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Abstract—Multi-array systems are widely used in
sonar and radar applications. They can improve com-
munication speeds, target discrimination, and imaging.
In the case of a multibeam sonar system that can
operate two receiving arrays, we derive new adaptive to
improve detection capabilities compared to traditional
sonar detection approaches. To do so, we more specifi-
cally consider correlated arrays, whose covariance ma-
trices are estimated up to scale factors, and an impul-
sive clutter. In a partially homogeneous environment,
the 2-step Generalized Likelihood ratio Test (GLRT)
and Rao approach lead to a generalization of the Adap-
tive Normalized Matched Filter (ANMF) test and an
equivalent numerically simpler detector with a well-
established texture Constant False Alarm Rate (CFAR)
behavior. Performances are discussed and illustrated
with theoretical examples, numerous simulations, and
insights into experimental data. Results show that
these detectors outperform their competitors and have
stronger robustness to environmental unknowns.

Index Terms—Sonar target detection, Adaptive Nor-
malized Matched Filter, Multiple-Input Multiple-
Output, Complex Elliptically Symmetric distributions,
Tyler’s M-estimator, robustness.

I. Introduction
A. Background and motivations

Forward-Looking sonars are solutions for perceiving the
underwater environment. In the context of a growing need
for decision-making autonomy and navigation safety, they
have become fundamental tools for understanding, antic-
ipating obstacles and potential dangers, analyzing and
identifying threats. They offer efficient results, allowing
detection, tracking, and classification of surface [1], water
column [2], or bottom targets [3], in civil [4] or military
applications such as mine warfare [5].

At the detection level, monovariate statistical tests un-
der the Gaussian or non Gaussian interference assumption,
defined a priori, remain the prevalent approaches [6]–[8].

Nevertheless, many works on multivariate statistics have
shown their great interest compared to algorithms de-
veloped from monovariate statistics in a large number
of application fields. Indeed, multivariate statistics allow
advanced modeling of propagation environments. By fol-
lowing these precepts, [9] gets a central detector with the
total unknown of the noise parameters, [10] first derives
a detector under the assumption of a known covariance
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then substitutes it, through a two-step procedure, by an
appropriate estimator, finally, [11] and [12] have shown
the relevance of subspace data models in consideration of
mismatched signals for which, as an example, the target
echo would not come precisely from the center of the main
beam. These seminal works are now references in remote
sensing, and ground or air surveillance but mainly for
radar systems.

Moreover, in the radar field, phenomenal progress has
also been made in recent decades, guided by increas-
ingly complex systems which required profound changes
in concepts and processing. This is especially the case
of Space-Time Adaptive Processing (STAP) for airborne
radars [13], which bring considerable improvements in the
ability to discriminate moving targets at very low speeds,
or Multiple-Input Multiple-Output (MIMO) systems that
advance detection performance [14], [15] and resolution
[16], [17] by exploiting spatial, frequency or waveform
diversities.

Although some preliminary work has emerged in recent
years [18]–[24], these methods still seem to be underused
in sonar systems.

This paper focuses on the adaptive detection of a point
target by a correlated orthogonal arrays sonar system.
Inspired by these previous works, we will first show that
multibeam systems are perfectly adapted to multivariate
formalism. We will then propose two new detectors fol-
lowing the GLRT, and Rao two-step approaches [25]–[27],
assuming heterogeneous or partially homogeneous clutter
[28], [29].

The performance in a Gaussian environment will first be
evaluated. We will show that considering a sonar system
with Mills [30] cross arrays leads to a better detectability
of targets by reducing the clutter ridge.

Nevertheless, complex multi-normality can sometimes
be a poor approximation of physics. This is the case for
fitting high-resolution clutter, impulsive noise, outliers,
and interference. The Complex Elliptic Symmetric (CES)
distributions [31] including the well-known compound
Gaussian subclass are then natural extensions allowing the
modeling of distributions with heavy or light tails in radar
[32]–[35] as in sonar [36]. Mixtures of Scaled Gaussian
(MSG) distributions [37] are derived and easily tractable
approaches.

In this context, particular covariance matrix estimators
are recommended for adaptive processing such as the
Tyler estimator [38] or Huber’s M-estimator [39]. Their
uses lead to very substantial performance gains in [40],
[41], and [35]. In our application, these considerations will
allow us to design a new covariance matrix estimator. The
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performance of the detectors in a non-Gaussian impulsive
environment can then be studied. On this occasion, we will
show on experimental data, this estimator’s interest in the
robustness to corruption of training data.

B. Paper organization
This paper is organized as follows: Section II presents a

dual array sonar system and the experimental acquisition
conditions on which this work is based. In Section III,
the signal model and detection problem are formalized.
According to the two-step GLRT and Rao test design,
coherent adaptive detectors are derived in Section IV.
The performances are evaluated, compared, and analyzed
in Sections V and VI. Conclusions are given in Section
VII. Proofs and complementary results are provided in
the Appendices.

Notations: Matrices are in bold and capital, vectors
in bold. Re(.) and Im(.) stand respectively for real and
imaginary part operators. For any matrix A or vector, AT

is the transpose of A and AH is the Hermitian transpose
of A. I is the identity matrix and CN (µ,Γ) is the circular
complex Normal distribution of mean µ and covariance
matrix Γ. ⊗ denotes the Kronecker product.

II. Seapix system
A. Generalities

The SEAPIX system is a three-dimensional multibeam
echosounder developed by the sonar systems division of
Exail (formerly iXblue) [42]. It is traditionally used by
fishing professionals as a tool to assist in the selection
of catches and the respect of quotas [43], by hydro-
acousticians for the monitoring of stocks and morpho-
logical studies of fish shoals [44], by hydrographers for
the establishment of bathymetric and sedimentary marine
charts [45], [46].

Two uniform linear arrays of 64 elements, arranged in
Mills cross, are entirely symmetric, reversible in transmis-
sion/reception, and electronically steerable. They generate
transverse (i.e. across-track) or longitudinal (along-track)
acoustic swaths of 120◦ by 1.8◦, tiltable on +/-60◦, pro-
viding a volumic coverage of the water column.

Fig. 1. Multiswath capabilities seen from a schematic representation
(left): transverse swath footprint is blue, a 60◦ steered transverse
swath is displayed in red, the longitudinal swath is green, and a 45◦

steered longitudinal swath is orange. Illustration from the operator
software (right): An across-track, an along-track, and a tilted along-
track swath are observed, as well as an aggregation of fishes and an
already constructed bathymetric map.

B. FLS experiment

The SEAPIX system is being experimented with a
Forward-Looking Sonar configuration for predictive target
detection and identification. In this context of use, the
active face is oriented in the “forward” direction rather
than toward the seabed.

In our study, the sensor is installed on the DriX Un-
crewed Surface Vehicle (USV), and inclined by 20◦ accord-
ing to the pitch angle to the sea surface (Figure 2 left). In
transmission, the vertical antenna (formerly longitudinal)
generates an enlarged beam of 9◦ in elevation by 120◦
in azimuth. A motion stabilized, and electronically tilted
firing angle allows the upper limit of the -3 dB transmit
beamwidth to graze the sea surface and the lower limit
to reach a 50 m depth bottom at about 300 m range.
In receive, the horizontal antenna (formerly transverse)
generates beams of 2◦ in azimuth by 120◦ in elevation and
the vertical antenna (which is used again) of 2◦ in elevation
by 120◦ in azimuth. A rigid sphere of 71 cm diameter
(Figure 2 right) is also immersed at 25 m depth in the
middle of the water column.

Fig. 2. Exail’s DriX USV (left): The cross-shaped linear arrays are
visible in the gondola. The real target in open water (right): a metallic
sphere of target strength TS = −15 dB.

So after each transmission of 20 ms Linear Frequency
Modulation pulses centered at 150 KHz with a 10 KHz
bandwidth and a Pulse Repetition Interval of 0.5 s, the
sensor signals from the two antennas are simultaneously
recorded, allowing an azimuth and elevation representa-
tion of the acoustic environment (Figure 3).

C. Pre-processing and data format

The signals from the 128 sensors provided by the sonar’s
embedded software are demodulated in baseband (In-
Phase and Quadrature components) and decimated at
43 KHz. During reception pre-processing, the digitized
samples are compensated for the time-varying gain, fil-
tered to the bandwidth of the waveform, pulse compressed,
then decimated again to bandwidth.

Finally, a ping dataset is a matrix of about 6000 range
bins from 15 m to 400 m, by 64 sensors, by two arrays.
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Fig. 3. Azimuth (top) and elevation (bottom) view from a single
ping, in 50 m depth in La Ciotat bay.

III. Detection Schemes
A. Data model for a single array

At each time, we, have acquired two digitalized synchro-
nized complex data vectors of m = 64 elements, called
“snapshots”, which can be written as (by omitting the
temporal parameterization):

xi =
[
xi,1 xi,2 · · · xi,m

]
T (1)

where i = 1, 2 is the array identifier (respectively horizon-
tal and vertical).

After the pre-processing steps, a point-like target ob-
served on the antenna i is simply:

xi = αi pi + zi (2)

where xi ∈ Cm is the received signal, αi is an unknown
complex target amplitude, pi ∈ Cm stands for the known
deterministic angular steering vector, zi ∈ Cm is a mixture
of scaled Gaussian (MSG) random vector admitting the
stochastic representation:

zi
d=
√
τi ci. (3)

The texture τi is an unknown positive deterministic
scalar parameter, presumably different for each range
bin (i.e. for all time samples). The speckle ci ∼
CN (0, σ2

iMii) ∈ Cm is a complex circular Gaussian
random vector whose covariance matrix Mii is known
up to a scaling factor σ2

i . The term speckle should be
understood in the sense of CES statistics rather than
as the result of a sum of contributions from reflections
in a resolution cell. This model is strongly related to
the class of compound Gaussian distributions [31], which
assumes a speckle-independent random texture with a
given density pτ . The MSG distribution is more robust
than the Gaussian one because the relative scaling between
samples allows flexibility in the presence of heterogeneities,
such as impulsive noise, outliers, and inconsistent data.

This model explicitly allows considering the power fluctu-
ation across range bins, especially for heavy-tailed clutter
distributions.

The detection problem is written as a binary hypothesis
test:{

H0 : xi = zi ; xi,k = zi,k k = 1 . . .K
H1 : xi = αi pi + zi ; xi,k = zi,k k = 1 . . .K.

(4)
In (4) it is assumed that K ≥ m independent and iden-

tically distributed (i.i.d.) signal-free secondary data xi,k ∈
Cm are available under both hypotheses for background
parameters estimation. We recall that zi,k

d= √τi,k ci,k,
ci,k ∼ CN (0,Mii).

Conditionally to the unknown deterministic texture, the
densities of xi under H0 and H1 are Gaussian:

pxi
(xi;H0) =

1
πmσ̃2m

i |Mii|
exp

(
−

xHi M−1
ii xi

σ̃2
i

)
,

pxi
(xi;H1) =

1
πmσ̃2m

i |Mii|
exp

(
−

(xi − αipi)HM−1
ii (xi − αipi)

σ̃2
i

)
,

(5)
where σ̃i = σi

√
τi.

B. Data model for the two arrays
If we consider the two antennas, this model can be

written more appropriately:{
H0 : x = z ; xk = zk k = 1 . . .K
H1 : x = P α + z ; xk = zk k = 1 . . .K (6)

where x =
[
x1
x2

]
∈ C2m is the concatenation of the two

received signals, α =
[
α1
α2

]
∈ C2 is the vector of the target

amplitudes and z =
[
z1
z2

]
∈ C2m is the additive clutter.

The matrix P =
[
p1 0
0 p2

]
∈ C2m×2 contains the steering

vectors.
{

xk =
[
x1,k
x2,k

]}
k∈[1,K]

∈ C2m for K ≥ 2m are

i.i.d. signal-free secondary data.
This formulation allows considering the correlation

between sensors of arrays. The covariance is M =[
M11 M12
M21 M22

]
, with Mii the block-covariance matrix of

array i, and Mij = MH
ji the cross-correlation block of

array i and j.
We further assume that the covariance is known, or esti-

mated, up to two scalars, possibly different on each array.
These scalars are conditioning the Mii block-covariance,
but also all the cross-correlations blocks associated with
the array i.

We can therefore write:

C̃ = Σ̃ M Σ̃ , (7)

with Σ̃ =
[
σ̃1 Im 0

0 σ̃2 Im

]
=
[
σ̃1 0
0 σ̃2

]
⊗ Im the unknown

diagonal matrix of scalars σi and τi. We remind that the
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σi parameter drives the partial homogeneity of the data
(i.e. the difference in scale factor between the covariance
matrices of the primary and secondary data) and τi drives
the non-Gaussianity of the data (i.e. the power variation
of the observations over time).

In this model, each array, although correlated, has a
possibly distinct texture and an unknown scaling factor
on the covariance matrix which may also be dissimilar.
It would therefore become entirely possible to model, as
an example, a first array whose observations would be
Gaussian (τ1 = 1) and homogeneous (σ1 = 1), and a
second array whose observations would be K -distributed
(for which τ2 is a realization of a Gamma distribution) and
non-homogeneous (σ2 6= 1).

The PDFs under each hypothesis can be rewritten as:

px(x;H0) =
1

π2m|C̃|
exp

(
−xHC̃−1x

)
,

px(x;H1) =
1

π2m|C̃|
exp

(
−(x−Pα)HC̃−1 (x−Pα)

)
.

(8)

IV. ROBUST DETECTORS
We discuss the derivation of detectors using the GLRT

and Rao procedures. Following a two-step approach, the
covariance matrix M will first be assumed known, and
then replaced by an appropriate estimator.

A. Detectors’ derivation with M known (step-1)
1) Generalized Likelihood Ratio Test: The Generalized

Likelihood Ratio Test (GLRT) design methodology pro-
poses to solve the detection problem from the ratio of
the probability densities function under H1 and H0, sub-
stituting the unknown parameters with their maximum
likelihood estimates:

LG(x) =
max

α
max

Σ̃
px

(
x; α, Σ̃, H1

)
max

Σ̃
px

(
x; Σ̃, H0

) . (9)

Proposition IV.1. The GLRT for the hypothesis test (6)
is given by:

LG(x) =
ˆ̃σ10

ˆ̃σ20

ˆ̃σ11
ˆ̃σ21

(10)

where(ˆ̃σ10
ˆ̃σ20

)2 =
Re
(
xH1 M−1

12 x2
)

m

+

√
xH1 M−1

11 x1

m

xH2 M−1
22 x2

m
,

and(ˆ̃σ11
ˆ̃σ21

)2 =
Re
[
xH1
(
M−1

12 −D−1
12
)
x2
]

m

+

√
xH1
(
M−1

11 −D−1
11
)
x1

m

xH2
(
M−1

22 −D−1
22
)
x2

m

with D−1 = M−1P
(
PHM−1P

)−1 PHM−1.

Proof. See Appendix A for a step-by-step derivation and
Appendix B for some interesting equivalences.

As xi =
√
τi ci under H0, it is easily shown that this

detector is texture independent (i.e. it has the texture-
CFAR property).

This detection test will be called M-NMF-G in the
following.

2) Rao test: The Rao test is obtained by exploiting the
asymptotic efficiency of the ML estimate and expanding
the likelihood ratio in the neighborhood of the estimated
parameters [47]. A traditional approach for complex un-
known parameters is to form a corresponding real-valued
parameter vector and then use the real Rao test [48], [49].
Specifically, rewriting the detection problem (6) as:{

H0 : ξR = 0, ξS
H1 : ξR 6= 0, ξS ,

(11)

where ξR =
[
Re (α)T Im (α)T

]T
is a 4 × 1 parameter

vector and ξS = [σ̃1 σ̃2]T is a 2 × 1 vector of nuisance
parameters, the Rao test for the problem (11) is:

LR(x) =
∂ ln px(x; ξR, ξS)

∂ξR

∣∣∣∣∣
T

ξR = ξ̂R0

ξS = ξ̂S0[
I−1(ξ̂R0 , ξ̂S0)

]
ξRξR

∂ ln px(x; ξR, ξS)
∂ξR

∣∣∣∣∣ξR = ξ̂R0

ξS = ξ̂S0

. (12)

The PDF px(x; ξR, ξS) is given in (8) and parametrized
by ξR and ξS . ξ̂R0 and ξ̂S0 are the ML estimates of ξR and
ξS under H0. I(ξR, ξS) is the Fisher Information Matrix
that can be partitioned as:

I(ξR, ξS) =
[
IξRξR

(ξR, ξS) IξRξS
(ξR, ξS)

IξSξR
(ξR, ξS) IξSξS

(ξR, ξS)

]
,

and we have:[
I−1(ξR, ξS)

]
ξRξR

=
(
IξRξR

(ξR, ξS)−

IξRξS
(ξR, ξS) I−1

ξSξS
(ξR, ξS) IξSξR

(ξR, ξS)
)−1

. (13)

The following proposition can be finally stated:

Proposition IV.2. The Rao test is given by:

LR(x) = 2 xH ˆ̃C
−1

0 P
(

PH ˆ̃C
−1

0 P
)−1

PH ˆ̃C
−1

0 x (14)

where ˆ̃C0 = ˆ̃Σ0 M ˆ̃Σ0 and ˆ̃Σ0 is defined in Appendix A.

Proof. See Appendix C.

As for the GLRT, (14) is texture-CFAR. This detector
will be referred to as M-NMF-R in the sequel.
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B. Covariance estimation and adaptive detectors (step-2)
In practice, the noise covariance matrix is unknown and

estimated using the K available i.i.d. signal-free secondary
data.

In Gaussian environment, in which PDFs are given by
(8) with σi = 1 and τi = 1, the MLE of M is the well-
known Sample Covariance Matrix (SCM):

M̂SCM =
1
K

K∑
k=1

xkxHk (15)

which is an unbiased and minimum variance estimator.
In the presence of outliers or a heavy-tailed distribution

(as modeled by a mixture of scaled Gaussian), this estima-
tor is no longer optimal or robust. This leads to a strong
performance degradation.

Proposition IV.3. In MSG environment the MLE of M
is given by:

M̂2TYL =
1
K

K∑
k=1

T̂−1
k xkxHk T̂−1

k , (16)

where T̂k =
[√

τ̂1k
0

0
√
τ̂2k

]
⊗Im, τ̂1k

= t1+

√
t1

t2
t12, τ̂2k

=

t2 +

√
t2

t1
t12 and t1 =

xH1,kM̂
−1
11 x1,k

m
, t2 =

xH2,kM̂
−1
22 x2,k

m
,

t12 =
Re
(
xH1,kM̂

−1
12 x2,k

)
m

.

Proof. The demonstration is provided in Appendix D.

A key point is that this estimator is independent of the
textures, i.e. the power variations, on each array. It can be
thought of as a multi-texture generalization of [38].

From a practical point of view M̂2TYL is the solution of
the recursive algorithm:

T̂(n)
k =

√τ̂ (n)
1k

0

0
√
τ̂

(n)
2k

⊗ Im , (17)

M̂(n)
2TYL =

1
K

K∑
k=1

(
T̂(n−1)
k

)−1
xkxHk

(
T̂(n−1)
k

)−1
, (18)

where n ∈ N is the iteration number, whatever the
initialization M̂(0)

2TYL.
The convergence of recursive equations (17) and (18) in

the estimation of M̂2TYL is illustrated in Figure 4 for 500
iterations and M̂(0)

2TYL = I2m.
The relative difference between estimates decreases with

the number of iterations. From iteration 60, the accuracy
becomes limited by the simulation environment. In prac-
tice, it is not necessary to go to this limit, and we notice
that from iteration 20 the relative deviation becomes lower
than 10−6.

At last, the adaptive versions of the tests (10) and (14)
will be simply obtained by replacing the covariance matrix
M by an appropriate estimate: (15) or (16) according to

100 101 102

iteration

10-15

10-10

10-5

100

Fig. 4. Relative deviations of the estimates as a function of the
number of iterations (M̂(0)

2TYL = I2m).

the environment. Those detectors will be referred as M-
ANMF-GSCM , M-ANMF-RSCM , M-ANMF-GTY L, and
M-ANMF-RTY L.

V. Numerical results on simulated data
A. Performance assessment

Two correlation coefficients ρ1 and ρ2 (0 < ρ1, ρ2 < 1),
are used in the construction of a speckle covariance matrix
model defined as:

[M]jl = β ρ
|j1−l1|
1 × ρ|j2−l2|

2 ,

where j, l ∈ [1, 2m] are sensor numbers of coordinates
(j1, j2) and (l1, l2) respectively and β is a scale factor.
Thus, denoting M =

[
M11 M12
M21 M22

]
, M11 and M22 are the

covariance matrices of array 1 and 2 and M12 = MH
21 is a

cross-correlation block. In the FLS context, the block M11
is weakly correlated and Toeplitz structured (close to the
identity matrix). M22 is also Toeplitz but more strongly
correlated (due to the wider transmission beam). The
cross-correlation blocks could be considered null under
the uncorrelated arrays assumption. In our case, these
will be different from zero because the arrays cross each
other in their central part. This results in the general
structure displayed in Figure 5, where we visually show the
adequacy of this model with the SCM covariance estimator
established on real data.

We choose σi = 1. τi = 1 for Gaussian clutter and
τi ∼ Gam(ν, 1/ν) with ν = 0.5 for impulsive non-Gaussian
K -distributed data (that is, the texture variables follow a
gamma distribution with shape parameter 0.5 and scale
parameter 2). The PFA-threshold curves are established
on the basis of 1000 realizations of random vectors. The de-
tection probabilities are statistically estimated by adding a
synthetic narrow band far field point target with identical
amplitudes on the arrays (α1 = α2). 10000 Monte Carlo
iterations are performed and 150 target amplitudes are
evaluated.
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Fig. 5. Sonar arrays (left): two uniform linear arrays intersect in
their centers. Empirical covariance matrix on real sonar data shown
in dB (center): The SCM is estimated on a homogeneous area
between 265 m and 328 m. Cross-correlation blocks are non-zero.
The covariance matrix model used for the data simulation is shown
in dB (right): β = 3 × 10−4, ρ1 = 0.4, ρ2 = 0.9.

B. Benchmark tests
The GLRT for a single array in a partially homogeneous

Gaussian environment when Mii is known is the Normal-
ized Matched Filter [11]:

NMFi(xi) =
|pHi M−1

ii xi|2(
pHi M−1

ii pi
) (

xHi M−1
ii xi

) . (19)

Adaptive versions are obtained by substituting the covari-
ance matrix by a suitable estimate [35] and will be referred
to as ANMFSCM i in Gaussian case, or ANMFTY Li for the
non-Gaussian case.

When the two arrays are considered, in the very favor-
able case of a Gaussian homogeneous environment where
the covariance matrix C is perfectly known, the GLRT is:

MIMO-MF(x) = xHC−1P
(
PHC−1P

)−1 PHC−1x .
(20)

This is the MIMO Optimum Gaussian Detector (R-MIMO
OGD) in [50], which is a multi-array generalization of the
Matched Filter test. One can note the very strong similar-
ity with (14). Its adaptive version is MIMO-AMFSCM . It
seems useful to specify that this detector is relevant only
in a Gaussian and perfectly homogeneous environment.
Especially, exactly as in the single-array case [31], the co-
variance estimator (16) is defined up to a constant scalar.
Detectors (10) and (14) are invariant when the covariance
is changed by a scale factor. This is a direct result of the
partial homogeneity assumption. This is not the case for
(20), thus the adaptive MIMO-AMFTY L version is not
relevant and will not be used in the following.

These tests will be considered as performance bounds
for the proposed detectors: M-NMF-G and M-NMF-R
when M is known, M-ANMF-GSCM , M-ANMF-RSCM ,
M-ANMF-GTY L and M-ANMF-RTY L otherwise.

C. Performance in Gaussian clutter
We have showed that all developed detectors are

texture-CFAR. Unfortunately, the matrix CFAR property
(distribution of the test keeps identical whatever the true
covariance matrix) is much more difficult to show. There-
fore, we propose to perform a study on simulated data to
check this matrix CFAR property. Figure 6 experimentally
demonstrates the CFAR behavior of the detectors with re-
spect to the covariance matrix in a Gaussian environment.

On the left side we represent the false alarm probability of
Rao’s detector (for known and estimated M) as a function
of the detection threshold. On the right, these curves are
plotted for the GLRT detector.
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Fig. 6. Pfa-threshold curves of the M-(A)NMF-RSCM and M-
(A)NMF-GSCM detectors in Gaussian environment. Left: the Rao
detector for known M (blue), for M estimated from 2×2m secondary
data (red), the OGD detector or Matched Filter (black). Right: The
GLRT detector for known M (blue), and estimated based on 2 × 2m
secondary data (red).

The deviation of the adaptive detectors comes from the
covariance estimation process: the red curve converges to
the blue one when the number of secondary data used for
the estimation of M increases.

The markers represent curves for different covariances.
In solid line β = 3 × 10−4, ρ1 = 0.4, ρ2 = 0.9. The cross
markers are established from β = 1, ρ1 = 0.95, ρ2 = 0.95.
Circular markers are for β = 100, ρ1 = 0.1, ρ2 = 0.1 and
null anti-diagonal blocks. For very distinct covariances, the
superposition of curves and markers underlines the matrix-
CFAR property of the detectors.

Figure 7 illustrates the value of merging arrays with
a cross-shaped geometry. The detection probabilities of
NMF 1, NMF 2, and M-NMF-R are plotted as a function
of azimuth (θ1) and elevation (θ2) angles at fixed SNR.

In the first angular dimension, which depends on the
array considered, each ULA has a zone of least detectabil-
ity close to 0◦. This is due to the correlated nature of
clutter. The decrease in detection probabilities from +/-
60◦ to 0◦ is a function of the correlation level (ρ1 or ρ2).
In the second dimension, the detection performances are
invariant. Thus, the poor detection performance near 0◦
propagates in a whole direction of space: “vertically” for
NMF 1 and “horizontally” for NMF 2. As an illustration,
the probability of detection of NMF 1 in θ1 = 0◦ whatever
θ2 is PD = 0.17, and the probability of detection of NMF
2 in θ2 = 0◦ for all θ1 is 0.03.

The M-NMF-R detector spatially minimizes this area of
least detectability. In this case, the probability of detection
at θ1 = 0◦ becomes greater than 0.8 for |θ2| > 10.5◦ and



7

Fig. 7. Probability of detection in Gaussian environment for known
covariance matrix M as a function of θ1 and θ2 (β = 3 × 10−4,
ρ1 = 0.4, ρ2 = 0.9, SNR = −12 dB and PFA = 10−2). Top left:
NMF 1. Top right: NMF 2. Bottom left: M-NMF-R.

greater than 0.5 for θ2 = 0◦ and |θ1| > 24◦. The Rigde
clutter is minimized.

The probability of detection (PD) is plotted as a func-
tion of the signal-to-noise ratio (SNR) in Figure 8 when
M is known.
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Fig. 8. Probability of detection in Gaussian environment for known
M (β = 3 × 10−4, ρ1 = 0.4, ρ2 = 0.9 and PFA = 10−2).

The MIMO-MF detector (shown in black), which re-
quires a perfect knowledge of the covariance, is logically
the most efficient. The single array NMF detectors (NMF 1
and 2, in purple and green) have comparable and the low-
est performance. The M-NMF-I detector (in blue) between
these curves assumes antenna independence. The proposed
M-NMF-G (red) and M-NMF-R (yellow) detectors are
both equivalent and superior to the M-NMF-I (0.2 dB at

PD = 0.8) and much more efficient than NMF 1 (2.5 dB)
and NMF 2 tests (2 dB). The difference with MIMO-
MF is slight, around 0.2 dB at PD = 0.8. Detection
performances by the Rao approach are slightly superior
to those obtained by the GLRT.

Figure 9 compares the performance of the tests in their
adaptive versions. The MIMO-MF curve is shown in black
dotted lines for illustrative purposes only (as it assumes
the covariance known). It can be seen that when the
SCM is evaluated on 2 × 2m = 256 secondary data, the
covariance estimation leads to a loss of 3 dB between
the performances of the MIMO-MF test and its adaptive
version MIMO-AMF, as expected from the Reed-Mallett-
Brennan’s rule [51].

-30 -25 -20 -15 -10 -5

SNR (in dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

MIMO MF

MIMO AMF
SCM

M-ANMF-G
SCM

M-ANMF-R
SCM

ANMF 1
SCM

ANMF 2
SCM

-15 -14 -13 -12 -11 -10

0.5

0.6

0.7

0.8

0.9

Fig. 9. Probability of detection in Gaussian environment for un-
known M (PFA = 10−2, SCMs are estimated based on 2 × 2m
secondary data).

In their adaptive versions, the proposed detectors offer
equivalent performances to the MIMO-AMF detectors
while offering additional robustness and flexibility condi-
tions on a possible lack of knowledge of the covariance (es-
timated to be within two scale factors). The gain compared
to single array detectors, although reduced compared to
the case where M is known, remains favorable and of the
order of 0.5 to 1 dB at PD = 0.8. In other words, for
an SNR of -11 dB, PD = 0.75 for ANMF 1 and 0.85 for
M-ANMF-GSCM (or M-ANMF-RSCM ).

D. Performance in impulsive non-Gaussian clutter
PFA-threshold curves in K -distributed environment are

displayed in Figure 10 in order to characterize the matrix-
CFAR behavior.

The detectors based on the new covariance matrix es-
timator systematically have lower detection thresholds to
those obtained with the SCM. While optimal for a Gaus-
sian clutter, the MIMO-MF detector is no longer suitable.
The marker overlays highlight the matrix-CFAR behavior
of the Rao detector in a non-Gaussian environment. The
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Fig. 10. Pfa-threshold curves in non-Gaussian K -distributed environ-
ment (ν = 0.5). Left: the Rao detector for known M (blue), for M
estimated with the SCM (red), M estimated with the new estimator
(yellow), the OGD detector or Matched Filter (black). Right: The
GLRT detector for known M (blue), M estimated based on the SCM
(red), based on Tyler’s extension (yellow).

case of the GLRT detector is much less obvious: at this
stage, it seems complicated to consider that the false alarm
curves are strictly independent of the covariance matrix.

The detection performances are compared in Figure 11.
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Fig. 11. Probability of detection in K -distributed environment for
unknown M (ν = 0.5, PFA = 10−2, 2 × 2m secondary data). In
solid lines, the detectors are built with the SCM estimate. In dotted
lines, the detectors are built with Tyler’s (single array) or the new
(dual arrays) estimator.

For the Rao and GLRT detectors, using the estimator
(16) in an impulsive non-Gaussian environment induces
a gain in detection performance of the order of 1.2 dB
at PD = 0.8 with the SCM. Compared to the best
competitors the improvement is 3 dB at PD = 0.8.

VI. Experimental data with real target
The actual sonar measurements were collected during

an acquisition campaign in May 2022 in La Ciotat bay,
Mediterranean Sea. The experimental conditions are de-
scribed in II-B, and the dataset of interest is shown in
Figure 3. Echoes from the true target (right in Figure 2 )
are observed at the 2040th range cell.

A. Illustrations of detection test outputs
Figure 12 provides examples of real data outputs from

conventional ANMF detectors based on a single array. The
real target is observed in range bin 2040 (143 m away from
the sonar), at angular bin θ1 = 26 (−12.4◦ azimuth), and
angular bin θ2 = 37 (8.6◦ elevation).

Fig. 12. ANMFSCM detector outputs on real sonar data. A target
is observed on array 1 (left) at coordinates (26, 2040) and on array
2 (right) at coordinates (37, 2040). The SCM is built from 256
secondary data.

Figure 13 shows the outputs of the Rao and GLRT
detectors applied simultaneously to both arrays at the
specific range bin 2040. These subfigures are not directly
comparable with each other or with Figure 12. The target
is perfectly located in azimuth and elevation.

Fig. 13. Outputs of the M-ANMF-RSCM (left) and M-ANMF-
GSCM (right) detectors. The real target is at coordinates (37, 26).
The SCM is built from 256 secondary data.

B. Robustness to training data corruption
Previously, we assumed the availability of a set of

K ≥ 2m i.i.d. secondary data, supposed free of signal
components and sharing statistic properties with the noise
in the cell under test. In practice, such data can be
obtained by processing samples in spatial proximity to the
range bin being evaluated, and the absence of signals is not
always verified or checkable. In particular, this assumption
is no longer valid if another target is present in these
secondary data.
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Figure 14 illustrates the robustness of the covariance
matrix estimators to data corruption. A synthetic target
is added 100 samples away from the real target and
contaminates the secondary dataset.

Fig. 14. Rao detector outputs based on the SCM (left) or Tyler
(right) with secondary data corruption. The covariance matrix esti-
mators are based on 256 secondary data.

On the left side, the output of M-ANMF-RSCM is
strongly degraded. The SCM is not robust to the pres-
ence of outliers. The target is hardly discernible, and the
maximum is wrongly located.

Under the same conditions, the response of the M-
ANMF-RTY L detector is visualized in the right part.
Although degraded compared to Figure 13, the behavior is
still largely usable. The target presence is easily identified,
and the new estimator (16) is much more resistant to data
contamination.

VII. Conclusions
In this paper, we considered the problem of adaptive

point target detection by a correlated multi-arrays Mills
Cross sonar system. Using a 2-step approach, we first
derived two new detectors that are robust to differences
in target amplitudes and to unknown scaling factors on
the covariances. Subsequently, we have introduced an in-
novative estimator of the covariance matrix suitable to any
non-Gaussian MSG environment. By these very general
assumptions, the framework of the study can therefore
concern systems with co-located or remote arrays.

Experimental results show that the detection perfor-
mance is up to 3 dB better than conventional approaches.
The detectors cover a larger detection area and are par-
ticularly robust to spikes, impulsive noise, and data con-
tamination.

Future work will focus on establishing a theoretical
demonstration of the matrix-CFAR behavior of these de-
tectors, and on generalizing solutions for different numbers
and geometries of arrays.
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Appendix A
GLRT’s derivation

For the following, and for ease of reading, the punctu-
ation mark “tilde” will be omitted. Thus Σ̃ and σ̃i will

simply be denoted as Σ and σi. The same is true for their
respective estimates.

A. Maximum Likelihood Estimator of Σ under H0

The MLE Σ̂0 is derived from the log-likelihood function:
ln px(x; Σ, H0) =
−mL ln π + 2 ln|Σ−1| − ln|M| −

(
xHΣ−1M−1Σ−1x

)
,

whose derivative relative to Σ−1 is:
∂ ln px(x; Σ, H0)

∂Σ−1 = 2
∂ ln|Σ−1|
∂Σ−1 −

∂xHΣ−1M−1Σ−1x
∂Σ−1 .

Knowing that ([52] (57))
∂ ln|Σ−1|
∂Σ−1 = Σ, and ([52] (82))

∂xHΣ−1M−1Σ−1x
∂Σ−1 = 2Re

(
M−1Σ−1x xH

)
we have:

∂ ln px(x; Σ, H0)
∂Σ−1 = 2Σ− 2Re

(
M−1Σ−1x xH

)
,

which leads to:

Σ̂0 = Re
(
M−1Σ̂

−1
0 x xH

)
. (21)

Expanding this matrix product with Σ̂0 =[
σ̂10Im 0

0 σ̂20Im

]
, we have:

σ̂10 Im = Re
(

M−1
11

x1 xH1
σ̂10

+ M−1
12

x2 xH1
σ̂20

)
,

and using the trace operator:

mσ̂10 = tr
[

Re
(

M−1
11

x1 xH1
σ̂10

+ M−1
12

x2 xH1
σ̂20

)]

=
xH1 M−1

11 x1

σ̂10

+ Re
(

xH1 M−1
12 x2

σ̂20

)
.

We then have:

σ̂10 =
1
σ̂10

xH1 M−1
11 x1

m
+

1
σ̂20

Re
(
xH1 M−1

12 x2
)

m
, (22)

and

σ̂20 =
1
σ̂10

Re
(
xH2 M−1

21 x1
)

m
+

1
σ̂20

xH2 M−1
22 x2

m
. (23)

Denoting a1 =
xH1 M−1

11 x1

m
, a12 =

Re
(
xH1 M−1

12 x2
)

m
,

a2 =
xH2 M−1

22 x2

m
and using (22) and (23):
σ̂2

10
= a1 +

σ̂10

σ̂20

a12

σ̂2
20

=
σ̂20

σ̂10

a12 + a2 ,

(24)

or: 
σ̂2

10
= a1 +

σ̂10

σ̂20

a12

σ̂2
10

=
σ̂10

σ̂20

a12 +
σ̂2

10

σ̂2
20

a2 .
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By equalization of right-hand terms:

a1 =
σ̂2

10

σ̂2
20

a2 ,

and keeping the positive solution:
σ̂10

σ̂20

=

√
a1

a2
, we obtain

from (24): 
σ̂2

10
= a1 +

√
a1

a2
a12

σ̂2
20

= a2 +

√
a2

a1
a12 ,

(25)

and
σ̂2

10
σ̂2

20
= (
√
a1 a2 + a12)2

. (26)

B. Maximum Likelihood Estimator of α under H1

The ML estimates α̂ = [α̂1 α̂2]T is found minimiz-
ing (x−Pα)H C−1 (x−Pα) with respect to α as ([53]
(15.50)):

α̂ =
(
PHC−1P

)−1 PHC−1x ,
=
(
PHΣ−1M−1Σ−1P

)−1 PHΣ−1M−1Σ−1x .
(27)

C. Maximum Likelihood Estimator of Σ under H1

The derivative of the log-likelihood function under H1
with respect to Σ−1 is:

∂ ln px(x; α̂,Σ, H1)
∂Σ−1 = 2

∂ ln|Σ−1|
∂Σ−1

−
∂ (x−Pα̂)H Σ−1M−1Σ−1 (x−Pα̂)

∂Σ−1 .

Furthermore:

(x−Pα̂)H Σ−1M−1Σ−1 (x−Pα̂)
= xHΣ−1M−1Σ−1x− α̂HPHΣ−1M−1Σ−1x
= xHΣ−1M−1Σ−1x− xHΣ−1M−1Σ−1P(

PHΣ−1M−1Σ−1P
)−1 PHΣ−1M−1Σ−1x .

If Z =
[
σ1 0
0 σ2

]
, we then notice that Σ−1P = PZ−1

and PHΣ−1 = Z−1PH . Thus:

xHΣ−1M−1Σ−1P
(
PHΣ−1M−1Σ−1P

)−1

PHΣ−1M−1Σ−1x

= xHΣ−1M−1PZ−1 (Z−1PHM−1PZ−1)−1

Z−1PHM−1Σ−1x

= xHΣ−1M−1P
(
PHM−1P

)−1 PHM−1Σ−1x .

By denoting D−1 = M−1P
(
PHM−1P

)−1 PHM−1:

(x−Pα̂)H Σ−1M−1Σ−1 (x−Pα̂) ,
= xHΣ−1M−1Σ−1x− xHΣ−1D−1Σ−1x .

So:

∂ (x−Pα̂)H Σ−1M−1Σ−1 (x−Pα̂)
∂Σ−1

= 2Re
[(

M−1 −D−1)Σ−1x xH
]
.

Finally:

∂ ln px(x; α̂,Σ, H1)
∂Σ−1 = 2Σ−2Re

[(
M−1 −D−1)Σ−1x xH

]
.

The minimum is given by:

Σ̂1 = Re
[(

M−1 −D−1) Σ̂
−1
1 x xH

]
. (28)

The rest is identical to paragraph A-A.

D. Expression of the GLRT

As xHΣ̂
−1
0 M−1Σ̂

−1
0 x is a real positive scalar, we have:

xHΣ̂
−1
0 M−1Σ̂

−1
0 x = Re

[
tr
(
Σ̂
−1
0 M−1Σ̂

−1
0 x xH

)]
,

= tr
[
Σ̂
−1
0 Re

(
M−1Σ̂

−1
0 x xH

)]
,

= mL .

So the two PDF take the form:

px(x; Σ̂0, H0) =
1

πmL|Σ̂0|2|M|
exp (−mL) ,

px(x; α̂, Σ̂1, H1) =
1

πmL|Σ̂1|2|M|
exp (−mL) .

The GLRT is expressed as:

LG(x) =

1
|Σ̂1|2

1
|Σ̂0|2

=
|Σ̂0|2

|Σ̂1|2
(29)

which can be thought of as a generalized variance ratio.

As Σ̂0 and Σ̂1 are diagonal matrices, |Σ̂0| =
2∏
i=1

σ̂mi0 and

|Σ̂1| =
2∏
i=1

σ̂mi1 which leads to (10).

Appendix B
Special cases of the GLRT detector

The detector (10) can be declined in already-known
cases.

A. Single array case

For a single array, we have σ̂2
10

=
xH1 M−1

11 x1

m
and σ̂2

11
=

1
m

(
xH1 M−1

11 x1 −
|pH1 M−1

11 x1|2

pH1 M−1
11 p1

)
.
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Replacing into the likelihood LG(x) =
|Σ̂0|2

|Σ̂1|2
=

σ̂2m
10

σ̂2m
11

leads to:

LG(x)1/m =
σ̂2

10

σ̂2
11

=

xH1 M−1
11 x1

m

1
m

(
xH1 M−1

11 x1 −
|pH1 M−1

11 x1|2

pH1 M−1
11 p1

)

=
(

1−
|pH1 M−1

11 x1|2(
pH1 M−1

11 p1
) (

xH1 M−1
11 x1

))−1

.

Defining lG(x) =
LG(x)1/m − 1
LG(x)1/m = 1 − LG(x)−1/m, we

obtain the well-known NMF detector [11]:

lG(x) =
|pH1 M−1

11 x1|2(
pH1 M−1

11 p1
) (

xH1 M−1
11 x1

) . (30)

B. Uncorrelated arrays case
When the two arrays are fully uncorre-

lated, we have σ̂2
i0 =

xHi M−1
ii xi

m
and σ̂2

i1 =
1
m

(
xHi M−1

ii xi −
|pHi M−1

ii xi|2

pHi M−1
ii pi

)
.

We obtain:

LG(x) =
|Σ̂0|2

|Σ̂1|2
=

2∏
i=1

σ̂2m
i0

2∏
i=1

σ̂2m
i1

=
2∏
i=1

[
σ̂2
i0

σ̂2
i1

]m
, (31)

=
2∏
i=1

[
1−

|pHi M−1
ii xi|2(

pHi M−1
ii pi

) (
xHi M−1

ii xi
)]−m . (32)

This corresponds to the MIMO ANMF detector on inde-
pendent arrays presented in [40].

C. Σ = σ I2m case
When Σ is the identity matrix up to a scalar factor,

σ1 = σ2, whose estimators are renamed σ̂0 under H0 and
σ̂1 under H1.

LG(x) =
|Σ̂0|2

|Σ̂1|2
, with Σ̂0 = σ̂0ImL and Σ̂1 = σ̂1ImL

=
σ̂2mL

0

σ̂2mL
1

.

From Σ̂0 = Re
(
M−1Σ̂

−1
0 x xH

)
, we have the following

relations:

tr
(
Σ̂0

)
= tr

[
Re
(
M−1Σ̂

−1
0 x xH

)]
,

σ̂0 tr (ImL) =
1
σ̂0

Re
[
tr
(
M−1x xH

)]
,

σ̂2
0 =

xHM−1x
mL

, as M−1 is positive definite .

Identically, we have:

σ̂2
1 =

(x−Pα)H M−1 (x−Pα)
mL

,

=
xHM−1x− xHM−1P

(
PHM−1P

)−1 PHM−1x
mL

.

LG(x)1/mL =
σ̂2

0
σ̂2

1
,

=
xHM−1x

xHM−1x− xHM−1P (PHM−1P)−1 PHM−1x

=
(

1−
xHM−1P

(
PHM−1P

)−1 PHM−1x
xHM−1x

)−1

.

By defining lG(x) =
LG(x)1/mL − 1
LG(x)1/mL or LG(x)1/mL =

[1− lG(x)]−1, we obtain an equivalent test:

lG(x) =
xHM−1P

(
PHM−1P

)−1 PHM−1x
xHM−1x , (33)

which corresponds to the subspace version of the ACE test
presented in [54].

Appendix C
Rao’s detector derivation

The partial derivative of the log-likelihood function is
defined as:

∂ ln px(x; ξR, ξS)
∂ξR

=


∂ ln px(x; ξR, ξS)

∂Re (α)
∂ ln px(x; ξR, ξS)

∂Im (α)

 .
From [53] (15.60), we obtain:

∂ ln px(x; ξR, ξS)
∂ξR

=
[

2 Re
[
PHC−1(ξS) (x−Pα)

]
2 Im

[
PHC−1(ξS) (x−Pα)

]] .
Thus:

∂ ln px(x; ξR, ξS)
∂ξR

∣∣∣∣∣ξR = 0
ξS = ξ̂S0

=

2 Re
[
PHC−1(ξ̂S0)x

]
2 Im

[
PHC−1(ξ̂S0)x

]
 .

(34)
Using [53] (15.52) IξSξR

(ξR, ξS) = IξRξS
(ξR, ξS) = 0,

thus
[
I−1(ξR, ξS)

]
ξRξR

= I−1
ξRξR

(ξR, ξS). The elements of
IξRξR

(ξR, ξS) are given by:[
IξRξR

(ξR, ξS)
]

11 = 2 PHC−1(ξS)P ,[
IξRξR

(ξR, ξS)
]

22 = 2 PHC−1(ξS)P ,[
IξRξR

(ξR, ξS)
]

12 = 2 Re
[
i PHC−1(ξS)P

]
= 0 ,[

IξRξR
(ξR, ξS)

]
21 = 2 Re

[
−i PHC−1(ξS)P

]
= 0 .

We have therefore:

IξRξR
(ξR, ξS) =

[
2 PHC−1(ξS)P 0

0 2 PHC−1(ξS)P

]
.

(35)
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Finally, by replacing (34) and (35) into (12) leads to:

LR(x) =[
2 Re

(
xHC−1(ξ̂S0)P

)
−2 Im

(
xHC−1(ξ̂S0)P

)]

(
PHC−1(ξ̂S0)P

)−1

2 0

0

(
PHC−1(ξ̂S0)P

)−1

2


2 Re

(
PHC−1(ξ̂S0)x

)
2 Im

(
PHC−1(ξ̂S0)x

)
 ,

which simplifies to:

LR(x) = 2
[
Re
(
xHC−1(ξ̂S0)P

)(
PHC−1(ξ̂S0)P

)−1

Re
(
PHC−1(ξ̂S0)x

)
− Im

(
xHC−1(ξ̂S0)P

)
(
PHC−1(ξ̂S0)P

)−1
Im
(
PHC−1(ξ̂S0)x

)]
.

Knowing that PHC−1(ξ̂S0)P is real and positive defi-
nite, it can be factorized and incorporated into the real
and imaginary parts. After some algebraic manipulation,
we obtain (14).

Appendix D
Maximum likelihood estimator of the

covariance matrix in Compound-Gaussian
clutter

The likelihood of {xk}k∈[1,K] under H0 can be rewritten
as:

px

(
{xk}k∈[1,K] ; M,Tk, H0

)
=

K∏
k=1

1
π2m|C̃|

exp
(
−xHk C̃−1xk

)
,

=
1

π2mK |M|K
K∏
k=1

1
|Tk|2

exp
(
−xHk T−1

k M−1T−1
k xk

)
,

where C̃ = TkMTk, and Tk =
[√

τ1k
0

0 √
τ2k

]
⊗ Im.

The log-likelihood can be written as:

ln px

(
{xk}k∈[1,K] ; M,Tk, H0

)
= −2mK ln π−K ln|M|

+ 2
K∑
k=1

ln|T−1
k | −

K∑
k=1

xHk T−1
k M−1T−1

k xk . (36)

According to [52] (82), the derivative with respect to
T−1
k is:

∂ ln px({xk}k∈[1,K] ; M,Tk, H0)
∂T−1

k

= 2 Tk

− 2 Re
(
M−1T−1

k xk xHk
)
. (37)

Following the same approach as in Appendix A, we
obtain the minimum for Tk for a fixed M:

T̂k = Re
(
M−1T̂−1

k xk xHk
)
, (38)

where
T̂k =

[√
τ̂1k

0
0

√
τ̂2k

]
⊗ Im , (39)

and

τ̂1k
= t1 +

√
t1

t2
t12 , (40)

τ̂2k
= t2 +

√
t2

t1
t12 , (41)

with

t1 =
1
m

xH1,kM−1
11 x1,k , (42)

t2 =
1
m

xH2,kM−1
22 x2,k , (43)

t12 =
1
m

Re
(
xH1,kM−1

12 x2,k
)
. (44)

Replacing Tk by T̂k in (36) and deriving with respect
to M−1 lead to:

∂ ln px({xk}k∈[1,K] ; M, T̂k, H0)
∂M−1 = KM

−
K∑
k=1

(
T̂−1
k xk

)(
T̂−1
k xk

)H
, (45)

and the minimum in M is given by:

M̂ =
1
K

K∑
k=1

(
T̂−1
k xk

)(
T̂−1
k xk

)H
, (46)

=
1
K

K∑
k=1

T̂−1
k xkxHk T̂−1

k . (47)

The estimator (47) is independent of the textures.
This could be shown by substituting xk =

[
x1,k
x2,k

]
by[√

τ1k
c1,k√

τ2k
c2,k

]
in (39) and (47).
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