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A B S T R A C T   

Even though cats inhabit a large number of our homes, their activity patterns, biological rhythm and behavior 
are still under-described and, therefore, poorly understood. This lack of knowledge is partly explained by the 
limited number of tools available for observing cats with limited effort and minimal disturbances to their rou-
tines. To this day, we still lack a faithful description of what constitutes a “normal behavior” of a domestic cat. 
Bio-loggers have been proven to help researchers decipher the individual and group behaviors of wild animals, 
and are starting to emerge as a tool for monitoring pets’ health as well. These tools have been used not only to 
analyze cats’ activity patterns but also examine their detailed activities, such as eating and walking. Bio-logging 
coupled with data analysis and Artificial Intelligence tools give hopeful perspectives on more complex activities 
such as grooming, jumping, social interaction, etc. In this review, our aim is to offer an overview of the 
contribution of bio-logging devices to the current knowledge and understanding regarding the cat’s behavior, 
and their detailed activities. We specifically focus on the knowledge brought to the understanding of cats’ 
biological rhythm and behavior by accelerometry. This review will provide insight into the major advances 
facilitated by this tool, its limitations, as well as the possible future development in this field of study.   

1. Introduction 

Cats are one of the most popular pets, all over the world. They share 
our homes as well as our cities and countryside. In Western countries, 
the population of pets has been on the rise over the last decades (Larkin, 
2021; Murray et al., 2015; Shahbandeh, 2024a, 2024b; Statista Research 
Department, 2024). An increasing number of owners are also expressing 
a willingness to invest in their pets’ well-being, aiming to provide longer 
and healthier lives for them, as full members of the household (Finka 
et al., 2019). 

Yet, owners need to better understand their cat to provide better 
care. Owners might expect their cats to follow the same daily routine as 
themselves or their dogs, often overlooking the unique behavioral dif-
ferences of cats. For example, a cat running around in the evening or at 
night, disrupting the owner’s rest, might be wrongly considered as 
abnormal behavior (Ravenscroft et al., 2021). Moreover, confusion may 
arise when well-behaved cats exhibit sudden behavioral changes. But is 
this change that sudden, or are owners missing subtle signs that could 
have warned them of a potential issue with their cats? (Bradshaw, 2018; 
Heath, 2018) This failure in understanding cats’ behavior could bring 

frustration to owners when their cats turn aggressive or start to elimi-
nate inappropriately. This frustration can even lead in some cases to the 
animal being relinquished to a shelter (Coe et al., 2014). Part of this 
frustration may stem from a lack of understanding about what consti-
tutes cats’ "normal behavior". This could be avoided if owners could 
better understand their animals, and this can only be achieved by 
making education, advice and tools more easily accessible to everyone 
(Gazzano et al., 2015). A good knowledge of cats’ biological rhythm 
–which is defined as the ensemble of repetitive bodily functions dis-
played by an organism, at any time scale (Refinetti, 2008)– is key in this 
education. Moreover, even with the best education, cats are animals that 
often conceal their pain and illnesses (Gowan and Iff, 2016) to such an 
extent that numerous diseases are only identified at an advanced stage. 
This is because owners may fail to recognize the need to bring their cat 
to their veterinarian until the illness displays strong external signs. This 
delay in medical care can lead to prolonged and challenging recovery 
processes. 

Numerous location and activity trackers are readily available on the 
market for monitoring the activities of both dogs and cats. These tools 
are primarily designed and used for tracking pets when they are outside 
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their home, with the primary goal of preventing the loss of animals. 
Nevertheless, the amount of literature on the use of animal-borne bio- 
loggers, which are devices designed to record the activity of animals by 
being attached to items like collars or harnesses, is growing. This tech-
nology has become increasingly accurate in reporting the daily activity 
patterns of various animals, humans included. Accelerometry, specif-
ically, has emerged as a cost-effective and user-friendly tool for moni-
toring animal physical activity. With the advent of Artificial Intelligence 
(AI), the data generated by these sensors could become even more 
valuable, offering a more nuanced and comprehensive understanding of 
the daily lives of our pets, including cats. If used on a daily basis, this 
could be a powerful tool to diagnose illnesses that impact cats’ activity 
level and/or behavior at early stages and alert owners and veterinarians 
of the observed behavioral changes as soon as they emerge. 

The first objective of the present review is, in Section 3, to provide a 
detailed description of the biological rhythm of the cat, with a specific 
focus on insights derived from bio-logging devices. After establishing the 
current understanding of cats’ biological rhythms based on existing 
literature, we will focus, in Section 4, on the possibilities of describing 
cats’ activities in detail. The literature regarding the application of AI on 
accelerometers to predict cats’ activities is currently limited. Therefore, 
in the subsections 4.3 and 4.4, we will offer a concise overview of 
existing studies on both cats and dogs. This analysis aims to outline the 
current state of research and provide insights to guide future studies in 
this field. Section 5 serves as a conclusion of the review and presents 
future directions. 

2. Method 

Literature for this review has been searched in December 2023, 
through Google Scholar and PubMed. The search was made through the 
association of the keywords “cat” or “Felis catus” and the keywords 
“activity monitor”, “activity tracker”, “physical activity”, “accelerom-
eter”. The additional keywords “Actical”, “Actiwatch” and “Fitbark” 
were added as they retrieved additional publications by being the most 
common commercially available devices. A few articles were also added 
by snowball effect. 

Inclusion criteria:  

● Publications where the domestic cat is the animal whose activity is 
measured by the bio-logger were included. We also included publi-
cations where cats are studied among other species. We retained all 
publications where the cats are referred to as “feral”, “stray”, “un-
owned”, “owned”, “domestic”, but rejected publications about wild 
cats or other species.  

● Publications where the bio-logging device is an accelerometer or an 
accelerometer associated with another sensor were included. We 
included publications with other methods, strictly only in case of 
lack of accelerometry studies, in order to form a comparison base. 
For studies not using accelerometers, we limit the date of publication 
to the ones published after 1980.  

● Only peer-reviewed research papers were included. 
● Publications written in English or French were included, both lan-

guages spoken by the authors. 

Selection of articles was primarily based on the title and abstract, in 
case of doubt, the method section was also used. Selected articles details 
are presented in Appendix 1. 

We separated results from this search into three categories: studies of 
biological rhythm where activity level is considered as a whole, studies 
of cats’ detailed activities and studies using bio-logger on cats to 
advance medical knowledge. For the detailed section on cats’ detailed 
activities, the literature being the smallest, we searched for comparison 
in papers using similar sensors on dogs to predict their behavior. The 
choice of the dog as comparison was done based on the available liter-
ature (number of publications high enough on the species to be able to 

analyze the results), the fact that dogs are the other most common pets in 
human households, and that a portion of the activities performed by 
dogs are similar in display to cats (walking, eating, sitting, etc). 

3. Cat’s biological rhythm 

The biological rhythm of an animal is defined as the ensemble of 
repetitive bodily functions displayed at any time scale (second, hour, 
day, month, year, etc) (Refinetti, 2008). 

In this section, the biological rhythm of cats over a 24-hour cycle is 
discussed, exploring factors such as circadian rhythm, sleep-wake cy-
cles, and the influence of light-dark cycles on a cat’s activity pattern. It 
also delves into how external factors like human presence, seasons, 
climate, sex, reproductive status, and age can impact the observed 
biological rhythm in domestic and feral cats. In order to better under-
stand the cat’s biological rhythm, we will review studies interested in 
feral cats as well as domestic ones. Indeed, feral cats are more exposed to 
environmental synchronization and ecological pressure and will give us 
a good insight on cats’ natural rhythm. However, a portion of domestic 
cats nowadays are fully indoor animals and might therefore have a 
different biological rhythm, being exposed to new synchronizers and 
deprived of others. In this section, we will present findings on both 
populations and aim at giving an overview of cats’ biological rhythm 
given its different circumstances. 

3.1. Biological rhythm over 24 hours, day and night 

3.1.1. Laboratory experiments 
Early in the cat rhythm study, evidence of circadian rhythm has been 

shown in laboratory cats. This rhythm has been measured through body 
temperature by implanted radiocapsules and monitoring of activities 
like eating, drinking and other activities (Johnson et al., 1983; Johnson 
and Randall, 1985; Randall et al., 1987). The study conducted by 
Johnson et al. (1983) showed that the activity pattern of the cat is 
dependent on the light-dark cycles, and disruption by constant exposure 
to light or darkness varies from one cat to another. It also showed that 
the five studied cats have greater activity during the dark phase of the 
day. Additionally, Kuwabara et al. (1986) showed that the sleep-wake 
cycle of the cat is different from its activity system and is polyphasic. 
The main limitation of these studies and similar studies conducted in the 
controlled environment of a laboratory is that cats are easily disturbed 
by human presence during the cage cleaning, feeding or any other ac-
tivity close by. However, Randall et al. (1987) isolated cats from humans 
and other cats, and were able to show the persistence of the circadian 
rhythm in body temperature and a two-peak cycle of daily activity 
(around 05:00 h and 18:00 h respectively), even in constant light 
exposure. Hilmer et al. (2010a) gave evidence that the distinct day-night 
rhythm of feral cats was modified when those feral cats were held in 
captivity. The amplitude in body temperature of the captive cats 
decreased and the cats shifted to a diurnal active phase, whereas their 
free-ranging counterparts showed a robust circadian rhythm with a body 
temperature mostly influenced by the time of the day and not only the 
activity levels. The authors suggested that a combination of decrease in 
stresses associated with hunting, hiding from predators and strategies 
related to water conservation may be at play in the change of biological 
rhythm in these feral cats. The controlled conditions of a laboratory lack 
the variability in temperature, weather, predator-prey interaction, and 
social interaction expected for any cat, whether domestic or feral. These 
biased conditions give a poor understanding of the natural biological 
rhythm and, additionally, limit the studies to 24-hour cycles. Besides, 
this type of laboratory experiment is extremely invasive since the 
monitoring of cats’ body temperature was made by implanting the 
radiocapsule in the peritoneal cavity (Hilmer et al., 2010a; Johnson and 
Randall, 1985) and their cerebral temperature was measured by 
inserting a thermistor between their right and left neocortex (Kuwabara 
et al., 1986). 
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3.1.2. Direct observations of free-ranging cats 
In order to better understand cats’ natural biological rhythm, other 

studies monitored free-ranging animals. Panaman (1981) observed a 
colony of 10 female farm cats for over 360 hours. The observations were 
made by following cats from some distance, in order to disturb them as 
little as possible, and systematically noting the cat behavior at any time 
during the observation period. These animals obtained their food 
through hunting or by consuming food provided by farm owners. The 
authors reported that the activity intensity pattern of most cats’ was 
bimodal, with peaks at dawn and dusk. This study showed that hunting 
occurred around noon and at dusk, and sleeping occurred mostly at 
night. The dawn activity was moderate and probably attributed to 
human activity, according to the authors. 

Even with the best protocols, the human presence can be disruptive 
to cats’ behavior. Additionally, this protocol is very limiting by requiring 
high-attention from the observer for a long period of time. The risk of 
losing trace of the animal is high as the observation is made from a 
distance and therefore limiting the observations to animals already 
familiar with human presence. 

3.1.3. Remote observations of free-ranging using radio-collars 
To address these limitations, new technologies using portable de-

vices attached to the animal started to emerge to monitor cats remotely. 
The first tool used to locate free-ranging animals was radio-collars. This 
technology allows the animals to be located thanks to a radio- 
transmitter attached to the animal’s collar. Tracking the transmitter 
signal is possible by using tracking towers or hand-held antennas and 
receivers. The position of the animal is calculated periodically by 
triangulation (Langham and Porter, 1991; Langham, 1992). The animal 
activity could be inferred from the received signal: the animal is 
considered inactive if the signal is constant, and active if the signal is 
erratic (Alterio and Moller, 1997) or if the location of the animal has 
changed (Konecny, 1987; Langham and Porter, 1991; Langham, 1992). 

The result from the study on 17 feral cats wearing radio-collars 
(Konecny, 1987) showed a peak of activity near sunrise and another 
peak near sunset, but contrary to Panaman (1981) the activity was at its 
lowest at midday. Additionally, this study highlights the ecological 
flexibility of feral cats: the adaptability of their biological rhythm to prey 
density, habitat complexity, and social interactions resulting in territory 
changes. Radio-telemetry has been used successfully in several other 
studies to get a better understanding of feral cat biological rhythm, such 
as Alterio and Moller (1997), who reported that feral cats (11 in-
dividuals) were mostly nocturnal and showed very little activity during 
the day. Using radio-telemetry, Langham (1992) also reported an in-
crease in activity around dawn and dusk, when no additional food is 
provided. They also reported that cats relied on hunting and scavenging 
but were trying to avoid humans, dogs and other predators living 
nearby. Again, this points to ecological flexibility and it could explain 
the difference in activity patterns in studies where the habitat and 
human presence are different. Izawa (1983) also reported two peaks in 
cats’ daily activity, around dawn and dusk, in feral cats wearing 
radio-collars. Langham and Porter (1991) showed that cats are 
nocturnal in open habitat and more active during the day when the 
habitat provides cover. Hiding from predators, in addition to prey 
availability, would therefore be a modulator of feral cats activity. This is 
supported by the diurnal activity of cats when coyotes (nocturnal 
predators) are present in the area and nocturnal when they are absent 
(Kays et al., 2015). Horn et al. (2011) used radio-collars to determine 
cats location and an omnidirectional movement detector mounted on 
the radio-transmitters to record the amount and the duration of cats 
activity. They showed evidence of a difference in activity patterns be-
tween owned and unowned free-roaming cats. The unowned cats were 
more nocturnal and had higher overall activity than owned cats. This 
study also highlighted the increase in activity of owned cats in the early 
morning and evening, likely due to owners getting ready to go to work in 
the morning and then returning in the evening. 

3.1.4. Accelerometry and GPS tracking 
In more recent studies, new technologies have been used to monitor 

cats’ activity: accelerometry and GPS tracking. Placed on a collar or on a 
harness, the accelerometer gives information on cats activity intensity 
by measuring acceleration through one or several axes. The GPS tracker 
allows the animal movements to be followed and spots spatial patterns 
in cats’ territories. These technologies no longer require the placement 
of tracking towers or human observers to follow radio-collared cats, 
typically done on foot. They allow for longer tracking that can last from 
a few hours to several days, after which the locally stored data on the 
collars can be retrieved and analyzed. 

Even though accelerometers allow tracking of free-ranging animals, 
early studies of this new technology were conducted on cats held in 
laboratory conditions or in strict captivity. These studies have confirmed 
the cats’ ability to adapt their activity to changes in light and dark 
phases, supporting an endogenous circadian oscillator (Cerutti et al., 
2022, 2018). A two-peak daily activity pattern was observed in these 
controlled conditions (Cerutti et al., 2018), but depending on the study, 
captive cats had a tendency toward diurnality (Sciabarrasi et al., 2017) 
or nocturnality (Cerutti et al., 2018). Cats held in outdoor colony cages 
showed a two-peak daily activity, one in the morning (between 07:00 h 
and 13:00 h, probably associated with human activity) and another in 
the evening (not associated with any human intervention, between 
17:00 h and 22:00 h) (Smit et al., 2022). Hilmer et al. (2010b) used the 
GPS tracker to confirm the evidence that the circadian rhythm of feral 
cats seen in their body temperature is strongly dependent on time of day 
(generated by an unknown endogenous oscillator) and not only on lo-
comotor activity. They also supported the idea that diurnal peaks in 
body temperature for feral cats during the day are associated with 
hunting, territory fights or long-distance movements. 

Using an accelerometer, studies showed that cats with limited access 
to the outside are highly synchronized with their owners and show a 
diurnal activity (Piccione et al., 2014, 2013), whereas cats with great 
outside space access are mostly nocturnal (Piccione et al., 2013). 
However, cats with limited access to the outside did not show any daily 
rhythmicity in the amount of total locomotor activity (Piccione et al., 
2014). 

3.1.5. Overview of cats’ daily biological rhythm 
These studies support the difference in biological rhythm for do-

mestic cats (depending on humans to access food) and feral (or un-
owned) cats. It is therefore crucial to further study all these different 
populations, separately and comparatively, to better understand the 
cat’s biological rhythm. Fig. 1a shows the distribution of the cat’s 
breeding origin. Among the 38 studies included in this review section, 
34% did not disclose the breeding origin of the cats. The remaining 
studies used cats from various backgrounds, including feral, laboratory, 
owned, or farm cats, or a combination of different breeding origins. The 
majority of the experiments (Fig. 1c) were conducted either in the 
controlled conditions of a laboratory (14 studies) or by tracking free- 
roaming cats (13 studies). In addition, the cats studied in the experi-
ments with restrictive housing conditions (laboratory, outdoor pens, or 
owners home) are either housed individually or in groups (Fig. 1d). Cats’ 
behavior, well-being, and activity levels are likely influenced by the 
presence of intraspecific social interaction. Therefore it is crucial to 
accurately document such interactions in the method section of studies 
and to take them into consideration when interpreting results. 

The unowned cats depend on hunting and scavenging to eat and have 
to modulate their rhythm with survival constraints such as water and 
prey availability and predator presence. Domestic cats will synchronize 
their biological rhythm with food and care distribution by the human(s) 
they depend on. Humans being highly diurnal, indoor cats will shift their 
biological rhythm to match that of their owner. With greater access to 
the outside, cats may rely less on humans for food and get preys to 
supplement their diet, and therefore turn to a less diurnal rhythm. When 
available, cats will integrate food provided by humans in addition to 
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prey on wildlife and this reflects on their daily activity pattern (Cove 
et al., 2017), hunting to feed occurring rather at night than during the 
day. 

The effect of the cat’s breed on biological rhythm is still to be 
investigated (Fig. 1b). Of the studies included in this review, 64% did 
not evaluate the cat’s breed or disclaim the information. A large portion 
of studies used domestic short-, medium- or longhair cats, with the 
dominance of domestic shorthair cats. Studies including purebred cats 

often neglected the variations in activity patterns or specific behaviors 
across different cats’ breeds, such as playfulness, hunting behavior or 
sleep patterns that may vary among breeds. Only 5% of the studies used 
cats from different breeds. 

3.2. Biological rhythm over a week 

Differences in activity based on human presence has also been 

Fig. 1. Cats profiles and housing conditions during experiments in the 38 biological rhythm studies described in this review. (a) Breeding origin, feral/stray: 
cats that do not solely rely on humans for food and shelter, laboratory: cats purposely bred for experimentation, home/pet cats: cats that strictly rely on humans for 
food and shelter, multiple: mix of owned and unowned (feral/stray) cats, farm cats: cats that live in farms, outdoors but depend partly on humans for food. (b) Cats 
breed, domestic: domestic short-, medium- and longhair (DSH, DMH and DLH), purebred: purebred cats, mix: DSH/DMH/DLH and purebreds and/or cats of mixed 
breeds. (c) Cats’ housing during the experiment (d) Housing details for cats in restrictive housing conditions, in green: cats were housed individually, in orange: cats 
were group-housed, blue: unknown conditions regarding if individually or group-housed. 
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highlighted by studies comparing cats’ activity levels on weekends and 
weekdays. Cats held in laboratory conditions and monitored by an 
omnidirectional accelerometer were less active during weekends 
compared to weekdays, probably because caregivers’ activity in the 
facility is reduced on weekends (Lascelles et al., 2008). This higher level 
of activity during weekdays compared to weekends has been reported 
regardless if the cat was lean or overweight (De Godoy and Shoveller, 
2017). Domestic cats were showing a different pattern in their bimodal 
activity: the peak in the evening was equivalent during the whole week, 
whereas the morning peak was a bit later during weekends compared to 
weekdays (Gruen et al., 2017). This shift is probably due to the change in 
the schedule of the cats’ owners and suggests the ability of the cats to 
adapt to such changes from one day to another. This is also supported by 
the sharp activity peak in the morning throughout the week, when 
owners are more likely to be on a more strict schedule and feeding and 
caring are more likely to always occur at the same time. The evening 
activity peak during weekdays is broader and can be explained by the 
fact that owners return home at less consistent hours (Gruen et al., 
2017). 

3.3. Effect of the seasons on the biological rhythm 

Environmental rhythm modulators can be particularly hard to study, 
and isolating a single modulator might be impossible. One of the most 
studied environmental effects on cats’ biological rhythm is the seasons. 
In particular, cats living (at least partly) outside are particularly exposed 
to change in temperature, rain and prey availability. The effect of the 
season has been studied with a variety of bio-logging devices such as 
radio-collars (Alterio and Moller, 1997; Ferreira et al., 2016; Horn et al., 
2011; Izawa, 1983), cameras placed on collars (Hernandez et al., 2018), 
Ultra WideBand (Parker et al., 2022a), and accelerometers either 
implanted (Kovalzon et al., 2022) or on collars (Smit et al., 2022). These 
cats display their highest activity in spring and autumn (Hernandez 
et al., 2018; Parker et al., 2022a), but it is unclear if cats are more active 
in the fall (Hernandez et al., 2018) compared to the spring or if the 
activity is equivalent during these two seasons (Alterio and Moller, 
1997; Parker et al., 2022a). Activity has been reported to be lower in 
summer compared to spring (Hernandez et al., 2018; Parker et al., 
2022a; Smit et al., 2022). As of winter, the analysis of activity during this 
season has yielded conflicting results: in some studies cats displayed 
high (even their highest) level of activity during winter (Ferreira et al., 
2016), while other cats displayed lower levels of activity in this season 
(Kovalzon et al., 2022; Parker et al., 2022a). Horn et al. (2011) has 
shown a difference in this case between owned and unowned cats. The 
unowned cats had an increase in their activity level in the colder month 
of the study, whereas owned cats showed reduced activity during the 
hottest months of summer and during the coldest months of winter. 
Izawa (1983) also studied unowned cats and was not able to measure a 
change in overall activity level, but observed a shift to nocturnality in 
summer, and a diurnal activity during winter. 

The change in temperature associated with the change of the season 
might be a key element to explain the variation in activity patterns. 
Some researchers have suggested that during winter, outdoor cats might 
need to increase their activity level to maintain body temperature, while 
cats cared for by humans might naturally be more active in a tempera-
ture range associated with comfort (Horn et al., 2011). Additionally, 
temperature might also have a direct effect on the circadian rhythm of 
the cat. Kovalzon et al. (2022) showed that the rhythmicity in body 
temperature in domestic cats is stronger in winter than in autumn, when 
the temperatures are lower. 

Studies conducted in different world locations may lead to different 
results, since the climate might be completely different from one study 
to another. The reported effect of the temperature on cats may not be 
visible in studies where the change in seasons is not necessarily defined 
by a change in temperature and day length. This is the case, for example, 
in Brazil (Ferreira et al., 2016) where the temperature is constant 

throughout the year and seasonal changes are defined by the level of 
rainfall. However, it remains unclear if these types of seasonal changes 
have an effect on cats’ daily activity. Konecny (1987) did not observe 
any significant change between the wet and the dry seasons in the 
Galápagos Islands, whereas Ferreira et al. (2016) reported higher ac-
tivity during the dry season (winter) compared to the wet season 
(summer) in Brazil. It is worth noting that rain has been identified as a 
factor reducing the density and activity of cats in a given area, as re-
ported by Goszczyński et al. (2009) in Poland and Harper (2007) in New 
Zealand. 

The climate also has an impact on the local fauna, affecting the 
availability of different prey for cats to hunt. The adaptation to the 
biological rhythm of these prey species might have an impact on cats’ 
biological rhythm. This hypothesis is supported by the observed varia-
tion in cats diet across seasons, depending on the availability of prey, 
confirming the cat’s role as a generalist predator (Hervías et al., 2014). 
This dietary variation is more pronounced in countries with more sig-
nificant seasonal changes, such as Spain (Millan, 2010), compared to 
countries with softer seasonal changes, such as Brazil (Ferreira et al., 
2014). In regions with drastic seasonal changes, studies suggest that the 
niche amplitude is higher in dry seasons compared to wet seasons 
(Ferreira et al., 2014; Millan, 2010). Overall, these findings indicate that 
the opportunistic nature of cats as predators strongly influences their 
activity patterns. 

3.4. Effect of the sex, reproductive status and age on the biological rhythm 

Langham (1992) reported that the studied female cats were mostly 
nocturnal, whereas male cats were active during 24 h, pointing toward a 
difference between males and females, but this study is based on a 
limited number of feral individuals: nine females and four males. Parker 
et al. (2019) observed seven males and seven females living mostly in-
doors in a cattery and reported that females were globally diurnal and 
males were globally nocturnal. The authors also reported higher 
rhythmicity in the locomotor behavior in males. Ferreira et al. (2016), 
studying 15 males wearing radio-collars, suggested that male cats show 
higher nocturnal activity when no females shared their territory. Other 
studies have found no differences between males and females (Her-
nandez et al., 2018; Horn et al., 2011). Smit et al. (2022) did not show 
any difference in overall mean activity level between entire males and 
entire females. 

An important parameter that might be overlooked in those studies is 
the reproductive cycle that may vary between female cats and therefore 
induce differences in their biological rhythm. This is supported by the 
study of Andrews et al. (2022), where female cats experienced a 
controlled reproductive cycle while wearing accelerometers. The cats’ 
reproductive cycle was blocked to measure the baseline activity and 
then the follicular growth was induced until ovulation could be 
measured. They showed a significant increase in activity level during 
follicular growth compared to the baseline activity, with a significant 
peak three days after the onset of this phase. Further investigation of the 
cat’s natural reproductive cycle is warranted to confirm these findings, 
especially with a large portion of the domestic cat population being 
neutered. Six cats were monitored using radio-collars before and after 
castration, and the results showed that the overall activity was reduced 
in males, but the activity patterns were identical to the ones observed 
before the surgical intervention: the cats were mostly nocturnal and 
crepuscular (Ferreira et al., 2020). For female cats, neutering has been 
reported to decrease activity levels dramatically, especially during the 
dark period (three to five times less activity counts in the weeks 
following spaying) (Belsito et al., 2009; Vester et al., 2009). Yet, these 
results are contradictory to the ones of Smit et al. (2022), which showed 
that activity levels are decreased in neutered males but not in neutered 
females, compared to their intact counterparts. Iwazaki et al. (2022) also 
did not report any significant difference in activity levels in female cats 
after neutering. 
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It is interesting to note that the age of neutering does not seem to 
have an influence on the decrease in activity levels, which was found to 
be around 25% for cats aging between 19 and 52 weeks, and thus for 
both male and female cats (Allaway et al., 2017, 2016). 

To study the impact of age on the activity level in cats, other studies 
have focused on measuring activity levels throughout the cat’s life. A 
decrease in activity levels has been reported to occur once the cat rea-
ches adulthood, but the results are conflicted as if the decline is 
continuous throughout the cat’s life (Naik et al., 2018; Yamazaki et al., 
2020) or if the activity level plateaus after three years (Smit et al., 2022). 
Yamazaki et al. (2020) reported that the total activity level and the 
number of jumps significantly decreases with age, regardless of the cat’s 
sex. The daily average of total resting and sleeping time is significantly 
increased with age, especially in the daytime. 

The primary obstacle in studying the effects of sex, age and neutering 
on cats’ activity levels and patterns lies in the limited number of in-
dividuals used in most biological rhythm studies (Fig. 2c), due to 
logistical challenges and difficulties in recruiting both cats and owners 
for the entire study duration. This limitation impedes the ability to 
analyze these factors comprehensively. Given the likelihood of future 
studies encountering similar recruitment challenges, drawing conclu-
sions on these aspects may necessitate a multitude of medium-sized 
studies. New studies should also take into consideration the cats’ pro-
files when interpreting their results. Indeed, 27% of the studies included 
in this review used only male cats, while 20% used only female cats, and 
only 36% of the studies used cats from both sex (Fig. 2a). On the other 
hand, only 9% of the studies used both neutered and intact cats (Fig. 2b). 
Studies using only adult cats, or cats from the same sex, or only neutered 
animals should be careful when extending their conclusion to all cats, 
and at least always carefully report these details in their method. As 
shown in Fig. 2a-b and d, a significant number of studies did not disclose 
sex, reproductive status and age of the cats participating in the study. 

Additionally, body weight, influenced by age, sex and reproductive 
status, is another crucial factor. This parameter is associated with 
changes in activity levels, and this further complicates the task of dis-
entangling the impact of each factor on activity levels. 

3.5. Overview on cats’ biological rhythm 

In conclusion, current studies have demonstrated a circadian rhythm 
in cats, responding to an undefined endogenous cue. They tend to 
display a two-peak activity pattern, one in the morning and one in the 
evening. But cats are also highly adaptive: their rhythm can rapidly 
change to adapt to environmental synchronizers. When not dependent 
on humans for food and shelter, cats are opportunistic and adapt to prey 
and water availability and to predator presence, according to the climate 
of their location, the local fauna and the seasons. Domestic cats, in 
particular ones with limited access to the outside, have synchronized to 
human activities. The activity pattern is maintained throughout the cat’s 
life, but the overall activity level is higher in younger cats than in older 
ones. 

However, conclusions should be made taking into account the effect 
of human presence on the studied cats. Hooper et al. (2017) have sug-
gested that activity levels measured during interactions with humans 
might not accurately reflect variations in activity levels, as cats with a 
social personality seek interactions with the caregivers and shy cats 
avoid them. They also showed, using accelerometers placed on collars, a 
difference in results when the activity counts recorded during periods of 
human interactions were omitted from the analysis. A significant in-
crease in activity was observed when discarding human interaction 
periods, compared to negligible change in activity when included. 

Importantly, cats have been demonstrated, by studies using accel-
erometers, to be one of the animals showing the most inter-subject 
variability (variability from an individual to another) in circadian 

Fig. 2. Distribution of cats’ sex, reproductive status and age, and cohort sizes of the 38 studies on biological rhythm described in this review. (a) Cats sex. 
(b) Cats’ reproductive status. (c) Distribution of the cohort sizes. (d) Cats age categories, kitten: cats under the age of one year, adult: cats from one to eleven years 
old, senior: cats of age over 11 years, unknown: cats of age undisclosed by the studies; studies including several age classes are counted once for each class included. 
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rhythm for an average intra-subject variability (variability for a single 
individual from a day to another) (Refinetti et al., 2016). This translates 
into the daily activity pattern from a cat to another that varies greatly, 
even when the cats are of comparable size and weight. Thus, the con-
struction of an average cat daily activity pattern might be impossible 
(Andrews et al., 2022, 2015; Gruen et al., 2017; Refinetti et al., 2016). 
This finding calls for a more individual analysis of the cats’ activities and 
a high caution when drawing global conclusions that might not describe 
any existing cat. Each cat should, therefore, probably be considered as 
its own control when examining changes in activity levels (Andrews 
et al., 2022, 2015). 

4. Studies on cat’s detailed activities 

A strong limitation of the studies in the previous section is that they 
have been analyzing cats’ activity as a whole. In some cases, any 
behavior different from resting and sleeping is considered as “activity” 
and therefore no difference is made between high energy consuming 
activities such as roaming, hunting or fighting, and low energy activities 
such as grooming or eating. In other cases, only the locomotor activity 
has been taken into account as “activity”. Any work attempting to 
describe cats’ biological rhythm without trying to decipher which 
behavior is at play when the cat is active might therefore overlook 
simple explanations for discrepancies with previous results. In order to 
understand this difference, multiple researches have been conducted 
using different sensors and methods. 

4.1. Detailed activities assessed using Ultra WideBand technology 

UWB (Ultra WideBand) technology has been used to follow cats in 
different husbandry conditions to track locomotion behavior (Parker 
et al., 2017). The UWB technology is based on a radio-emitting tag 
placed on cats’ collar and antennas placed at different locations, 
recording cats’ location and allowing distance calculation within the 
covered area. This technology makes the recording of cats movement 
indoors accurate, which is not the case with GPS. A passive-RFID tag on 
the cat’s collar, giving the cat access to the food, and an electronic scale 
are used to record the daily food consumption (feeding time and food 
weight) for each animal (Parker et al., 2019). 

With this technology, cats held in cattery (indoor area of 22.5 m2 and 
an outdoor courtyard of 7 m2) showed four peaks of activity: two in the 
morning (both coinciding with technicians entering the facility for 
cleaning the areas or feeding the animals), one in the afternoon (also 
coinciding with technicians being in the facility) and one in the evening 
around sunset (Parker et al., 2017). The highest peak of activity (the 
second one) coincided with the feeding time. The only peak not coin-
ciding with human activity was the one in the evening, showing that 
even when synchronized with human activity, cats retained part of their 
nocturnal activity. The locomotive behavior was shown to be more 
rhythmic than the food intake (Parker et al., 2022a, 2019). The feeding 
behavior had two main peaks, one in the morning before sunrise and one 
in the evening before sunset, supporting the crepuscular nature of the 
cat. At midday and midnight, the cats showed their lowest level of ac-
tivity and food intake. To detect if cats had seasonal modulation of their 
biological rhythm, Parker et al. (2022a) followed six cats, in the same 
cattery conditions described previously, for three weeks each season. 
The season had no effect on the mean daily amount of food ingested by 
the cats, but a 24-hour cycle was shown. These shelter cats were 
described as more diurnal than nocturnal in their locomotor rhythm, this 
is compatible with an activity pattern influenced by the human activity 
of the shelter technicians. This study showed preservation of the 
crepuscular behavior throughout the seasons, peaks at sunset and sun-
rise shifting with change in day length, whereas peaks of locomotion and 
food consumption triggered by human interaction were not fluctuating 
seasonally. Parker et al. (2022b), by comparing shelter cats with and 
without great access to outdoor space, observed that all cats displayed 

bimodality in their activity, but outdoor cats showed less rhythmicity in 
their behavior. Outdoor cats were overall more active than indoor cats, 
they covered more distance and ate more but displayed less rhythmicity 
in their behaviors (Parker et al., 2022b). The authors argued that out-
door cats might encounter more environment disruptors that affect their 
rhythmicity. Finally, similarly to Piccione et al. (2013), the authors 
showed that outdoor cats are more nocturnal than indoor cats. They 
suggested that the lack of stimulation at night for indoor cats might 
inhibit nocturnal activity. 

The association between the UWB technology and the RFID-triggered 
feeders have given more accurate and detailed information on cats’ 
locomotion activity and eating, but they pose several limitations. Some 
very important activities are overlooked such as drinking –which has 
been previously suggested to be an environmental modulator for feral 
and stray cats–, grooming, social interaction and other activities. In 
addition, the monitoring of cats’ locomotion and feeding activities re-
quires the deployment of several detectors and sensors, which need to be 
placed strategically in order to be efficient, and this seems difficult to 
deploy at larger scales. 

4.2. Detailed activities using cameras 

To get details on a larger number of cats’ activities, some studies used 
cameras: either camera traps that will start recording when an animal is 
detected or animal-borne (wearable) cameras. The camera traps have to 
be placed in strategic places such as feeding stations (Cove et al., 2017) 
or known animal trails (Kays et al., 2015) decided by human observers, 
and will record only a fraction of the animal’s day. Animal-borne cam-
eras can be heavy (90 g for Hernandez et al. 2018 but 32 g for Huck and 
Watson 2019), exceeding for most cats the limit of 2% of the cat’s body 
mass recommended by Coughlin and Van Heezik (2015) for minimal 
disruption of the animal’s behavior. The activity labeling might also be 
difficult since some activities like resting, walking and running are 
difficult to distinguish based only on an animal-borne camera (Huck and 
Watson, 2019). 

Other studies have investigated the use of cameras placed in the 
room to recognize indoor cat’s posture -such as sitting, jumping, 
walking, etc- by using computer vision algorithms (Pons et al., 2017). 
This field is still emerging and the number of studies using such tech-
niques to analyze cats’ activities is still limited. Further development is 
required to establish models capable of recognizing more complex ac-
tivities such as grooming, eating, etc. 

The use of indoor cameras offers similar limitations to the use of 
camera traps: they require the deployment of cameras in strategic places 
in order to be efficient, and give fragmented information on the cat’s 
activity, limited to the moment where the animal is in the camera’s field 
of view. 

Additionally, image footage of cats’ activities still relies mainly on 
manual recognition and labeling of the cat’s activity with limited pos-
sibilities for automatic alternatives yet. As an alternative to manually 
labeling video footage of cats activities, computer vision techniques 
could be employed for automatic detection of cat activities. Several 
studies using computer vision methods have shown encouraging results 
in recent years, in particular in livestock (García et al., 2020; Tscharke 
and Banhazi, 2016) and sea animal (Barbedo, 2022) activity recogni-
tion. But, these studies employed Machine Learning models that still 
need a manually labeled dataset, with a good labeling quality, to be 
trained. The potential of employing computer vision techniques in cat 
studies, particularly with bio-loggers, remains largely unexplored. 

4.3. Artificial Intelligence classification for cats activities using 
accelerometer 

In addition to being lightweight, accelerometer devices have proven 
to be a useful and a reliable system to distinguish different cat’s activ-
ities even when a single accelerometer axis is recorded (Watanabe et al., 
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2005). Watanabe et al. (2005) recorded the surging acceleration of a 
single cat, with a device weighing 18 g, representing 0.5% of the ani-
mal’s body mass. The authors were able to successfully discriminate 
between drinking, eating, trotting and galloping, but obtained poor re-
sults for grooming and walking, with an overall accuracy of 57.3%. This 
attempt at automatically classifying cats’ behaviors based on the 
accelerometer signal and a Canonical Discriminant Analysis (CDA) 
paved the way for new possibilities of deciphering the cat’s day with a 
level of detail not achievable before. After this study, only a few others 
attempted to classify cats’ behavior using Machine Learning and Deep 
Learning methods for classification. 

Sharon et al. (2020) placed an omnidirectional accelerometer on a 
collar, under the neck, of 13 cats in controlled conditions. They recorded 
five to eight hours of cats’ activities and attempted to classify three types 
of jumps: jump up, jump down, and jump across using a Linear 
Discriminant Analysis (LDA). They obtained an overall misclassification 
error of 5.4% per cat, meaning 5.4% of the jumps were classified as a 
jump of an incorrect kind (for example a jump down classified as a jump 
up). These good results are encouraging, but classification performance 
has been assessed by ignoring any other kinds of activities performed by 
the observed cats (walking, grooming, eating, etc). The performance of 
such a classifier in cats’ daily life is therefore questionable. 

Galea et al. (2021) placed a tri-axial accelerometer on a harness on 
10 free-roaming domestic cats, placing the sensors close to the chest of 
the animals. Using two different classification methods, the Random 
Forest (RF) and Self-Organizing Maps (SOM), the authors attempted to 
classify a total of 12 behaviors separated in three categories: sedentary 
(lying, sitting, grooming, watching), eating and locomotive (eat-
ing/drinking, walking, trotting), and hunting (galloping, jumping, 
pouncing, swatting, biting/holding). The SOM model displayed a higher 
overall accuracy (~ 99.6% for SOM and 98.9% for RF), precision and 
specificity, but the RF procedure generally displayed better sensitivity. 
The SOM performed better than the RF for nine behaviors, RF performed 
better for two, galloping and pouncing, and both models predicted with 
equal accuracy the lying behavior. Galea et al. (2021) concluded that the 
SOM was a model with better performance than the RF model to predict 
cats’ behavior, for half the computation time. 

Smit et al. (2023) compared the same classification models, using 12 
cats held in semi-outdoor colony cages, wearing two accelerometers 
each: one on a collar with the sensor on the ventral side, and one on a 
harness with the sensor sitting on the animal’s left shoulder blade. The 
authors attempted to classify 15 behaviors of four categories: active 
(climbing, jumping, rubbing, trotting, walking), inactive (lying, sitting, 
standing), maintenance (digging, eating, grooming, littering, scratching, 
shaking), and other (allogrooming). Some important behaviors, studied 
by Galea et al. (2021), were discarded because of lack of data, such as 
drinking or running/galloping. In this study, results for the four tested 
models (SOM and RF trained each on the dataset from the collar sensor 
and the one from the harness) were above 0.7 of overall accuracy. The 
authors compared the time budget computed using the predictions from 
each model with the state-of-art time budget defined for domestic cats. 
The RF models predicted that the cats spent 3–4% of their time eating, 
whereas SOM models’ predictions ranged between 13% and 28% of the 
time. Literature reports an eating time budget of 0.6% for farm cats 
(Panaman, 1981), 3% for indoor cats (Eckstein and Hart, 2000) and 
2.3% for cats in an outdoor colony (Hernandez et al., 2018), giving more 
reliability to RF results. Similar conclusions can be drawn for grooming. 
By giving more consistent predictions and closer to the values already 
reported by literature, the authors concluded that RF models are more 
reliable than SOM models with the studied datasets. 

Choosing the best model to predict cats activities is still, to this day, 
an open question. Indeed, Galea et al. (2021) and Smit et al. (2023) have 
tested the same two models (RF and SOM) and came to opposite con-
clusions. Even when considering all models already tested to predict 
cats’ behavior, it is difficult to say which one deserves renewed attention 
in future studies. Discrepancy in results might result from important 

differences in experiment protocols, such as:  

• placement of accelerometers at different locations: Smit et al. (2023) 
gave evidence that the placement between collar and harness do not 
give significantly different results for cats’ activities classification, 
but this parameter requires further investigation as Kumpulainen 
et al. (2021) showed that sensors placed on the back yielded better 
model performances than ones placed on the collar for dogs’ activ-
ities classification.  

• precision: 12-bit for Watanabe et al. (2005), 13-bit for Galea et al. 
(2021), not disclosed for Sharon et al. (2020) and Smit et al. (2023),  

• data range: ± 3 g for Watanabe et al. (2005), ± 8 g for Galea et al. 
(2021) and Smit et al. (2023), not disclosed by Sharon et al. (2020),  

• sampling rate: 16 Hz for Watanabe et al. (2005), 32 Hz for Sharon 
et al. (2020), 50 Hz for Galea et al. (2021) and 30 Hz for Smit et al. 
(2023),  

• sequence size for the prediction: 4 or 16 seconds (corresponding to 
64 or 256 data points) for Watanabe et al. (2005), 1 second (corre-
sponding to 50 data points) for Galea et al. (2021) and 1 second 
(corresponding to 30 points) for Smit et al. (2023), the sequence size 
was variable for Sharon et al. (2020),  

• the number and profiles of cats used to create the dataset: only one 
male cat for Watanabe et al. (2005), 13 cats held in laboratory 
conditions (six castrated males, four sexually intact females, and 
three spayed females) for Sharon et al. (2020), ten free-roaming 
domestic cats (six males, four females) for Galea et al. (2021) and 
12 cats held in semi-outdoor colony cages (five desexed males and 
seven entire females) for Smit et al. (2023),  

• the global final size of the dataset, depending on successfully labeled 
data,  

• the dataset size for each behavior or class,  
• the overall number of classes: seven classes for Watanabe et al. 

(2005), three for Sharon et al. (2020), 12 for Galea et al. (2021) and 
between three and 15 for the various models trained by Smit et al. 
(2023),  

• overall variation in definition of close behaviors: jumping is a 
behavior that is not defined in the same way in all studies: Galea et al. 
(2021) classified “pouncing” and “jumping” as two separated be-
haviors, Smit et al. (2023) distinguished “jump horizontal” and 
“jump vertical”, and Sharon et al. (2020) classified three kinds of 
jumps (“jump across”, “jump up” and “jump down”),  

• the features used for predictions: Watanabe et al. (2005) used four 
features extracted from the sensor signal in the frequency domain, 
Sharon et al. (2020) used a Functional Data Analysis to extract seven 
coefficients for each jumping event, Galea et al. (2021) used 26 
features and Smit et al. (2023) used 32 features computed from the 
sensor signal in the time domain. 

The limited number of studies does not allow for the evaluation of 
the impact of every parameter variation from a protocol to another. 
Additionally, even when comparing results with the exact same protocol 
parameters, variations may occur between studies, particularly if the 
number of cats involved is small. This is attributed to the high inter- 
subject variability among cats, as noted by Andrews et al. (2015), 
Gruen et al. (2017) and Refinetti et al. (2016). For this reason, a large 
number of cats is needed to construct a representative group and this 
might prove complicated in practice. New studies with a limited number 
of cats may still encounter unpredictable biases. Therefore, the findings 
of the previously mentioned studies, as well as any future research with 
the same limitations, should be interpreted with caution until a suffi-
ciently large number of studies have been conducted to thoroughly 
assess the impact of parameter variations. 

4.4. Classification of dogs activities using accelerometers 

The activity recognition through Artificial Intelligence (AI) 
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classification of accelerometer signal has already been applied to 
different species from human to sea turtles (Brown et al., 2013; Korpela 
et al., 2019, PREPRINT; Wilmers et al., 2015; Zhang et al., 2018), 
including the other most common human pet: dogs (Canis familiaris). It is 
interesting to see that a greater work has been made so far in classifying 
dogs’ behavior than cats and several reasons can be cited for that. First, 
dogs are considered one of the easiest animals to train and, therefore, to 
prompt for specific behaviors such as sitting, lying or walking to a 
specific area. Second, dogs are of particular interest for behavioral 
studies due to their roles as animals of service and not only as pets, such 
as in shepherding, guiding of the blind, police and rescue services, and 
more. An overview of the studies aiming at classifying dogs’ activities is 
presented in this section, in order to give an efficient orientation to the 
future studies on cats’ activity recognition. 

Early studies, such as Preston et al. (2012), used data derived from 
accelerometers placed on the harness to solely estimate the levels of 
dogs’ activity, but later studies have used the sensors’ signals to predict 
dogs’ behavior using Artificial Intelligence. The variability in protocols 
is also seen in these studies and can therefore explain the difference in 
models’ performances. Beyond the previously reported sources of 
divergence in these studies (placement of the sensors, sampling rate, 
data range and precision, number of participants, etc), we can add that 
not all studies used the same type of sensors. All used sensors were 
tri-axial, but some studies used solely an accelerometer (Chambers et al., 
2021; Den Uijl et al., 2017), others accompanied it with a gyroscope 
(Aich et al., 2019; Gerencsér et al., 2013; Hussain et al., 2022a, 2022b; 
Kumpulainen et al., 2021; Muminov et al., 2022), while others also 
added a magnetometer (Marcato et al., 2023). Some studies might also 
use several sensors of the same kind, placed at different places of the 
animal’s body. For example, Hussain et al. (2022a), (2022b) placed their 
sensors on the neck and tail, Marcato et al. (2023) placed their sensors 
on the back, chest and neck and (Kumpulainen et al., 2021) on the neck 
and back of the dogs. A various number of models have been considered 
and compared in these studies ranging:  

• from simple Machine Learning such as:  
o LDA and QDA (Linear and Quadratic Discriminant Analysis) 

(Kumpulainen et al., 2021),  
o SVM (Support Vector Machine) (Aich et al., 2019; Gerencsér et al., 

2013; Kumpulainen et al., 2021; Muminov et al., 2022),  
o DT (Decision Tree) (Kumpulainen et al., 2021; Muminov et al., 

2022),  
o RF (Aich et al., 2019; Marcato et al., 2023),  
o NB (Naïve Bayes) (Aich et al., 2019; Muminov et al., 2022),  
o KNN (K Nearest Neighbors) (Aich et al., 2019; Muminov et al., 

2022),  
o and Isolation Forest (Marcato et al., 2023),  

• to Deep Learning models with higher complexity such as:  
o ANN (Artificial Neural Network) (Aich et al., 2019),  
o FilterNet (Chambers et al., 2021),  
o 1-D CNN (1-Dimension Convolutional Neural Network) (Hussain 

et al., 2022a),  
o and LSTM (Long Short-Term Memory) (Hussain et al., 2022b). 

In these studies classifying dogs’ sensor data, the behavior recogni-
tion is mostly limited to the posture and the gait of the dog (laying, 
sitting, standing, walking, trotting, galloping) with a few additional 
behaviors (eating, drinking, noseworking, jumping, scratching, head or 
body shaking, etc), classifying from six to ten behaviors per study. The 
overall accuracy for these models is good with a minimum of 75% for the 
DT by Kumpulainen et al. (2021) and over 96% for the 1-D CNN used by 
Hussain et al. (2022a). The lowest accuracy was obtained when several 
different breeds of dogs were used for the study. Dogs exhibit much 
greater variation in size and weight than cats, which poses a particular 
challenge for building a model that can predict the behavior of any dog 
breed. Some studies have started to work on model transferability but, as 

this field is just emerging, the studied number of breeds is still limited: 
two for Gerencsér et al. (2013) and Marcato et al. (2023) who directly 
tested for inter-subject accuracy, 20 for Kumpulainen et al. (2021) 
aiming for a diverse dataset. 

These studies dealing with dog behavior show the possibility to 
classify pets behavior with sensor data and give interesting suggestions 
on how to improve cats activity recognition. First, the use of an addi-
tional sensor to the accelerometer, such as a gyroscope, seems to emerge 
as a consensus to provide data to the AI model. Second, the type of 
models used to classify cats’ behavior is still very limited (RF, SOM, 
CDA, LDA) and future research might focus on testing other AI models 
such as CNN, DT, and others. Third, even though cat breeds do not vary 
in size and weight as extremely as dog breeds, cats have high inter- 
subject variability (Andrews et al., 2022, 2015; Gruen et al., 2017; 
Refinetti et al., 2016) and, therefore, a particular care should be taken in 
future research to build a model able to describe any cat’s behavior, 
either by providing a large pool of representative cats to train the model 
or by designing a specific inter-subject validation algorithm. Finally, 
particularly challenging behaviors to classify (either by their complexity 
or rarity) such as grooming or gait behaviors should be the center focus 
of future research as they represent an important portion of the cat’s 
daily life and could be a marker for its health and well-being. Improving 
cats’ behavior recognition with accelerometers in future studies would 
offer a valuable tool to help monitor cats’ health, early diagnose a va-
riety of diseases and better understand cats’ behavior changes. This 
would also facilitate the exploration of the influence of established 
factors like age, sex, and seasons on cats’ specific and daily activities. 

5. Conclusion and future directions 

The examination of the biological rhythms in cats has provided 
numerous insights into their behavior. When let free outside, cats will 
adapt to seasonal changes, temperature, human, prey and predator 
presence, as well as the topography of their habitat. Other parameters 
impact the level of activity of the cat, such as age, sex, and reproductive 
status. Despite their ability to adapt, cats retain their circadian rhythm 
and display the persistence of a two-peak daily activity, around dawn 
and dusk. For domestic cats, especially indoor ones, they are highly 
synchronized with their owners’ daily and weekly pattern of activity. 
This underlines the importance for owners to better understand their 
cats’ activity pattern to maintain them as healthy as possible. To do so, 
the use of bio-loggers such as accelerometers has proven very helpful to 
decipher cats’ lives. Studies using accelerometers have started to pro-
vide us information on the effect of different environments on the cat’s 
natural activity/inactivity cycles and has brought new knowledge on the 
activity patterns of owned and unowned cats. 

All these discoveries are facilitated by the raw data provided by ac-
celerometers. However, the full potential of this data remains untapped 
as studies often confine themselves to examining variations in activity 
levels or binary classifications of activity and inactivity. With the inte-
gration of Artificial Intelligence, there is an opportunity to maximize the 
utility of this data. A detailed report of cats’ activities could be provided 
by sensor data such as accelerometers, potentially associated with other 
sensors like gyroscopes, coupled with advanced AI algorithms. This 
detailed report could pave the way for new investigations into various 
diseases. For instance, since grooming is a recognized indicator of feline 
health, a detailed report on the fluctuation in the regularity of such 
activities could potentially detect emerging health issues before they 
become apparent to owners. 

Future studies should strive to enhance the accuracy of algorithms 
for recognizing cats’ activities, in order to provide owners, veterinarians 
and scientists with deeper insights into cats’ biological rhythms. 
Accelerometer data has been demonstrated to be a good proxy for cats’ 
activity (Lascelles et al., 2008). With the development of Artificial In-
telligence tools, a more detailed account of a cat’s daily life could be 
provided. Questions like when “does my cat wake up?”, “how often?”, or 
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“when does it fall back asleep?” could be answered with precision. This 
detailed level of information could be very helpful in diagnosing ill-
nesses that affect specific cats’ behaviors, and understanding the onset 
and progression of those illnesses in domestic cats by assessing the 
effectiveness of treatments and understanding how the environment, 
including human activity, impacts domestic cat’s behavior. Further-
more, research on cat diseases stands to benefit from such algorithms, 
providing an objective measure of cats’ behavior across various 
timescales. 

Once these advanced algorithms are developed and accessible, 
owners could monitor their cat’s daily life by using a bio-logger, gaining 
insights into fluctuations on a daily basis. This personalized approach is 
particularly crucial considering the high inter-subject variability among 
cats, since individualized analysis could be conducted. Finally, the 
development of such technology could bring forward the research on the 
cat’s biological rhythm by giving the possibility to study each behavior 
individually and decipher individual pattern variation according to the 
cat’s specificity and environment. 
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