynomial
paths by minimizing longitudinal and lateral acceleration and
jerk. However, none of these approaches directly address



energy efficiency concerns. Recent works in the literature tar-
get the energy efficiency objective in path planning through
connected autonomous vehicles (CAVs) [18] and partially
CAVs [19], or by designing energy-efficient adaptive cruise
control (ACC) systems [20]. [21] proposed an energy-
efficient approach for lane changing using CAVs information.

While existing works primarily focus on energy-efficient
planning in a multi-vehicle context or through speed regula-
tion planning, autonomous vehicles can individually reduce
energy consumption through energy-optimal path generation.
Therefore, this paper proposes a novel energy-efficient hybrid
path planning approach by integrating sampling-based and
energy optimization-based methods.

The contributions of the paper are outlined as:
• Generation of a septic reference path in the Frenet (s, q)

frame to control the first, second, and third derivatives
of q by s, and given to the optimization problem to
enhance computational efficiency.

• Development of a novel hybrid path planning strategy
by integrating sampling-based method with an energy-
efficient optimization-based method.

• Validation of the planning strategy on the SCANeR
Studio vehicle dynamics simulator to demonstrate the
effectiveness of the approach on comfort, energy econ-
omy, and computational efficiency.

The rest of the paper is structured as follows: Section II
reveals the global system architecture. The path planning
strategy is thoroughly presented in Section III. Simulation
results are given in Section IV followed by the conclusion
is given in Section V.

II. SYSTEM OVERVIEW

The global system architecture is given in Fig. 1. The
perception model provides an occupancy grid representation
output. Detailed discussion of this module is beyond the
scope of the paper. The new footprint occupied by dynamic
obstacles, within the perception zone of the vehicle, is
updated at each planning iteration. The occupancy of the
moving obstacles is longitudinally expanded to reflect their
velocity and direction based on their predicted traveled
distance. Then, the spatial path planning module, detailed in
Section III, commences by a sampling-based path generation
process. For each point on the navigable candidate paths,
the footprint of the vehicle is validated according to the
method of six circles and one large circle [3]. To improve
accuracy and efficiency, the local occupancy grid is then
transformed into a clearance map. The generated paths
are then divided into three groups: totally navigable paths
(obstacle-free paths), partially navigable paths (obstacles
exist outside the security distance), and non-navigable paths
(obstacles exist inside the security distance). A path selection
process is then performed by choosing the best path with
the minimum designed cost function. A reference septic (7th

order) polynomial path is subsequently generated between
the initial and final knots of the selected best path. Finally,
using the septic path as an initial guess, an optimization
process is conducted to minimize the discrete analog of
curvature and its rate of change (jerk). Speed planning is
then performed based on a cubic polynomial generation on
the optimal path. Subsequently, the optimal trajectory is
transferred to the control layer where the Super-Twisting
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Fig. 1: Schematic diagram of the global architecture

Sliding Mode control is applied for path-tracking and speed
control. Then, the control inputs are realized by physical
actuators including four in-wheel motors. The reader can
refer to the authors’ previous works on this level [22], [23].
Ultimately, the steering angle and the generated torques are
fed into the fully dynamic “Callas” model of the SCANeR
Studio professional vehicle dynamics simulator.

III. PATH PLANNING

The navigation strategy unfolds in several stages, includ-
ing base frame construction, generation of path candidates,
obstacle detection and path classification, path selection,
generation of reference septic path, and optimization to
determine the optimal path.

A. Base Frame Construction
The base frame represents a global route used as a refer-

ence road information. It constitutes a sequence of waypoints
and is modeled by a cubic parametric curve. Denoting s as
the arc length of every segment, and i as the index of the
waypoint, the cubic spline is expressed as{
xbf (s) = a0 + a1(s− si) + a2(s− si)

2 + a3(s− si)
3

ybf (s) = b0 + b1(s− si) + b2(s− si)
2 + b3(s− si)

3

(1)
where (xbf , ybf ) are the Cartesian coordinates of the point
on the base frame, and {(aj , bj), j = 0, 1, 2, 3} are the fitting
parameters. The heading θbf and curvature ρbf of each point
on the base frame are determined by

θbf =
dybf
dxbf

; ρbf =
x′bfy

′′
bf − x′′bfy

′
bf√

(x′bf + y′bf )
3

(2)

where x′bf , y
′
bf , x

′′
bf , y

′′
bf are the first and second derivatives

of xbf and ybf .

B. Path Candidates Generation
The initial step entails the localization of the vehicle

within the base frame. This process involves mapping the
vehicle’s Cartesian coordinates to the Frenet (s− q) system
and subsequently determining the closest point on the base
frame (denote it by Pi(si, ρi)) [13]. From Pi(si, ρi), the path
candidates are generated in a double-phase: transition phase
(s ∈ [si, sf0]) and a steady phase (s ∈ [sf0, sf ]) (see Fig. 2).
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Fig. 2: Proposed trajectory planning method (common legend for Figures
4 and 6). The rectangular hatches in front of the dynamic obstacle represent
its corresponding longitudinal expansion.

The length of the phases is proportional to the speed of the
vehicle v and bounded between a minimum and maximum
thresholds, ∆smin and ∆smax respectively (3).

sf0 = ∆smin + kvv

sf = min(∆smax, sf0 + 2dss)
(3)

where kv is a gain parameter and dss is the safe stop distance,
determined by

dss = dss,0 +
v2

2amax
dec

(4)

where dss,0 is the minimum safety gap and amax
dec is the

maximum acceptable longitudinal deceleration. To ensure
the L 2 continuity and avoid curvature discontinuity, the
path candidates are generated based on a quartic (4th order)
polynomial (5).

q(s) =


c0 + c1(s− si) + c2(s− si)

2

+c3(s− si)
3 + c4(s− si)

4
s ∈ [si, sf0]

qf s ∈ [sf0, sf ]
(5)

The polynomial coefficients ci are determined by solving the
boundary conditions problem given in (6).

q(si) = qi , ρ(si) = ρi , q(sf0) = qf
∂q

∂s
|si = tan∆θi ,

∂q

∂s
|sf0

= 0
(6)

where ∆θi is the difference between the vehicle heading
angle and the tangent at Pi(si, ρi). Path candidates comprises
a set of n points (knots) with a longitudinal resolution of
distance ∆s. These candidates are then mapped into the
Cartesian system to conform to the maneuvering system.
The corresponding points in the Cartesian system can be
represented in terms of the arc length of the base frame [24]
as

∂x

∂s
= Q cos θ ,

∂y

∂s
= Q sin θ ,

∂θ

∂s
= Qρ (7)

where the curvature of the path candidates, ρ, is calculated
by (8).

Upon the generation of the set of path candidates, the

candidates are classified by priority, depending on the adap-
tive security [13], into totally navigable, partially navigable,
and non-navigable paths. The selection of the best path is
performed on the high-priority set of candidates. In the event
that all paths within the host lane are deemed non-navigable,
paths are generated in the adjacent lane, initiating overtaking
if instructed by the behavioral planner. If all paths across
lanes are non-navigable, emergency braking is initiated.

ρ =
S

Q

(
ρbf +

(1− qρbf )(
∂2q
∂s2 ) + ρbf (

∂q
∂s )

2

Q2

)
(8a)

Q =

√
(
∂q

∂s
)2 + (1− qρbf )2 , S = sgn(1− qρbf ) (8b)

C. Path Selection

The path selection process is conducted to determine
the best path from the set of navigable paths, minimizing
a cost function that incorporates various criteria (see Fig.
2). As the curve of least energy is the one with highest
smoothness, J1 is defined as an energy cost. The consistency
cost J2 can also represent an energy cost, as abrupt changes
in trajectory demand additional energy and higher control
effort. A reference offset cost term J3 is also introduced
to force the vehicle to maintain proximity to the reference
lane. Hence, for each path i from the set of navigable paths,
J1, J2, J3 are given as

J1[i] =

∫
ρ2i ds (9a)

J2[i] = i∗|t − i∗|t−1 (9b)

J3[i] =

∫
(qi − qref )

2ds (9c)

where qref is the lateral offset of the reference lane from the
base frame and i∗ is the path index. The final cost term J4
is a safety term consisting of longitudinal safety cost J4,1
(pertaining host lane navigability) and a lateral safety cost
J4,2 (concerning adjacent lane navigability) [13].

J4,1[i] = 2− 2

1 + e−(cs dobs[i])
(10a)

g[k] =
1√
2πσ

e−
(k∆q)2

2σ2 (10b)

J4,2[i] =

∑
k∈Γi

J4,1[k]g[i− k]

N
(10c)

J4[i] = J4,1 + wsJ4,2 (10d)

where dobs[i] is the distance-to-obstacle (collision distance)
on the path i and cs is a tunable parameter. g[k] is the discrete
inverted Gaussian convolution, σ is the standard deviation
of collision risk, and ∆q is the lateral sampling resolution.
Γi is the set of navigable paths excluding the path i, N is
their number, and ws is a weighting coefficient. The designed
costs are normalized using (11a), and the total cost is given
by (11b)

J [i] =
J [i]−min (J)

max (J)−min (J)
(11a)

JT [i] = w1J1[i] + w2J2[i] + w3J3[i] + w4J4[i] (11b)

where w1, w2, w3, w4 are the weighting coefficients for en-
ergy, consistency, reference, and safety cost terms respec-



tively. The selected path is denoted as “best path” and shown
in Fig. 2.

D. Reference Septic Path

Subsequent to the best path selection, a septic path is
generated between the first and final knots of the best path.
The decision to use a seventh-order polynomial is based on
its ability to control ∂3q

∂s3 (curvature derivative jerk), as it is
the lowest order that permits imposing constraints on the
jerk. The septic path in the Frenet frame is given in (12).

q(s) = α7s
7+α6s

6+α5s
5+α4s

4+α3s
3+α2s

2+α1s+α0

(12)
where αi, i = {0, 1, 2, ..., 7} are the polynomial coefficients.
Denote by q(s0) = q0, q̇(s0) = q̇0, q̈(s0) = q̈0, ...

q (s0) =
...
q 0,

q(sf ) = qf , q̇(sf ) = q̇f , q̈(sf ) = q̈f , ...
q (sf ) =

...
q f , then αi

are calculated using the following boundary conditions.

q0 = α7s
7
0 + α6s

6
0 + α5s

5
0 + α4s

4
0 + α3s

3
0 + α2s

2
0 + α1s0 + α0

(13a)

q̇0 = 7α7s
6
0 + 6α6s

5
0 + 5α5s

4
0 + 4α4s

3
0 + 3α3s

2
0 + 2α2s0 + α1

(13b)

q̈0 = 42α7s
5
0 + 30α6s

4
0 + 20α5s

3
0 + 12α4s

2
0 + 6α3s0 + 2α2

(13c)
...
q 0 = 210α7s

4
0 + 120α6s

3
0 + 60α5s

2
0 + 24α4s0 + 6α3 (13d)

qf = α7s
7
f + α6s

6
f + α5s

5
f + α4s

4
f + α3s

3
f + α2s

2
f + α1sf + α0

(13e)

q̇f = 7α7s
6
f + 6α6s

5
f + 5α5s

4
f + 4α4s

3
f + 3α3s

2
f + 2α2sf + α1

(13f)

q̈f = 42α7s
5
f + 30α6s

4
f + 20α5s

3
f + 12α4s

2
f + 6α3sf + 2α2

(13g)
...
q f = 210α7s

4
f + 120α6s

3
f + 60α5s

2
f + 24α4sf + 6α3 (13h)

where s0 and q0, respectively sf and qf , are the coordinates
of the initial and final knot of the best path in the Frenet
frame. The initial conditions are determined as follows: q̇0 =
∂q
∂s |s0 , q̈0 = ∂2q

∂s2 |s0 , ...
q 0 = ∂3q

∂s3 |s0 , and q̇f = q̈f =
...
q f = 0.

The problem can be solved as (14).

α7

α6

α5

α4

α3

α2

α1

α0


= A−1

[8×8] ×



q0
q̇0
q̈0...
q 0
qf
q̇f
q̈f...
q f


(14)

where A is given in (15). As the first and final knots of
the septic path are the same as that of the best path, the
consistency, reference, and safety costs are retained.

A =



s70 s60 s50 s40 s30 s20 s0 1
7s60 6s50 5s40 4s30 3s20 2s0 1 0
42s50 30s40 20s30 12s20 6s0 2 0 0
210s40 120s30 60s20 24s0 6 0 0 0
s7f s6f s5f s4f s3f s2f sf 1
7s6f 6s5f 5s4f 4s3f 3s2f 2sf 1 0
42s5f 30s4f 20s3f 12s2f 6sf 2 0 0
210s4f 120s3f 60s2f 24sf 6 0 0 0


(15)

Subsequently, the reference septic path serves as an initial
guess for generating the optimal path.

E. Optimization-Based Path Refining
The sampling-based strategy assisted to reduce the solu-

tion space and generate a reactive path to avoid obstacles.
However, the resulted best path depends on the longitudinal
and lateral resolutions and hence impose limits on the motion
potential of the vehicle. Specifically for lane changes, the
high curvature of the best path elevates the energy consump-
tion of the battery. To address this issue, an optimization
method is proposed to minimize the image of curvature and
jerk which enhances the path smoothness and consequently
the energy efficiency.

The optimization problem is given in (16)

min
si,qi

Fobj =

n−1∑
i=0

fi(si, qi) (16)

where i is the index of the knot and n is their number. fi is
designed as follows

fi = wr

(
(si − sref )

2 +(qi − qref )
2
)
+waa

2
i +wjj

2
i (17)

where (sref , qref ) are the coordinates of the reference septic
path and wr, wa, and wj are the weights on the reference,
acceleration, and jerk. The first term increases when the
optimized path deviates from the septic reference path. ai
and ji are the discrete analogs of the image of curvature
(∂

2qi
∂s2i

) and jerk (∂
3qi
∂s3i

) (18), as the paths are defined in terms
of a constant longitudinal resolution ∆s.

ai =
∂2qi
∂s2i

=
qi+2 − 2qi+1 + qi

∆s2
(18a)

ji =
∂3qi
∂s3i

=
qi+3 − 3qi+2 + 3qi+1 − qi

∆s3
(18b)

The optimization acts to minimize the second and third
rate of change of qi at si, reflecting an image of lateral
acceleration and its rate of change. The term ai permits
the vehicle to run smoothly and contribute to the decrease
of the resulting curvature of the optimal path. The term
ji penalizes sudden changes in the lateral acceleration and
curvature. Smooth paths require less energy to traverse, as
abrupt changes in acceleration and jerk lead to increased
energy consumption. Therefore, both terms contribute to the
overall smoothness of the optimal path, thereby enhancing
energy efficiency.

The optimization problem is subjected to the kinematic
constraints given in (19), and the safety constraints in (21).

|qi+2 − 2qi+1 + qi
∆s2

| ≤ amax (19a)

|qi+3 − 3qi+2 + 3qi+1 − qi
∆s3

| ≤ jmax (19b)

where amax and jmax are positive thresholds for acceler-
ation and jerk. Since the septic reference path is dense in
waypoints and ∆s is constant, the optimal path is sampled
on the same sref values. Additionally, as the first and final
knots of the optimal path coincide with those of the septic
reference path, the initial and final conditions on ∂q

∂s ,
∂2q
∂s2 ,

and ∂3q
∂s3 are preserved.

To ensure the safety of the optimal path, a set of safety and
boundary constraints are imposed into the optimization prob-
lem along (19). In contrast to the six-circle decomposition
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method employed for collision checking in the sampling-
based approach (refer to Fig. 1), the vehicle and obstacles
are decomposed into three circles (see Fig. 3) to reduce
safety constraints and improve computational efficiency. The
coordinates of the centers of the circles are given in terms
of the knot (si, qi) of the optimal path as (20).

s1,i = si ; q1,i = qi (20a)
s2,i = si − (li/3) cos ψ ; q2,i = qi − (li/3) sin ψ (20b)
s3,i = si + (li/3) cos ψ ; q3,i = qi + (li/3) sin ψ (20c)

where li is the length of the vehicle and ψ its heading yaw
angle. The safety constraints are given by (21) where n =
{1, 2, 3} and p = {1, 2, 3}, and (sn,j , qn,j) are the center
coordinates of the obstacle circles. The radius of the circles
of the vehicle and that of the obstacles are rveh and robs
given in (22).

(sn,i − sp,j)
2 + (qn,i − qp,j)

2 ≥ (rveh + robs)
2 (21)

rveh =

√
(
wi

2
)2 + (

li
6
)2 ; robs =

√
(
wj

2
)2 + (

lj
6
)2 (22)

qmin ≤ qi ≤ qmax (23)

where lj is the total length of the dynamic obstacle including
its longitudinal expansion (see Fig. 3), and wi, wj are the
widths of the vehicle and the obstacle. Finally, the boundary
constraint (23) is enforced as a driving envelope to ensure
the vehicle remains within its bounds.

The optimal path (see Fig. 2) is ultimately generated by
solving (16) using the sequential quadratic programming
(sqp) method [25]. With the reference septic path as the
initial guess, this approach can efficiently converge to the
optimal result with fewer iterations, typically approaching
the vicinity of the global optimal solution.

F. Speed Planning

Speed planning is performed by generating a cubic poly-
nomial along the optimal path. The cubic v(t) is given as

v(t) = v0 + ξ1t
1 + ξ2t

2 + ξ3t
3 (24)

where ξ1, ξ2, ξ3 are the polynomial coefficients and can be
calculated by solving the following boundary conditions

v(tf ) = v0 + ξ1tf + ξ2t
2
f + ξ3t

3
f = vf (25a)

a(0) = ξ1 = a0 (25b)
a(tf ) = ξ1 + 2ξ2tf + 3ξ3t

2
f = af (25c)

s(tf ) = v0tf +
1

2
ξ1t

2
f +

1

3
ξ2t

3
f +

1

4
ξ3t

4
f = sf (25d)

where v0, a0 and vf , af are the velocity and acceleration
at the initial and the final points of the polynomial. sf
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Fig. 4: Vehicle trajectory (same legend as Fig. 2)

represents the length of the optimal path and tf is the
traveling time along it. tf is obtained by solving the quadratic
equation (26), and ξ1 = a0 is trivial.

β2t
2
f + β1tf + β0 = 0 (26a)

β2 = a0 − af ; β1 = 6v0 + 6vf ; β0 = −12sf (26b)

Subsequently, ξ2 and ξ3 are given by (27). v0 = v(ti), a0 =
∂v
∂t |ti , and af = 0. vf is the desired velocity at the final
knot and is given by the behavioral planner (refer to the
cubic polynomial generation in Fig. 1).

ξ2 =
(−af − 2a0)t− 3(v0 − vf )

t2
(27a)

ξ3 =
(a0 + af )t+ 2(v0 − vf )

t3
(27b)

IV. SIMULATION RESULTS

The complete system architecture is implemented and
validated in a joint simulation between Simulink/Matlab
and the SCANeR Studio vehicle dynamics simulator. The
planner is running at a frequency of 10 Hz, the controller
is running at 50 Hz, and the rest of the system is running
at 100 Hz. To illustrate the effectiveness of the proposed
planning approach, the energy consumption cost Em is
examined, along with the smoothness cost of ∂3q

∂s3 which is
given by

smoothness =

n−1∑
i=0

(
∂3q

∂s3
|i+1 −

∂3q

∂s3
|i)2 (28)

This work considers an autonomous in-wheel driven electric
vehicle, where Em is determined as the sum of the energy
consumed by the four motors in terms of motor torque,
rotational velocity, and efficiency. Further, the efficiency
of each motor is estimated based on the respective motor
efficiency maps. For further elaboration, interested readers
are directed to the authors’ prior work [25].

The scenario unfolds on the track given in Fig. 4. Within
this scenario, the autonomous vehicle confronts several sit-
uations: 1) overtaking a dynamic obstacle, 2) navigating a
narrow passage, and 3) returning to the host lane while
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Fig. 6: Best path selection and optimal path generation in distinct
timelapses (same legend as Fig. 2)

encountering a dynamic obstacle during in-between navi-
gation of static obstacles at a corner. The path planning
approach demonstrates effectiveness by adeptly handling
the critical situations. The vehicle speed is shown to track
the reference generated profile in Fig. 5, along with the
longitudinal and lateral acceleration (ax and ay respectively).
Thanks to the cubic speed profiling, the vehicle speed and
the longitudinal acceleration exhibited smooth profiles where
ax is maintained between −2 and 2 m/s2. The lateral
acceleration is tracking the reference determined by ρv2 and
maintained between [−2.5 2.5] m/s2 which reflects good
maneuverability and comfortable driving.

The first, second, and third derivatives of q by s are given
in Fig. 7. The optimal planning approach is contrasted with
two other approaches. The planning strategy that follows
the best path exclusively is denoted as “best path”. while
the strategy that follows the septic reference path is denoted
as “septic reference path”. The best path selection and the
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Fig. 7: First, second, and third derivatives of q by s
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optimal path generation are depicted in Fig. 6 in different
time lapses. The optimal path reveals a slightly better ∂q

∂s

and ∂2q
∂s2 than the best path, with the septic reference path

oscillating at t = 15 s. However, the difference is significant
for ∂3q

∂s3 . While the best path strategy is continually linearly
oscillating (1st order ∂3q

∂s3 ) and reached −5 and 5 m−2, the
optimal path exhibited a smooth third order controlled ∂3q

∂s3

and maintained in the interval [−3 3] × 10−3. The septic
reference path revealed similar ∂3q

∂s3 with small oscillations at
t = 15 s. The enhanced smoothness (see Fig. 8), bounded-
ness, and controlled jerk contribute to improved comfort and
lateral stability (see Fig. 5), while also showcasing energy
savings. The energy consumption, along with the smoothness
cost, of the best path, reference septic path and the optimal
path are given in Fig. 8. Compared to the best path, the
reference septic path has achieved a 6 % energy save with a
22 % energy economy for the optimal path.

The required computational time for the optimal planning
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approach is given in Fig. 9. The simulations are conducted
under an Intel Core i9-12950HX CPU 2.3-GHz laptop. As
a result, the optimal path planning approach achieves a root
mean squared of 60 ms, allowing it to operate in real-time
with a sampling time of 100 ms. Further computational
enhancements can be achieved by integrating more sophis-
ticated optimization algorithms. It is worth noting that both
the best path and the septic reference path planning strategies
exhibit a root mean squared of 15 ms. Thus, the reference
septic path represents a fast and energy-efficient strategy in
itself.

A video of the validation on the Scaner Studio simulator
can be seen at: “https://youtu.be/2aVhVjTgEFU”.

V. CONCLUSION

This paper introduces a novel energy-efficient hybrid
path planning approach by integrating sampling-based and
optimization-based methods. Following the path selection
process, a reference septic path is generated and given as
an initial guess to the optimization problem. The proposed
planning approach demonstrates effectiveness in reducing en-
ergy consumption through controlled, smooth, and bounded
jerk profiles. Future research endeavors aim to implement
and validate this planning strategy on a real experimental
vehicle.
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