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Abstract. 
 
While lead isotopes serve to determine potenGal ore provenance, silver isotopes help 
evaluate if a specific ore flagged by Pb isotopes has actually been exploited as a silver source 
of bullion in anGquity. The combinaGon of Ag and Pb isotopes thus consGtutes a powerful 
tool to address provenance and idenGfy potenGal ore sources. It has recently been observed 
that the vast majority of silver isotopic abundances in hundreds of silver coins from different 
historical periods (pre-Roman and Roman, Middle Ages, early modern Gmes) and different 
localiGes (Persia, Greece, Rome, Western Europe, England, Spanish Americas) falls in a 
remarkably narrow interval (±0.1 permil, or ±1 on the epsilon scale used by geochemists to 
enhance the visibility of small differences, group 1). Five Greek coins and some pieces from 
LevanGne hacksilber hoards dated to the Late Bronze and Early Iron Ages have isotopic 
abundances somewhat below the range of group 1 (–0.2 to –0.1 permil, or -2 to -1 on the 
epsilon scale, group 2). 
  
The coverage of Ag isotopes in ores from the western Mediterranean, with the excepGon of 
Iberia, is inexistant. Here the above-menGoned approach is illustrated with new Pb and Ag 
isotopic analyses of samples from southern Sardinia and southern France. The majority of Ag 
isotope composiGons of galena samples from Sardinia belong to group 2 and none to group 
1. While scholarly works imply that Sardinia may have provided silver to the Levant during 
the Iron Age, the exact locaGon of the Sardinian ores that contributed to classical and 
archaic Greek coins is sGll unknown. Galena samples from southern France (the Pyrenees, 
Montagne Noire, Cévennes) are characterized by Ag isotope composiGons from both groups 
1 and 2, indicaGng that silver-bearing ore deposits in Gaul could be considered a potenGal 
source for silver bullion, both before and during the Roman era.  
 



Introduc/on 
 
Lead isotope databases such as OXALID (Stos-Gale and Gale, 2009), IBERLID (de MadinabeiGa 
et al., 2021), TerraLID (its prototypes were introduced as GlobaLID) (Klein et al., 2022), and 
the Lyon database (Milot et al., 2021a, Milot et al., 2021b, Vaxevanopoulos et al., 2022, 
Westner et al., 2023) hold almost 7000 Pb isotopic data entries on galena and other less 
common potenGal ores spread over the enGre Western Europe, the circum-Mediterranean 
regions, and the Middle East. Although radioacGve decay of uranium and thorium makes the 
variability of Pb isotope composiGons very large, the sheer number of samples present a real 
technical challenge for assessing the provenance of silver arGfacts. Mixed bullion adds 
complexity to these amempts; however, the problem of mixing was recently addressed with 
some arguable success by our group (Albarede et al., 2024b). 
 
The challenge presented by silver isotopes is very different. In contrast to the abundances of 
Pb isotopes, which reflect the tectonic age of ore formaGon and the U/Pb and Th/Pb of its 
source(s) (Albarède et al., 2012), isotope fracGonaGon of the two isotopes 107Ag and 109Ag in 
natural fluids and minerals is controlled by the energeGcs of Ag bonds in molecular species 
and the temperature of hydrothermal soluGons (Fujii and Albarede, 2018, Wang et al., 2022). 
Silver isotope fracGonaGon becomes vanishingly small for soluGons homer than 400°C and 
does not occur during the metallurgical process unGl the metal is almost completely 
evaporated (Berger et al., 2021). Silver isotopes should not, in general, be regarded as true 
provenance markers and are not expected to co-vary with Pb isotopes. The range of Ag isotope 
abundances measured in silver coinage of different ages spanning from the end of the Iron 
Age to modern Gmes, in an ample field of geographical origins across several conGnents 
(Europe, Asia, Africa, Americas) is only a few parts per 10,000 (Fujii and Albarede, 2018). In 
contrast, the range of silver isotope composiGons displayed by the most common silver ores 
(galena (PbS), several types of Ag-sulfosalts, acanthite (Ag2S), and naGve silver from 
hydrothermal deposits (Arribas et al., 2020)) is an order of magnitude broader (Fig. 1). Such a 
contrast indicates that one very parGcular type of ore dominates the sources of the bullion 
used for silver coinage. Silver is not extracted from a mulGtude of different ores, but from 
galena and its low-temperature alteraGon products, such as sulfides and sulfates. A posiGve 
consequence of this observaGon is that, while Pb isotope composiGons of galena and other 
silver-rich ores help idenGfy potenGal ‘candidate’ bullion sources, silver isotopes help weed 
out a large fracGon of the same candidates (Milot et al., 2021b, Milot et al., 2022, 
Vaxevanopoulos et al., 2022, Westner et al., 2023). When combined with archaeological 
evidence and ancient literary tesGmony, the pruning of potenGal silver sources and the 
idenGficaGon of so-far unnoGced alternaGve ore districts using silver isotopes therefore may 
be of great historical value. Silver and lead isotopes are not provenance tracers in the same 
way, but they complement each other and, when used together, consGtute a powerful 
provenance tool. 
 
In order to document the complementarity of Pb and Ag isotopes, let us summarize the 
current state of Ag isotopes research in Archaeology. Over 95% of the silver coins and arGfacts 
from ancient Greece, the Roman Republic and Early Empire, Medieval Europe, and Spanish 



Americas analyzed for silver isotopes have e109Ag values1 falling within the range of –1 to 
+1 (Albarède et al., 2016, Desaulty et al., 2011, Desaulty and Albarede, 2013, Eshel et al., 2022, 
Milot et al., 2021b, Milot et al., 2022, Vaxevanopoulos et al., 2022). These values will 
hereinaVer be referred to as the ‘main range’ or group 1. Some rare Greek coins 
(Vaxevanopoulos et al., 2022) of smaller denominaGons, several Roman-period coins from the 
Balkans (Westner et al., submimed), and pieces of hacksilber (chopped bits of silver) from 
hoards in the Levant (Eshel et al., 2022) are isotopically lighter, hence falling outside the main 
range with e109Ag values between -1.9 and -1.0. These are hereinaVer referred to as group 2.  
 
For Ag to be used as a provenance tool to its full extent, the geographical coverage of Ag 
isotopes in potenGal ores around the ancient Mediterranean world must be expanded. The 
purpose of the present study is to do exactly that: expand the Lyon Pb and Ag isotope database 
to Sardinia and, by geological extension, also to southern France, because of their geological 
similarity and potenGal historical interests. Ancient Sardinia and Gaul are not widely perceived 
as major sources of silver, at least not on par with mining districts in the southern Aegean, 
Thrace, Macedonia, and Iberia. The galena and sulfosalt ores in the small districts of Northern 
Sardinia, though having been exploited in the past, are not rich enough in silver to have 
provided abundant bullion. ArgenGera is the only silver-rich lead deposit (Orlandi and Gelosa, 
2007) characterized by Pb-isotopic values that differ from those of the Iglesiente ores (Eshel 
et al., 2019) . 
 
The scarcity of Bronze Age silver arGfacts found in Sardinia has been interpreted as indicaGng 
limle mining acGvity of argenGferous ores in Sardinian chiefdoms during this period (Terpstra, 
2021, Valera et al., 2005b). Nevertheless, recent Pb isotope studies revealthat Nuragic 
populaGons traded silver from the geologically older southern Sardinia with the Levant in the 
early Iron Age (Eshel et al., 2019, Eshel et al., 2021, Gentelli et al., 2021) (see also Pearce’s 
(2017) review). At even later Gmes, lead isotope data found in Archaic coinage of Athens, 
Corinth, and Aegina, are consistent with a small but disGncGve contribuGon of South 
Sardinian-like silver (Albarede et al., 2024a) interpreted as some sort of ‘cash float’ of trade 
between Greece and southern Italy. By contrast, intensive exploitaGon of the deposits in the 
Iglesiente mining district by Carthage and the Romans aVer the First Punic War is amested to 
in the literature (Ingo et al., 1996, Valera et al., 2005a).  
 
Since Sardinia once belonged to the Hercynian margin of southern France and Catalonia unGl 
the Late Oligocene (~30 Ma) (Cherchi and Montadert, 1982, Jolivet and Faccenna, 2000, 
Puddu et al., 2021, Rehault et al., 1984, Romagny et al., 2020, Scheyno and Turco, 2011) and, 
together with Corsica, was embedded in an eastern extension of the Pyrenees (Casas, 2010), 
we analyzed samples from southern France as well as samples from Sardinia. Extending our 
reconnaissance area in this way is further jusGfied by lead isotope provenance studies poinGng 
to ore deposits in southern France as potenGal bullion sources for hacksilber (Gentelli et al., 
2021) and Archaic coinage (Stos-Gale and Davis, 2020).  
 

 
1 e109Ag of a given sample is defined as the rela3ve devia3on of its 109Ag/107Ag ra3o from that of the reference 
material NIST 978. This devia3on is usually reported in parts per 10,000 due to the small isotopic differences 
displayed by Ag. Because this is the well-known standard usage, the cumbersome factor of × 10–4 is leK 
unwriLen. Note that, for ease of comprehension in the abstract, the range of Ag isotopic composi3ons is given 
there in the more familiar unit of permil, which is parts per 1000 (a factor of × 10–3). 



To summarize, the present work presents new high-precision Pb and Ag isotopic data for a 
whole region of the western Mediterranean which up unGl now was devoid of Ag isotope data. 
This new data set allows us to test whether Sardinia and southern Gaul are acceptable sources 
of bullion used to mint ancient silver coinage. Although access to abandoned mines and ore 
deposits in this region is limited and in most cases impossible, we nevertheless managed to 
obtain a total of 26 galena ores from southern Sardinia and southern France (13 samples from 
each region) from old mine heaps and collecGons. We then combined the newly measured 
values with literature data and reviewed the occurrences of potenGal circum-Mediterranean 
sources that may saGsfy the 'Ag isotope condiGon' (a.k.a the ‘main range’ or group 1, but also 
group 2) menGoned above. IdenGfying plausible sources of bullion around the western 
Mediterranean using Ag isotopes (in combinaGon with Pb isotopes as explained above) is the 
prime objecGve of the present work. 
 

Geological se5ng 
 
The geology of southwestern Sardinia is largely dominated by sedimentary Cambro-
Ordovician rocks (Fig. 2). The geological units in the Iglesiente-Sulcis mining district consist of 
low-grade metamorphic rocks, belonging to the so-called “External zones” of the Variscan 
orogen (Franceschelli et al., 2005). The Lower Cambrian succession is subdivided into the basal 
Nebida Group and the overlying Gonnesa Group, which consists of carbonate rocks hosGng 
Zn-Pb mineralizaGon considered as sedimentary-exhalaGve (Sedex) and large, carbonate 
hosted, massive sulfide Zn/Pb (Irish-type) ore deposits (Bechstädt and Boni, 1994, Boni et al., 
1996, Santoro et al., 2023). The Cambrian sediments were deformed by a first tectonic phase 
in the upper Ordovician (the Sardic phase). At the end of the major Variscan orogeny, the 
Lower Paleozoic basement was intruded by post-collisional granites, which caused the 
formaGon of skarn-type deposits. Variscan tectonics and magmaGsm were followed by a long 
conGnental period, associated with erosion and deep karsGficaGon of the Cambrian 
carbonates, which periodically underwent hydrothermal dolomiGzaGon episodes. From the 
Permian onwards, southern Sardinia experienced several hydrothermal phases comparable to 
those having occurred in other European terranes. The associated ores consist of low-
temperature veins and paleokarst breccia fillings in the Cambrian carbonates, which contain 
mainly Ag-rich galena and barite mineralizaGons (Santoro et al., 2023) .  
 
The Montagne Noire is the southern extension of the French Massif Central (Fig. 3). It consists 
of three main structural domains: (1) a metamorphic axial zone made up of complex domes 
of gneiss and migmaGtes surrounded by micaschists; (2) a northern flank composed of 
imbricated tectonic nappes of Cambrian to Silurian rocks; and (3) a southern flank made up of 
large nappes involving Cambrian to Carboniferous strata (Álvaro et al., 2008). In the Montagne 
Noire, carbonate rocks were deposited during part of the Cambrian, as in the Iberian Peninsula 
and Sardinia. At the southern edge of the Massif Central, in a region known as the Cévennes, 
several nappes are correlated with those of the northern Montagne Noire. In Les Malines 
mining district the two southernmost units are exposed, represented by Les Malines 
‘autochtonous’ and overlying Saint Bresson units. The Cambrian straGgraphic record of the 
above units is an analogy to the northern Montagne Noire, in the broad terms of 
paleogeographic and paleotectonic evoluGon. The straGgraphic posiGon of the northern 
Montagne Noire Sedex-type mineralizaGon corresponds roughly to that of the mineralizaGon 



at Sanguinède and Montdardier in the Cévennes (Orgeval et al., 2000). An excepGon is 
represented by the classic Les Malines mine ores, which are of Triassic age (Orgeval et al., 
2000). In contrast to the Sedex-type occurrences of the northern Montagne Noire, the 
southern Montagne Noire deposits, set in a shallow carbonate pla~orm, are considered as 
Mississippi Valley-type (Lescuyer and Giot, 1987, Marignac and Cuney, 1999) and can be 
compared with part of the Pb ores of the Iglesiente in Sardinia. In between the Cévennes and 
the Montagne Noire there is a small area consisGng of Late Proterozoic and Cambrian terranes 
intruded by the Mendic granite of terminal Ediacaran age (Leveque, 1990). 
 
Several recent reviews and monographs on the Variscan basement of the Pyrenees have been 
published by (Casas et al., 2019, Denèle et al., 2014, Guitard et al., 1995, Laumonier et al., 
2008). The axial zone of the Pyrenees, which hosts part of the samples analyzed in this study, 
has been involved in two pre-Alpine events: the Cadomian event (= pan-African) across the 
Proterozoic-Cambrian boundary, and the Carboniferous Variscan event (= Hercynian). 
DisconGnuiGes contemporaneous with the Ordovician Sardic phase are ubiquitous in this area.  

Sampling and Analy/cal techniques 
 
Ore sampling has become a modern challenge. For safety and liability reasons, most major 
abandoned mine shaVs in several European countries have been blasted, flooded, and sealed 
to prevent the intrusion of unprotected collectors. An even more pervasive limitaGon is the 
shrinking space dedicated to public rock collecGons stored and curated by universiGes and 
other academic insGtuGons. The field of ore geology and its percepGon by the public has 
considerably changed over the last few decades. As large numbers of researchers with skills 
in Ore Geology have reGred, the space that was dedicated to their ore and rockcollecGons has 
been reassigned to newly developing fields, and the collecGons themselves have been 
scamered, discarded, or moved to premises inappropriate for conservaGon. We therefore 
were limited to rare, unfortunately oVen poorly documented, but always properly curated 
samples that had been preserved in collecGons accessible at the University of Naples and the 
Museum of the École des Mines de Paris. AddiGonally, several samples were personally 
collected by one of us (M.B.) in SW Sardinia. 
 
Most of the samples analyzed in the present study consist of galena, with the excepGon of the 
bournonite (PbCuSbS3) sample 63600 from the Cambrian-late Proterozoic terranes of Brusque 
and the cerussite sample S-38 from Les Malines (Cévennes). The names and origins of all the 
samples are listed in Table 1.  
 
In southern France, we sampled three disGnct units of Variscan crust, which have a very similar 
geological history: the Montagne Noire, the Cévennes, and the axial zone of the Pyrenees. In 
the Peyrebrune district (samples 59051, 59040, and Tarn), west of the Montagne Noire, 
predominantly Zn-(±Pb)-F veins occur emplaced in early Paleozoic schists (Munoz, 1997), 
which were already exploited by the Gauls. To the north-east of the Montagne Noire (Brusque, 
sample 63600), strata-bound Pb-Zn ores are found in Cambrian carbonates (Guérangé-Lozes 
et al., 1982). In the Cévennes, the samples from Les Malines and Durfort (samples 63025, S-
38, and Durfort) belong to mulGple ores deposited during successive phases in Paleozoic and 
Triassic carbonates (Le Guen et al., 1991). The axial zone of the Pyrenees contains 
sedimentary-exhalaGve Pb–Zn deposits formed during the Paleozoic (Aulus-ArgenGère, 



sample 65644 and 65649; Aulus-Lauqueille, sample 65726; Seix, sample 65647; Abères, 
sample 65826). Vein-type mineralizaGons within Late-Silurian and Devonian calcschist and 
limestone apparently produced significant amounts of silver (Munoz et al., 2016), although 
the details of how much bullion was extracted from these remote and high-alGtude mines at 
any given Gme remain essenGally unknown. Fragments of amphoras found in gullies indicate 
that these mines were known since at least Roman Gmes. An inventory of Pb-Ag ores is 
available for the zone of interest, known as Couserans (the Ariège department), in Dubois 
(1997) and an updated discussion on Pyrenean ore mineralogy can be found in Cugerone 
(2018). 
 
The techniques used to measure trace element concentraGons and purify silver and lead for 
high-precision isotope analysis by MC-ICP-MS are fully described in (Milot et al., 2021a, Milot 
et al., 2021b, Vaxevanopoulos et al., 2022, Westner et al., 2023). For two samples, ’Tarn’ and 
‘Durfort’, there was not enough Ag for high-precision isotopic analysis. We suspect that, for 
these two samples, the low-yield Ag separaGon resulted from unusually large abundances of 
organic material in the ores interfering with the column chromatography. 
 

Results 
 
Binary plots of Pb isotopic raGos are oVen misleading because they account poorly for the 3-
dimensional character of the data (Albarède et al., 2020): inclusion of a given data point in the 
projecGons of a 3-dimensional field in two 2-dimensional plots is not sufficient to demonstrate 
that the data point in quesGon is part of the original 3-dimensional field. Nevertheless, to 
comply with the usual pracGce of Archaeometry, Pb isotopic raGos have been plomed in Fig. 4 
in the convenGonal manner. To avoid overcrowding the figures, only ore samples for which 
both Ag and Pb isotope composiGons are currently available are plomed, whether this be the 
convenGonal binary Pb isotope plots or the maps of Fig. 5-7, the lamer of which emphasize 
regional clusters (Milot et al., 2022, Vaxevanopoulos et al., 2022, Westner et al., 2023). These 
maps therefore include both the new samples and those from the literature. Note also that 
on the maps overlapping points have been made visible by a small random ‘jimering’ around 
the true locaGon. The precise locaGons of the samples are given in the original publicaGons 
reporGng the Pb isotope composiGons. 
 
The Pb isotope composiGons of the galena samples analyzed here are consistent with 
geological and archeological literature data. This is the case for both Sardinia (Boni and 
Koeppel, 1985, Boni et al., 1996, Orgeval et al., 2000), the Pyrénées (Marcoux and Moelo, 
1991, Marcoux, 1987, Munoz et al., 2016), and the southern and southeastern part of the 
Massif Central of France (Cévennes) (Baron et al., 2006 , Brevart et al., 1982, Charef, 1986 , Le 
Guen et al., 1991 , Le Guen et al., 1992, Ploquin et al., 2010).  
 
In general, the Pb isotope data are well regionalized (Fig. 5-7): 

• 206Pb/204Pb and Pb model ages Tm show a sharp contrast between four groups: (i) 
Sardinia; (ii) Sierra Morena and Central Europe; (iii) northeastern Spain and southern 
France; and (iv) the coastal BeGcs, Serbia, North Macedonia, and Greece. 

• As expected, 207Pb/204Pb and µ values show some communality between southern 
Sardinia and southern France. 208Pb/204Pb and k values also show similariGes. 



• Low values of 208Pb/204Pb and high values of 208Pb/206Pb from southern Sardinia 
(Iglesiente) and Central Europe contrast with samples from the coastal BeGcs in 
southern Spain, Serbia, North Macedonia, and Greece. The Sierra Morena in south-
central Spain and southern France are intermediate between the two groups. 

Overall, Late Proterozoic and Early Paleozoic model ages are found in southern Sardinia and 
occasionally in the Sierra Morena and southern France (Fig. 7). Paleozoic ages are more 
common in south-central Spain, northern Spain, southern France, and central Europe, while 
Late Mesozoic and Cenozoic ages prevail in the coastal BeGcs, the Balkans, and Greece. 
 
The ore samples analyzed for silver isotopes (Fig. 8) have been subdivided into three groups 
corresponding to the thresholds previously observed in silver coinage. The main range coinage 
group (group 1, color-coded in red) has e109Ag values ranging from -1 to +1 parts per 10,000 
with respect to the NIST 978A reference material, and is consistent with 95% of the values 
observed in Bronze to Iron Age hacksilber hoards from the Levant, in coins from ancient 
Greece and Rome, in medieval European coins, and in coinage from Spanish Americas (16-18th 
C). A second, isotopically light group (group 2, color-coded in orange) is defined by its e109Ag 
values extending from -1 to -2 parts per 10,000, values that are found in some hacksilber 
hoards (Eshel et al., 2022) from the Levant and in a small number of archaic Greek coins 
(Vaxevanopoulos et al., 2022). The e109Ag values of the third group (group 3, color-coded in 
white), also referred to as ‘external’, fall outside the -2 to +1 interval and do not correspond 
to any silver coinage or arGfacts known so far. No samples from Sardinia fall in the main group, 
while five of them fall in the isotopically light group, and the rest fall in the external group 
(Table 1). 
 
Ores from regions covered by the broad denominaGons of Balkans, Macedonia, Thrace, and 
Greece make up most of the likely sources of silver for the main coinage group 1. Some ore 
deposits from the Sierra Morena, the eastern Central Pyrenees, the southern Massif Central 
(notably the mine of Peyrebrune), and central Europe also represent acceptable bullion 
sources for this group. Group 2 is represented by Sardinia, the coastal BeGcs, and ore deposits 
scamered over the Balkans, Thrace, Iberia, and southern France. In the context of currently 
available data of ancient arGfacts, the external group 3 does not carry any parGcular meaning. 
 

Discussion 
 
As expected from the very different physical processes controlling Ag and Pb isotope variaGon, 
the correlaGon between e109Ag and the different Pb isotope raGos is weak and staGsGcally non-
significant at the 95% confidence level (correlaGon coefficient r ~±0.4). The existence of two 
regions with contrasGng Pb isotope composiGons (the Aegean vs the western Mediterranean, 
Figs. 5-7) nevertheless explains to some extent that r is not truly zero. 
 
For Sardinia, the probability that the present samples belong to the main group 1 and 
therefore were actually used for coinage is staGsGcally low. In contrast, values from the 
isotopically light group are clearly idenGfied. The small number of samples, of course, places 
some limits on a broad generalizaGon. Archaeological evidence nevertheless suggests that 
Sardinian metallurgy took off in the last quarter of the fiVh millennium BCE or later (De Caro 



et al., 2013, Pearce, 2017). Evidence for mining of argenGferous galena has been recorded 
from the Iglesiente province, notably at the Monteponi and Montevecchio mines (Ingo et al., 
1996, Valera et al., 2005a, Valera et al., 2005b). Eshel et al. (2019, 2022) observed that the Pb 
isotope raGos of ores from San Giovanni are consistent with the silver arGfacts they analyzed. 
The chronology of the mining works is sGll incomplete. Craddock (1995) and Pearce (2017) 
suggested that, in early prehistoric Gmes, silver may have been preferenGally extracted from 
supergene acanthite (Ag2S), cerargyrite (a.k.a., chloragyrite AgCl), and argenGferous cerussite, 
which have since been mined away, rather than from hypogene galena and associated 
sulfosalts. Although, to some extent, these results may be a consequence of limited ore 
sampling, it seems unlikely that these rare minerals ever represented a major source of silver 
in Sardinia with respect to Ag-hosGng galena. In addiGon, supergene Ag minerals display large 
109Ag/107Ag fracGonaGon with respect to hypogene galena (Arribas et al., 2020). A provisional 
conclusion hence is that at least part of the silver mined in Sardinia belongs to the isotopically 
light group (-2≤ e109Ag ≤-1) and should be recognized as such in silver arGfacts and coins. 
However, further Ag isotope studies are warranted on Ag-rich ores (>1000 ppm) before the 
significance of Sardinia on the silver circuits will be firmly established. 
 
The situaGon for silver mining is different during the Iron Age. Isotopically light silver similar 
to that characterizing group 2 has been found in hacksilber hoards from the Levant by Eshel 
et al. (2022). Evidence from the combined Pb and Ag isotope signatures is more difficult to 
interpret. ArGfacts with a Sardinian Pb isotope signature do not have the Ag isotope 
characterisGcs of the present Sardinian ores. Using new soVware, which relies on Pb isotopes 
and takes mass-dependent fracGonaGon into account to locate the provenance of samples 
(Albarede et al., 2024a), we confirm Eshel et al.’s (2022) general findings for some hacksilber 
hoards that the lead isotope composiGons of the Tel Dor, ʽAkko, and Meggido hoards (all from 
Early Iron Age I), and possibly those of Tel Keisan (Late Iron Age) (Eshel et al., 2018), point to 
a possible Pb source from Sardinia. The Sardinian Pb isotope imprint on Iron Age arGfacts may 
therefore be occasionally strong. The e109Ag values reported by Eshel et al. (2022) for these 
hoards are, however, typical of the main group 1. The samples reported on by these authors 
from the Shiloh hoard do belong to the isotopically light Ag group, but their high 206Pb/204Pb 
values are not compaGble with a Sardinian source. The search therefore must conGnue in 
order to idenGfy silver ores from Sardinia that belong to the main group 1. AddiGonal silver 
isotope data on potenGal silver ores are definitely a high priority for future research. 
 
Likewise, the e109Ag values of five isolated coins from Cyzicus (Mysia), Corinth, Abdera 
(Thrace), Chersonesus (Thrace), and Caria vary between -1.04 and -1.92 (Vaxevanopoulos et 
al., 2022), while their Pb isotope composiGons and Gghtly grouped Pb model ages (24-52 Ma) 
suggest Aegean sources. Some silver sources exist in Troad, Mysia, and Caria (Yigit, 2009, 
2012), but only few Pb isotope data are available (Wagner et al., 1985). In either case, the 
dilemma is between isotopically light silver not being a reliable provenance tool and lead used 
for cupellaGon potenGally coming from a source very different from the mine where the silver 
originated. If, as argued above, galena should be abundant wherever silver is exploited, the 
former conclusion takes precedence. Of course, other factors, such as the market price for 
lead, may enter the equaGon, as foreign lead transported by merchant ships may be more 
compeGGve than locally extracted metal. Lead ingots found in shipwrecks and parGcularly 
abound in Roman Gmes (Domergue and Rico, 2003, Tisseyre et al., 2008, Trincherini et al., 
2001, Trincherini et al., 2009) amest to intense long-distance trade of this metal. Whether lead 



of distant origins prevailed on Pb markets remains a topic for further invesGgaGons, at least 
for the East Mediterranean world. 
 
Gentelli et al. (2021) suggested that some Iron Age hacksilber hoards from the Levant (Beth 
Shean, Tel Keisan, and Tel Dor) comprise pieces for which a southern Gaul origin is plausible, 
which the new provenancing soVware developed by Albarede et al. (2024a) confirms. The 
present work idenGfied ores with e109Ag values similar to the main coinage group 1 in southern 
Gaul, east-central Pyrenees, southern Massif Central, and the Cévennes. An isolated value 
from Bourg d’Oisans in the French Alps (CRPG 1046, (Milot et al., 2021b)) is also part of this 
group. This is consistent with archeological finds of Ag mining acGvity from the Roman period 
in southern Gaul (Abraham, 2000, Baron et al., 2006, Bonsangue, 2011, Domergue and Leroy, 
2000, Feugère and Py, 2007, Ploquin et al., 2010). Dubois (1997) argues that argenGferous 
galena was exploited from the Albères (mariGme east Pyrénées) and Esplas-de-Sérous lodes 
(east-central Pyrenees) since Roman or even pre-Roman Gmes, and menGons amphora 
fragments in gullies from the Couserans. WriGng at the turn of the first millennium before the 
Roman conquest, the Greek historian and geographer Strabo menGons (3.2.8; 4.1.12; 4.2.2) 
silver mining in the lands of the Ruteni (southern Massif Central) and the Gabales (northern 
Cévennes) (see Hirt’s (2020) review). In their review of Iron Age and Roman metallurgy, 
Domergue et al. (2006), possibly influenced by Diodorus Siculus (Libr. Hist. 5.27)2, argue from 
observaGons of ancient mining works that Gaul was, overall, not a major silver-producing 
region, i.e., not on par with the Aegean and Iberia, neither under the Gauls nor under the 
Romans. However, both in the field and in ancient literature, staGsGcs are inadequate. 
Therefore, excluding Gaul a priori from silver provenance studies may introduce significant 
bias.  
 
As a closing remark, silver producGon by a parGcular mining district is difficult to evaluate, first 
because reliable numbers are missing and, second, because some mining works may not have 
been preserved. In addiGon, many potenGally important samples have become notoriously 
difficult to obtain. Thanks to the proximity of acGve silver mines, mints of Athens and Thasos 
in Greek Gmes stroke local producGon (Albarede et al., 2024a). In contrast, the Lugdunum 
(Lyon) workshops from the Late Roman Republic and Early Empire are located far from any 
significant source of bullion, but are nevertheless known to have processed large silver issues 
(Sutherland, 1984). ProducGon esGmates may also be amplified for poliGcal reasons at the 
Gme, notably as communicaGon warfare. Moreover, mints concentrated arGsanal experGse, 
skillful engravers, and well-trained slaves, and as such may have amracted non-domesGc 
bullion.  
 
Conclusions 
New Ag and Pb isotope composiGons on galena samples from southern Sardinia suggest that 
silver extracted from local mines is different from the most common bullion used to mint silver 
coinage. The connecGon between hacksilber hoards from the Levant and ores from Sardinia 
is confirmed. At this stage, however, the overall number of samples analyzed is sGll too small 
to assess whether Sardinian ores were a major contributor to Greek and Roman silver bullion. 
 

 
2 κατὰ γοῦν τὴν Γαλατίαν ἄργυρος μὲν οὐ γίνεται τὸ σύνολον (Throughout Gaul there is found practically no 

silver). 



Mines from southern Gaul produced silver with a range of Ag isotope composiGons that 
render these ores consistent with those of the main silver pool (group 1). Hence, not including 
this area among the significant silver sources in anGquity reflects biases of ancient literature, 
which does not menGon southern Gaul, and on the lack of archeological evidence for major 
mining works. As far as Pb and Ag isotopes are concerned, southern Gaul cannot be excluded 
as a potenGal source of silver bullion. 
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Figure 1. Histogram of Ag isotope composiGons of coins from ancient Greece, Persia, Rome 

(Albarède et al., 2016, Desaulty et al., 2011, Milot et al., 2021b, Vaxevanopoulos et al., 
2022), medieval Europe (Desaulty et al., 2011), Tudor England (Desaulty and Albarede, 
2013), and Spanish colonial Americas (Desaulty et al., 2011). The e109Ag value of all but 
five of the 273 silver coins plot in the interval -1 to +1 (-0.1 to +0.1 permil). The spread 
of e109Ag values in ores is much broader than in coins. Ores with e109Ag values outside of 
the coin range can be excluded as sources of the silver used for minGng. 

  



 
 
Figure 2. Geological map of southwestern Sardinia with the locaGons of the samples 

analyzed in the present work (red circles) (Boni, unpublished work). 
  



 
 
 
Figure 3. Simplified geological map of southern France with the locaGons of the samples 

analyzed in the present work (modified aVer Asch (2005)). 
  



 
Figure 4. ConvenGonal Pb isotope plots for Sardinia and southern France. Iberian samples 

and ‘others’ from Milot et al. (2021b, 2022). Southern Greece and the Balkans, including 
Laurion, Macedonia,and Thrace from Vaxevanopoulos et al. (2022). Balkans (incl. Thrace 
and Macedonia) from Westner et al. (2023). ‘Others’ stand for localiGes that do not 
belong to these regions. 



  



 
Figure 5. Map of the 204Pb-normalized raGos for samples for which Ag isotopes are also 

known (from this work and the literature (Milot et al., 2021b, Milot et al., 2022, 
Vaxevanopoulos et al., 2022, Westner et al., 2023)). Note the strong clustering of some 
silver ore provinces. 
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Figure 6. Map of the 206Pb-normalized raGos for samples for which Ag isotopes are also 

known. 
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Figure 7. Map of the Pb model age Tm, µ (238U/204Pb), and k (232Th/238U) values for samples 

for which Ag isotopes are also known. 
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Figure 8. Map of the e109Ag values of the galena samples analyzed in this work (Sardinia and 

southern France) together with literature values.  
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Table 1. Ore localities, Pb and Ag isotope data, and trace-element data  of the samples analyzed

Lab code Locality Province Mineralogy Geological age

Sardinia

Ag-01 San Giovanni Mine Iglesias Ricchi Ag post-Variscan

Ag-02 Santa Lucia Buggerru Fluorite-Barite-Galena veinpost-Variscan

Ag-03 Monteponi Mine Iglesias Masse Centrali pre-Variscan

Ag-04 Su Zurfuru Fluminimaggiore Fluorite-Galena vein & skarn pre- to syn-Variscan

Ag-05 Rosas Mine Narcao skarn syn-Variscan

Ag-06 Scalittas Mine Buggerru pre-Variscan

Ag-07 San Giovanni Mine Iglesias Cantiere Contatto pre-Variscan

Ag-08 San Giovanni Mine Iglesias Ricchi Ag post-Variscan

Ag-09 Barega Mine Iglesias Ricchi Ag post-Variscan

Ag-10 Masua Mine Masua pre-Variscan

ENSMP69318 Monteponi Iglesias anglesite, galena

ENSMP57149 Sarrabus Cagliari acanthite (argyrite), galena

ENSMP14699 Malfidano Buggerru galena

Southern France

65644 L'Argentière shaft, Aulus, Ariège galena Paleozoic

65726 Lauqueille, Aulus, Ariège galena Paleozoic

65649 Aulus- les- Bains, Ariège galena Paleozoic

27826 Les Abères, Vallée de Rivernère, Ariègegalena Paleozoic

65647 Seix, Ariège / Dietrich Collection galena Paleozoic

59051 Peyrebrune, Tarn galena Paleozoic

Galene Tarn Peyrebrune, Tarn galena Paleozoic

59040 Peyrebrune, Tarn galena Paleozoic

63600 Cusses Brusque, Aveyron bournonite Paleozoic

S-38 Les Malines, St Laurent du Gard cerusite Paleozoic

63025 Les Malines, St Laurent du Gard galena Paleozoic

27854 St-Félix- de- Pallières, Gard galena Paleozoic

Galène Durfort Galène mine de Durfort, Gard galena Paleozoic

Lab code
206Pb/204Pb 2 sigma

207Pb/204Pb 2 sigma

Sardinia

Ag-01 18.6396 0.0017 15.6412 0.0013

Ag-02 17.9778 0.0006 15.6475 0.0005

Ag-03 17.8984 0.0006 15.6530 0.0006

Ag-04 17.9765 0.0005 15.6607 0.0004

Ag-05 18.2551 0.0004 15.6732 0.0004

Ag-06 17.8817 0.0010 15.6604 0.0007

Ag-07 17.8903 0.0011 15.6594 0.0009

Ag-08 18.0079 0.0004 15.6590 0.0003



Ag-09 17.9699 0.0005 15.6579 0.0005

Ag-10 17.9074 0.0006 15.6603 0.0004

ENSMP69318 17.7926 0.0008 15.6389 0.0007

ENSMP57149 18.2430 0.0006 15.6756 0.0005

ENSMP14699 17.8986 0.0006 15.6522 0.0006

Southern France

65644 18.3207 0.0006 15.6846 0.0006

65726 18.5610 0.0012 15.6608 0.0009

65649 18.4612 0.0011 15.6878 0.0009

27826 18.4081 0.0006 15.6918 0.0006

65647 18.2856 0.0007 15.6854 0.0006

59051 18.3178 0.0016 15.6885 0.0014

Galene Tarn 18.3117 0.0015 15.6388 0.0012

59040 18.4409 0.0005 15.6865 0.0004

63600 17.7824 0.0009 15.6419 0.0009

S-38 18.4151 0.0008 15.6767 0.0007

63025 18.3266 0.0005 15.6681 0.0004

27854 18.2968 0.0007 15.6656 0.0006

Galène Durfort 18.4078 0.0012 15.6782 0.0009

#N/A

Lab code Ca ppm Mn ppm Fe ppm Ni ppm

Sardinia

Ag-01 207 2 520 47

Ag-02 752 16 126 198

Ag-03 419 171 6846 185

Ag-04 4553 21 462 148

Ag-05 3891 798 3891 18

Ag-06 541 6 39 349

Ag-07 310 8 91 41

Ag-08 321 1 258 86

Ag-09 1010 30 501 87

Ag-10 477 12 406 225

ENSMP69318 313 13 976 -6

ENSMP57149 3264 302 182 113

ENSMP14699 533 52 374 122

Southern France

65644 243 3 2696 42

65726 -8 4564 38589 141

65649 5676 110 1826 92

27826 -166 112 8867 150

65647 6758 731 7125 214

59051 180 6 304 18.2



Galene Tarn - 96 1236 98

59040 12989 5738 78196 147

63600 356 63 4626 73

S-38 372 21 1001 52

63025 5832 541 10327 42

27854 418 63 2396 46

Galène Durfort 3228 21 548 10

 '-' stands for below detection.



Table 1. Ore localities, Pb and Ag isotope data, and trace-element data  of the samples analyzed

latitude N longitude E ore typology

39.280 8.475 post-Variscan low-temperature veins and paleokarst fillings

39.442 8.465 skarn and high-temperature veins

39.304 8.508 stratabound ores in Cambrian carbonates

39.430 8.503 skarn and high-temperature veins

39.203 8.720 skarn and high-temperature veins

39.373 8.424 skarn and high-temperature veins

39.289 8.484 skarn and high-temperature veins

39.281 8.477 post-Variscan low-temperature veins and paleokarst fillings

39.255 8.534 post-Variscan low-temperature veins and paleokarst fillings

39.364 8.439 stratabound ores in Cambrian carbonates

39.304 8.508 stratabound ores in Cambrian carbonates

39.419 9.542 skarn and high-temperature veins

39.304 8.508 stratabound ores in Cambrian carbonates

42.778 1.392 sedimentary-exhalative Pb–Zn deposits 

42.780 1.375 sedimentary-exhalative Pb–Zn deposits 

42.781 1.373 sedimentary-exhalative Pb–Zn deposits 

42.953 1.268 sedimentary-exhalative Pb–Zn deposits 

42.867 1.178 sedimentary-exhalative Pb–Zn deposits 

43.762 2.251 vein type

43.762 2.251 vein type

43.762 2.251 vein type

43.792 2.944 strata-bound Pb-Zn ores are found in Cambrian carbonates

43.920 3.618 strata-bound Pb-Zn ores are found in Cambrian carbonates

43.921 3.618 strata-bound Pb-Zn ores are found in Cambrian carbonates

44.045 3.939 strata-bound Pb-Zn ores are found in Cambrian carbonates

43.996 3.940 strata-bound Pb-Zn ores are found in Cambrian carbonates

208Pb/204Pb 2 sigma
207Pb/206Pb 2 sigma

208Pb/206Pb 2 sigma ɛ109Ag

37.927 0.002 0.83911 0.00001 2.03467 0.00009 -1.40

38.117 0.001 0.87038 0.00001 2.12024 0.00004 -9.25

38.010 0.002 0.87455 0.00001 2.12359 0.00010 -4.38

38.078 0.002 0.87118 0.00001 2.11822 0.00011 -1.45

38.396 0.001 0.85857 0.00001 2.10332 0.00002 -4.12

38.011 0.001 0.87581 0.00001 2.12575 0.00007 -3.81

37.982 0.001 0.87531 0.00001 2.12299 0.00008 -4.02

38.131 0.001 0.86955 0.00001 2.11739 0.00006 -4.10



38.101 0.001 0.87134 0.00001 2.12028 0.00002 -4.66

38.038 0.001 0.87451 0.00000 2.12417 0.00002 -1.13

37.883 0.002 0.87895 0.00001 2.12906 0.00005 -1.36

38.421 0.001 0.85927 0.00001 2.10608 0.00006 -1.36

37.995 0.003 0.87449 0.00001 2.12276 0.00014 -3.35

38.521 0.001 0.85610 0.00001 2.10260 0.00003 1.48

38.642 0.002 0.84374 0.00001 2.08186 0.00002 -3.19

38.660 0.002 0.84977 0.00001 2.09409 0.00004 -1.60

38.612 0.002 0.85244 0.00001 2.09754 0.00003 -0.80

38.517 0.002 0.85781 0.00001 2.10645 0.00003 -4.12

38.535 0.003 0.85647 0.00001 2.10366 0.00006 -1.29

38.381 0.003 0.85403 0.00001 2.09594 0.00003

38.605 0.001 0.85063 0.00001 2.09340 0.00002 -0.40

37.902 0.002 0.87961 0.00001 2.13138 0.00004 -2.60

38.438 0.004 0.85130 0.00001 2.08740 0.00019 0.98

38.444 0.001 0.85493 0.00001 2.09772 0.00005 1.43

38.430 0.002 0.85619 0.00001 2.10036 0.00003 -1.23

38.489 0.002 0.85170 0.00001 2.09087 0.00009 =NA()

Cu ppm Zn ppm Ag ppm Cd ppm Sn ppm Sb ppm Ba ppm

5444 168 200 43 2.6 291 1661

76 0 322 41 0.5 1184 47

70 7027 344 59 3.7 459 34

7 1098 955 79 10.4 624 2876

32 17042 487 251 3.3 367 8

30 168 103 13 0.4 107 3411

61 1098 200 54 1.8 12 9

558 482 630 10 177 2107 262

1023 325 709 20 2.8 1368 4412

58 2338 114 15 4.8 29 36851

129 10039 158 75 2.4 464 64

4 0 331679 3 2.6 175 44

9 45440 418 444 3.4 2 7

27 9666 2181 88 100 2247 7.3

699 231067 1490 673 10.0 1010 11711

1796 2838 1569 11 0.4 171 12

2 392 9 2 4.9 17 70

59 10387 193 42 4.6 336 8.2

8.8 36 290 8 14.3 435 3.1



3 11 368 7 8.7 697 -

112 1811 3282 7 1.9 4183 12

1636 1587 83 12 1.7 2337 1061

161 29202 524 139 1.0 620 62

361 121559 342 1307 1.9 5939 675

1126 204 637 11 3.6 1313 39

- 683 6 3 -0.2 337 1



Std error T m Ma m k

0.21 106 9.72 3.50

0.72 606 9.92 4.03

0.33 673 9.96 4.03

0.39 630 9.97 4.01

0.60 450 9.94 4.00

0.67 697 10.0 4.04

0.87 689 9.99 4.02

0.33 604 9.95 4.02



0.27 630 9.96 4.03

0.30 679 9.99 4.04

0.32 725 9.94 4.03

0.32 463 9.95 4.02

0.08 671 9.96 4.02

0.35 423 9.97 4.03

0.11 203 9.82 3.92

0.16 327 9.95 4.01

0.24 373 9.97 4.02

0.06 450 9.98 4.05

0.30 432 9.98 4.04

346 9.79 3.94

0.45 340 9.95 3.99

0.18 737 9.96 4.05

0.08 340 9.91 3.92

0.15 389 9.90 3.98

0.42 406 9.90 3.99

348 9.92 3.95

Pb ppm Bi ppm

636462 10.4

702879 3.2

695225 1.7

601257 3.1

597468 245.5

682165 1.3

704245 1.3

551827 1.7

489128 0.8

577812 1.2

706689 1.0

268381 0.6

645453 1.2

794203 1.3

303968 0.8

737739 1.4

3315 0.1

648180 1.9

790327 1.2



1007995 2.1

389884 1.3

117410 3.2

745032 3.5

183360 0.4

760048 1.7

864715 2.1
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