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Motivated by the modeling of the spatial structure of the velocity field of three-dimensional
turbulent flows, and the phenomenology of cascade phenomena, a linear dynamics has been recently
proposed [1] able to generate high velocity gradients from a smooth-in-space forcing term. It is
based on a linear Partial Differential Equation (PDE) stirred by an additive random forcing term
which is delta-correlated in time. The underlying proposed deterministic mechanism corresponds to
a transport in Fourier space which aims at transferring energy injected at large scales towards small
scales. The key role of the random forcing is to realize these transfers in a statistically homogeneous
way. Whereas at finite times and positive viscosity the solutions are smooth, a loss of regularity is
observed for the statistically stationary state in the inviscid limit. We here present novel simulations,
based on finite volume methods in the Fourier domain and a splitting method in time, which are
more accurate than the pseudo-spectral simulations from [1]. We show that the novel algorithm is
able to reproduce accurately the expected local and statistical structure of the predicted solutions.
We conduct numerical simulations in one, two and three spatial dimensions, and we display the
solutions both in physical and Fourier spaces. We additionally display key statistical quantities
such as second-order structure functions and power spectral densities at various viscosities.

I. INTRODUCTION

A. The numerical investigation of a stochastic
transport equation in Fourier space

The purpose of this article is the numerical simula-
tion of a recently proposed model of fully developed fluid
turbulence [1]. This model of a new kind is based on a
temporal evolution, governed by a linear partial differ-
ential equation (PDE), randomly stirred by an additive
force which is smooth and homogeneous in space and
delta-correlated in time. Similar additive type of forcing
has been traditionally used for numerical investigations
of Navier-Stokes (NS) equations in order to observe the
turbulent behavior of the velocity field [2, 3]. As ex-
plained in the sequel, the formulation of the aforemen-
tioned model for the dynamics is especially convenient in
Fourier space. The proposed underlying mechanism, that
is able to transfer energy as a turbulent cascade would do,
is based on a transport equation in the Fourier domain,
and can be seen as a simple model of the generation of
small scales. These notions will be properly defined later
in the article.

Preliminary numerical simulations have been per-
formed in [1] using pseudo-spectral methods which rely
heavily on the Fast Fourier Transform (FFT). Unfortu-
nately, using necessarily Cartesian grids of these peri-
odic boxes, spurious anisotropies were observed. In this
work, we overcome this issue by applying a finite volume
method in the Fourier variables formulation, on a mesh

which preserves the spherical symmetry of the model,
which is able to accurately describe all the elements of
the dynamics (transport, damping and random forcing)
and which is well-defined even when the unknows need to
be understood as distributions instead of classical regular
functions.

The article is organized as follows. The rest of this sec-
tion is devoted to a short introduction to hydrodynamic
turbulence, the presentation of the model proposed in [1]
and the description of its analytical solution in a contin-
uous formulation. The second section is devoted to the
presentation of the finite-volume and splitting methods
that will be applied. The formulation of this method is
detailed in dimension d = 1 for pedagogical reasons, and
then special attention is paid to the more physical two
and three dimensional settings with a focus on the role
of polar and spherical symmetries of the finite volume
mesh. In addition, we present the splitting method for
the temporal discretization, where in particular a trans-
port problem is solved exactly. In the third section, we
report and discuss the numerical results. We draw con-
clusions and discuss possible perspectives in the last sec-
tion.

B. Fully developed hydrodynamic turbulence

The phenomenology of three-dimensional fluid turbu-
lence, although surprisingly unrelated to a wide extent to
the underlying equations of motion given by the Navier-
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Stokes equations, is now well accepted after decades of
experimental investigations and interpretations [2–4]. To
set ideas, consider the velocity vector field u(t, x) made
up of three-components u = (ui)i=1,2,3 at a given po-
sition x ∈ R3 and at time t ≥ 0. In this article, we
will focus on the simplistic situation referred to statisti-
cally stationary, homogeneous and isotropic turbulence,
meaning that the probability distribution of the solution
is invariant both by rotations and by spatial and tempo-
ral translations. It has been observed that this regime
is reached after a transient evolution for solutions of the
randomly forced Navier-Stokes equations

∂tu+ (u · ∇)u = −∇p+ ν∆u+ f, (1)

where u(t, x) is the velocity field of an incompressible, ν
denotes the viscosity, p(t, x) is the pressure, and f(t, x)
is the random forcing field. We consider a forcing local-

ized at large scales, i.e. only Fourier modes f̂(t, k) corre-
sponding to wave numbers k with norm |k| close to 1/L
are populated with energy [3]. The parameter L is known
as the integral length scale in turbulence literature. For
a general class of random forcing terms f(t, x) satisfy-
ing the condition above, it has been repeatedly observed
that the asymptotic variance of velocity fluctuations con-
verges to a positive non-trivial limit σ2 ∈ (0,∞) in the
inviscid regime ν → 0, namely

lim
ν→0

lim
t→∞

E|u(t, x)|2 =: σ2, (2)

where E stands for the mathematical expectation with
respect to the instances of the random forcing f . In (2),
the asymptotic velocity variance σ2 is a positive and fi-
nite number, which depends, for instance, in an intricate
way, on the boundary conditions, if any, and on the de-
tails of the forcing field f . Moreover, the velocity variance
(2) is independent on the position x as a consequence of
the observed statistical homogeneity (i.e. invariance by
translations of the underlying statistical laws). Thus,
in order to reach (2), turbulent fluids have to generate
a mechanism which is able to dissipate in a very effi-
cient way the energy that is injected into the system in
a statistically stationary way such that velocity fluctua-
tions get independent of viscosity, or equivalently as the
Reynolds number Re ≡ σL/ν tends to infinity. This
dissipation mechanism requires an energy transfer from
large to small scales. As a result, the velocity field needs
to generate small scale structures and has a rough be-
havior, which can be described in several ways. In the
spatial domain, this means that the solution u(t, x) is
only Hölder continuous with respect to x. In the Fourier
domain, roughness can be described by the behavior of
the power spectral density E(t, k) (PSD), which is de-
fined as the Fourier transform of the velocity correlation
function, i.e.

E(t, k) =

ˆ
x∈R3

e−2iπk·xE [u(t, 0) · u(t, x)] dx. (3)

The power-law decay of the PSD for large |k|

lim
ν→0

lim
t→∞

E(t, k) ∝
|k|→∞

|k|−(2H+d), (4)

where d is the spatial dimension and H is the Hölder reg-
ularity exponent, is expected to hold for a general class of
hydrodynamic turbulence models. For three-dimensional
fully developed turbulence, with d = 3, Kolmogorov pre-
dicted that H ≈ 1/3 by dimensional arguments [2, 5].
Note that the PSD depends on the norm |k| of k only,
due to the isotropy of the model. As a result, averag-
ing over the angle variable and weighting by the surface
4π|k|2 of the shell of radius |k|, the power-law decay de-
picted in (4) leads to the famous |k|−5/3-law of fully de-
veloped fluid turbulence. Even if the Fourier support
of the forcing field f entering in (1) is limited to low
wave numbers, asymptotically in the large time regime
the Fourier transform û of the velocity field u has a full
support. To obtain this behavior and in particular the
power-law decay of the PSD, the nonlinear Navier-Stokes
dynamics has somehow transferred energy from the large
scales towards small ones. This transport through scales
is referred to the cascade phenomenon.

The decay of the amplitude of the Fourier modes in
the right-hand side of (4) is typical of rough, non differ-
entiable fields. However, at low wave numbers |k| ≪ 1,
the spectral energy is expected to remain finite, ensur-
ing in particular a finite velocity correlation length in
the physical space, which corresponds to, up to a vis-
cous independent multiplicative factor, the typical length
scale L of the random force. Accordingly, the functional
form of the power spectral density is integrable over k in
any space dimension d when 0 < H < 1, ensuring a fi-
nite variance of velocity fluctuations in physical space, in
a consistent manner as required by the phenomenology
of turbulence (2). Hölder continuous but not differen-
tiable random fields have a long history in the proba-
bilistic modeling of turbulence [6–12]. Indeed, fractional
Gaussian fields are able to reproduce the second-order
statistics of turbulent fluids. Let the velocity increment
over a given vector ℓ ∈ Rd be defined as

δℓu(t, x) = u(t, x+ ℓ)− u(t, x), (5)

and refer to its variance as the second-order structure
function in the language of the phenomenology of turbu-
lence. As suggested by many studies, the second-order
structure function behaves at small scales as

lim
ν→0

lim
t→∞

E
[
|δℓu(t, x)|2

]
∝

|ℓ|→0
|ℓ|2H , (6)

which is consistent with (4). The power-law behavior
of the second-order structure function when |ℓ| → 0 is
known as the 2/3-law of turbulence [2] for H = 1/3.
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C. A linear model of the cascade phenomenon

1. Presentation of the model

To the best of our knowledge, the cascade phenomenon
described above, i.e. the transfer of energy from the
large scales towards smaller ones, has not been rigorously
established for solutions of the randomly forced Navier-
Stokes equations (1). In particular, the property (2) that
the variance of velocity fluctuations is asymptotically in-
dependent of viscosity ν in the fully developed turbulent
regime (i.e. when the Reynolds number goes to infinity)
and the Kolmogorov power-law (4) remain unexplained
from first principles (1). Nonetheless, very clear illustra-
tions of this energy cascade phenomenon can be derived
in a rigorous way assuming the finiteness of the velocity
variance (2), and more generally assuming the existence
of a statistically stationary homogeneous and isotropic
turbulent regime. Early formulated in terms of Onsager’s
conjecture [13], and known in the turbulence literature in
an averaged sense using the Kármán-Howarth equation
and the 4/5-law [2], several mathematical developments
and arguments have been proposed [14–17], see for in-
stance the review articles [18, 19]. Let us also mention
that several of the aforementioned properties of fluid tur-
bulence, in particular the independence of velocity vari-
ance on viscosity (2), can be reproduced by the Burgers
equation [20–22], without developing a Kolmogorov spec-
trum (4). However, those illustrations focus on higher-
order statistical quantities instead of the second-order
ones like the variance (2), the correlation function (3)
and the second-order structure function (5). The pur-
pose of this article is to design a dedicated and effec-
tive numerical method to investigate the properties of a
model. This model is given by a linear stochastic par-
tial differential equation (SPDE), which is much simpler
than the randomly forced Navier-Stokes equations (1).
We will show that this model is able to reproduce the
fundamental second-order statistical behavior of turbu-
lence, described above: the property that asymptotically
the velocity variance is independent of viscosity (2), the
power-law decay of the PSD (4), and the power-law be-
havior of the second-order structure function (6). The
considered model is given by a linear evolution equation
driven by an additive Gaussian random forcing. There-
fore the solution is a centered Gaussian random field,
which is fully caracterized by studying second-order sta-
tistical quantities. Reproducing different scaling proper-
ties for higher-order statistical quantities is not possible
for the model considered in this work.

In the two recent articles [12, 23], it has been proposed
to model the energy cascade phenomenon via a transport
equation in Fourier space. In particular, the authors have
been able to design a SPDE for a scalar velocity field, in
one-space dimension (d = 1). In the simplest situation
where only a linear evolution is considered, the resulting
velocity field is a Gaussian function when the random
forcing is also assumed to be Gaussian, and shares many

properties with those observed in fully developed tur-
bulence, see (2), (4) and (6). Unfortunately in [12, 23],
the velocity u(t, x) and forcing f(t, x) fields take complex
values, and furthermore, extensions to higher spatial di-
mensions, in particular to d = 3, are neither obvious nor
natural. In the recent article [1], the authors have fixed
those issues and have proposed a version which provides
real-valued velocity fields and in arbitrary spatial dimen-
sion d, which we introduce next.
The Fourier transform of a smooth function φ which

decays sufficiently fast at infinity is defined for all wave
vectors k ∈ Rd by

φ̂(k) = Fφ(k) =

ˆ
x∈Rd

e−2iπk·xφ(x)dx. (7)

This definition can be generalized to the class of Schwartz
tempered distributions [24]. Even if the same notation is
employed, recall that the Fourier transform of a tempered
distribution cannot be interpreted pointwise.
Let us consider an external force f which is a statisti-

cally homogeneous, isotropic and stationary real-valued
Gaussian field. Assume also that it is smooth in space
and delta-correlated in time, and that it is centered:
E[f(t, x)] = 0 for all t ≥ 0 and x ∈ Rd. The field f
is thus caracterized by the correlations

E [f(t, x)f(t′, x′)] = δ(t− t′)Cf (x− x′), (8)

where the notation δ(t) stands for the Dirac distribution
and the correlation function Cf is a smooth real-valued
function. The radial symmetry implies that the correla-
tion depends on |x − x′| only. Considering the Fourier

transform, one obtains a generalized random field f̂(t, k)

which is centered, i.e. one has E[f̂(t, k)] = 0 for all t ≥ 0
and k ∈ Rd, and with the correlation

E
[
f̂(t, k)f̂(t′, k′)

]
= δ(t− t′)δ(k − k′)Ĉf (k), (9)

where · denotes the complex conjugate, δ(k) stands for
Dirac distribution in dimension d (and is thus the prod-
uct of the one-dimensional Dirac distributions for each
component) and Ĉf (k) ≥ 0 for all wave numbers k.
Since the forcing f is a real-valued field, the Fourier

transform f̂ satisfies the Hermitian symmetry property

f̂(t, k) = f̂(t,−k).
As argued above, we consider a forcing term f , such

that its Fourier transform is compactly supported, away
from the origin: there exists κ > 0 and kf ≥ κ such that

|k| /∈ (κ, kf ) =⇒ Ĉf (k) = 0. (10)

Let c > 0 be an additional parameter. The stochastic
partial differential equation proposed in the recent article
[1] reads

∂tû+c

[
divk

(
k

|k|
û

)
+

H + 1
2

|k|
û

]
= −ν(2π|k|)2û+ f̂ ,

(11)
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for all t ≥ 0 and all k ∈ Rd such that |k| ≥ κ, where
divk :=

∑
i ∂ki

stands for the divergence operator with
respect to k. In addition, the boundary condition

û||k|=κ = 0 (12)

is imposed. Finally, for instance, the initial condition

û|t=0 = 0, (13)

is given.
On the right-hand side of (11), the term −ν(2π|k|)2û

is the Fourier formulation of the viscous dissipation term
ν∆u. Observe that the linear operator appearing on the
left-hand side of (11) can be decomposed as the sum of
two terms

divk

(
k

|k|
û

)
= ∂|k|û+

d− 1

|k|
û , ∂|k| :=

k

|k|
· ∇k. (14)

We identify the radial transport operator ∂|k| as a key
ingredient in the dynamics (11). Notice that the radial
transport equation ∂tû+c sign(k)∂kû = 0 obtained choos-
ing ν = 0, d = 1, H = −1/2 and f = 0 has the solution
û(t, k) = û(0, k−sign(k)t), meaning that the initial value
û(0, k) is transported to large k → ∞ (resp. k → −∞)
when k > 0 (resp. k < 0). The radial transport equation
is thus able to model a cascade phenomenon.

In this work we only consider the stochastic evolution
equation (11) considered in the Fourier domain. We men-
tion that it is possible to consider an equivalent formu-
lation in the physical space: the field u(t, x) is solution
of

∂tu+Au = ν∆u+ f, (15)

where the operator A is formally defined by

Au = cF−1

[
divk

(
k

|k|
û

)
+

H + 1
2

|k|
û

]
, (16)

with F−1 denoting the inverse Fourier transform. We re-
fer to the article [1] for the rigorous definitions and anal-
ysis. The operator A is the sum of a differential operator
of degree 0 plus a regularizing operator. Linear equations
with operators of degree 0 are also common whenever one
introduces a dispersive perturbation in a hyperbolic sys-
tem. In such cases, these operators of degree 0 are used
to model wave propagation under strong dispersive ef-
fects and they are responsible for memory effects. See
for example [25] in the context of wave-energies, [26] in
the context of electromagnetic waves propagating along
a coaxial cable and [27–32] in the context of internal or
inertial waves (see also subsequent mathematical devel-
opments in Refs. [33, 34]).

Let us now explain the role of the parameter κ > 0.
The linear operator appearing in the left-hand side of
the evolution equation (11), see also (14), is ill defined
for |k| = 0. To avoid this issue, like in the article [1], it
is imposed that û(t, k) = 0 if |k| ≤ κ. This is ensured by

applying the boundary conditions (12) and by assuming

also that f̂(t, k) = 0 for |k| ≤ κ. As explained above and
as required by the phenomenology of fluid turbulence, the
random forcing is imposed only at large scales, therefore

it is also assumed that f̂(t, k) ̸= 0 only in a shell of char-
acteristic width 1/L and centered on |k| ≈ 1/L, where L
has the physical meaning of the integral length scale. As
soon as 1/L is chosen larger than κ, the behavior of the
solution û(t, k) does not depend significantly on κ.
Finally, let us comment on the additional linear term

entering in the left-hand side of the evolution equation
(11), which is proportional to |k|−1. As it is argued in
the recent articles [1, 12], considering the equation

∂tv̂ + c∂|k|v̂ = ĝ (17)

the solution v(t, x) develops a highly singular nature in
space, when t → ∞, close to the regularity of a white
noise. In order to build rough fields which are Hölder
continuous with Hölder exponent H ∈ (0, 1), an addi-
tional (linear) operation is required, based on a Fourier
multiplier given by the power-law behavior |k|−(H+d/2).
Considering the variables û(t, k) = |k|−(H+d−1/2)v̂(t, k)

and f̂(t, k) = |k|−(H+d−1/2)ĝ(t, k), from (17) one obtains
the dynamics (11), see the details in [1, Section 3.2].

2. Formal solution and its asymptotic behavior

The solution of the evolution equation (11), with
boundary condition provided in (12) and with initial
value given by (13) can be expressed as follows: for all
t ≥ 0 and if |k| ≥ κ, one has

û(t, k) =

ˆ t

(t− |k|−κ
c )

+

e
4π2ν
3c ((|k|−c(t−s))3−|k|3)

(
|k| − c(t− s)

|k|

)H+d− 1
2

f̂

(
s, (|k| − c(t− s))

k

|k|

)
ds,

(18)

where τ+ = max(0, τ) denotes the positive part of a real
number τ , see [1, Theorem 3.7]. With the expression of
the solution given in (18), one gets following correlation
structure

E[û(t, k)û(t, k′)] =

δ(k − k′)|k|−(2H+d)e−
8π2ν
3c |k|3Fν(t, |k|), (19)

where for all t ≥ 0 and all k ∈ Rd one has

Fν(t, |k|) = (20)

0 for |k| ⩽ κ,

1

c

ˆ |k|

κ

e
8π2ν
3c s3s2H+dĈf (s)ds for κ < |k| ⩽ ct+ κ,

1

c

ˆ |k|

|k|−ct

e
8π2ν
3c s3s2H+dĈf (s)ds for |k| > ct+ κ,

(21)
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see [1, (3.13) and (3.14)].
Let us show that the properties (2) of the velocity vari-

ance, (4) of the power spectral density and (6) of the
second-order structure function are retrieved from (20).

First, observe that

F (|k|) := lim
ν→0

lim
t→∞

e−
8π2ν
3c |k|3Fν(t, |k|)

= 1|k|≥κ

ˆ |k|

κ

s2H+dĈf (s)ds, (22)

where 1S denotes the indicator function of a set S. In-
deed, for any fixed wave number k, with |k| ≥ κ, for
sufficiently large t one has |k| ⩽ ct + κ. Moreover, re-

call that the power spectral density Ĉf of the forcing is
compactly supported owing to (10), therefore the value
of F (|k|) = F (kf ) is independent of |k| ≥ kf for large
wave numbers. As a result, since the power-law function
|k|−(2H+d) is integrable at infinity in any dimension d ≥ 1
and for H ∈ (0, 1), one obtains

lim
ν→0

lim
t→∞

Eu2(t, x) =

ˆ
|k|−(2H+d)F (|k|)dk ∈ (0,∞),

(23)

see [1, Proposition 4.10].
Let us now study the asymptotic behavior of the PSD:

for all k with |k| ≥ κ one has

lim
ν→0

lim
t→∞

E(t, k) = |k|−(2H+d)F (|k|), (24)

where we recall that F is given by (22) and that F (|k|) is
independent of |k| for |k| ≥ kf , see [1, Proposition 4.10].
Finally, it remains to study the second-order structure

function. Owing to the power-law decay of the PSD (24),
one obtains

lim
ν→0

lim
t→∞

E
[
(δℓu(t, x))

2
]

= 2

ˆ
[1− cos (2πk · ℓ)] |k|−(2H+d)F (|k|)dk.

(25)

One obtains the following when |ℓ| → 0, see [1, Corol-
lary 4.12]:

lim
ν→0

lim
t→∞

E
[
(δℓu(t, x))

2
]

∼
|ℓ|→0

2cd|ℓ|2H
ˆ ∞

κ

s2H+dĈf (s)ds, (26)

which depends on the function Ĉf , and where cd is a
geometrical factor arising from the integration in the unit
sphere of dimension d− 1 of the scalar product of k with
ℓ that enters in (25). Its general expression in dimension
d is cumbersome, but reads explicitly in dimension d = 1
as

c1 = 2

ˆ ∞

ρ=0

[1− cos (2πρ)] ρ−(2H+1)dρ, (27)

in dimension d = 2 as

c2 =

ˆ ∞

ρ=0

ˆ 2π

θ=0

[1− cos (2πρ cos θ)] ρ−(2H+1)dρdθ, (28)

which could be further simplified using a Bessel function
of the first kind after integration over the angular vari-
able, and finally, in dimension d = 3, as

c3 = 2π

ˆ ∞

ρ=0

ˆ π

θ=0

[1− cos (2πρ cos θ)] ρ−(2H+1) sin θdρdθ,

(29)

which also can be simplified introducing a sine cardinal
after integration over θ.
Our model (11) is thus able to reproduce the second-

order statistical behavior of the solutions of the forced
Navier-Stokes equations, see (2), (4) and (6).
Notice that this is not the case for the stochastic heat

equation which can be seen as (11) with c = 0, i.e. with-
out the transport in k-space, and removing the boundary
condition (12). The solution of the stochastic heat equa-
tion is given by

ûc=0(t, k) =

ˆ t

0

e−8π2ν|k|2(t−s)f̂ (s, k) ds. (30)

and the correlation structure of the Fourier modes is
given by

E
[
ûc=0(t, k)ûc=0(t, k′)

]
= δ(k − k′)Ĉf (k)

1− e−8π2ν|k|2t

8π2ν|k|2
.

(31)

Then, in a similar way as we obtained the limiting be-
havior of the variance of the solution of our model (23),
the variance of the solution uc=0(t, x) in physical space
of the heat equation will behave at long time, in the limit
of vanishing small viscosities, as

lim
t→∞

E
[
u2
c=0(t, x)

]
∼

ν→0

1

ν

ˆ
Ĉf (k)

8π2|k|2
dk, (32)

in any dimension d. Note that the right-hand side of (32)

is positive and finite since the support of Ĉf is assumed
to be compact. Whereas it is expected that the kinetic
energy of turbulent fluids is independent of viscosity, the
one of the stochastic heat equation is inversely propor-
tional to ν. In other words, the stochastic heat equation
is poorly efficient at dissipating energy compared to the
Navier-Stokes equations and to our model (for c > 0).
This is due to the absence of the cascade phenomenon
for the stochastic heat equation.

II. NUMERICAL METHOD

This section is devoted to the description of the method
employed for the numerical simulation of the model de-
scribed above. That model can be studied in both physi-
cal (15) and Fourier (11) formulations. We choose to dis-
cretize the formulation (11) of the problem in the Fourier
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variables. This is motivated by the presence of the ad-
vection operator in the dynamics which plays a key role
in the cascade phenomenon. In addition all the other
terms in the dynamics can also be easily interpreted and
computed in the formulation (11). Finally, discretizing
the Fourier variable formulation is also natural since the
boundary conditions (12) are imposed in that version of
the problem.

It is worth mentioning that in this article we are mostly
interested in the statistical behavior of the model, in the
large time regime: it is therefore sufficient to propose
numerical algorithms which are efficient for the approxi-
mation in distribution of the stochastic processes (instead
of their trajectories).

The numerical simulation of the stochastic evolution
equation (11) requires to solve several non-trivial issues.
Indeed, our objective is to study the long-time behavior
of the system, in order to observe the power-law behav-
ior of the generated fractional random fields. We thus
need to ensure first that the numerical approximation
reaches a stationary state, which depends on the cho-
sen numerical scheme and on the numerical discretiza-
tion parameters, and second that this stationary state
is an accurate approximation of the stationary state of
the system (11). Even for deterministic dynamical sys-
tems, crude methods may fail and the design of effective
methods is a non trivial task. The addition of stochastic
external forcing naturally introduces additional difficul-
ties, see for instance [35]. In this work, the fact that
the external forcing is δ-correlated in time t and in the
Fourier variable k is an important challenge.

We first describe the discretization in the Fourier
domain using the finite volume method, and we then
describe the temporal discretization using a split-
ting method and exponential integrators for Ornstein–
Uhlenbeck dynamics. Finally, we will describe the fully-
discrete schemes. Note that in this article, we do not in-
vestigate the convergence properties of the scheme, this
question is fundamental but is left for future works.

In the sequel, we study Fourier transforms ĝ(k) of real-
valued random fields g(x). As a result, the Hermitian

symmetry property ĝ(k) = ĝ(−k) is satisfied, where ·
stands for the complex conjugate. The description of
the correlations of ĝ(k) requires in general to consider

both E[ĝ(k)ĝ(k′)] and E[ĝ(k)ĝ(k′)], for all k, k′. However
owing to the Hermitian symmetry property giving the
expression for E[ĝ(k)ĝ(k′)] for all k, k′ is sufficient.

A. Spatial discretization: finite volume method

1. General definition the finite volume method

Since the external stochastic forcing f̂(t, k) is δ-
correlated in (t, k), the solution û(t, k) of (11) cannot
be interpreted pointwise. However, for any bounded vol-
ume, i.e. any subset K ⊂ Dκ = {k ∈ Rd |k| ≥ κ} with
volume |K| > 0 in the Fourier domain, one can average

the forcing on K and set

f̂K(t) =

 
K
f̂ =

1

|K|

ˆ
K
f̂(t, k)dk.

With that definition, for each volume K, it is straight-

forward to check that
(
f̂K(t)

)
t≥0

is a complex centered

white noise process in time:

E[f̂K(t1)f̂K(t2)] = δ(t2 − t1)
1

|K|2

ˆ
K
Ĉf (k)dk,

E[f̂K(t1)f̂K(t2)] = δ(t2 − t1)
1

|K|2

ˆ
K∩(−K)

Ĉf (k)dk

where −K = {−k; k ∈ K} is the symmetric of K with

respect to the origin. Note that f−K(t) = fK(t). More
generally, if K1 and K2 are two volumes, then, owing
to (9), one has

E[f̂K1(t1)f̂K2(t2)] = δ(t2 − t1)
1

|K1||K2|

ˆ
K1∩K2

Ĉf (k)dk,

E[f̂K1
(t1)f̂K2

(t2)] = δ(t2 − t1)
1

|K1||K2|

ˆ
K1∩(−K2)

Ĉf (k)dk.

Moreover, if K1 ∩ K2 = ∅ and if K1 ∩ (−K2) = ∅, then(
f̂K1

(t)
)
t≥0

and
(
f̂K2

(t)
)
t≥0

are independent complex

white noise processes.
The observation above suggests to also average the so-

lution over volumes: for any volume K consider

ûK(t) =

 
K
û =

1

|K|

ˆ
K
û(t, k)dk, (33)

where û(t, k) denotes the solution of (11). The finite vol-
ume method consists in introducing a countable locally
finite decomposition of the domain Dκ into volumes K,
and to propose an evolution equation for ûK(t).
Let us first observe that integrating the evolution equa-

tion (11) over an arbitrary volume K shows that ûK(t) is
the solution to the following equation:

∂tûK + c

 
K
divk

(
k

|k|
û

)
+ c

 
K

(H + 1
2 )

|k|
û

= −ν

 
K
(2π|k|)2û+ f̂K.

(34)

Using the Stokes formula, the second term of the left-
hand side of (34) is written as

 
K
divk

(
k

|k|
û

)
=

1

|K|

ˆ
∂K

k · n
|k|

û(t, k)dk, (35)

where ∂K denotes the boundary of K and n denotes the
outward unit normal vector at k ∈ ∂K.

2. Finite volume meshes with radial symmetry

Let us now choose the form and shape of the finite
volume K which should be especially well adapted to the
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symmetry of our problem. In particular, we would like
to simplify, without making any approximation, the aver-
age over K of the divergence term in the right-hand side
of (35). To do so, it is convenient to use the spherical co-
ordinate system. Recall that any k ∈ Rd such that k ̸= 0
can be uniquely written as k = |k|θ with θ ∈ Sd−1, where
Sd−1 = {k ∈ Rd; |k| = 1} is the unit sphere of dimension
d, see below for some details in dimensions d = 1, 2, 3.

Using spherical coordinates, we now consider volumes
K of the type

K = {k = |k|θ; ρ− ≤ |k| ≤ ρ+, θ ∈ Θ}, (36)

where ρ− ≤ ρ+ are two positive real numbers, and Θ is a
subset of the unit sphere Sd−1. For any volume K given
by (36), the boundary ∂K is decomposed into three parts

∂+K = {k = |k|θ; |k| = ρ+, θ ∈ Θ}
∂−K = {k = |k|θ; |k| = ρ−, θ ∈ Θ}
∂θK = {k = |k|θ; ρ− < |k| < ρ+, θ ∈ ∂Θ}

where ∂Θ denotes the boundary of the set Θ. The bound-
ary integral in the right-hand side of (35) obtained by the
application of the Stokes formula above can then be sim-
plified:

1

|K|

ˆ
∂K

k · n
|k|

û(t, k)dk = F+ + F−,

where only the radial fluxes F±

F± =
1

|K|

ˆ
∂±K

k · n
|k|

û(t, k)dk =
±1

|K|

ˆ
∂±K

û(t, k)dk,

(37)
accross ∂±K contribute, whereas the flux Fθ across the
transverse boundary ∂θK vanishes, i.e.

Fθ =

ˆ
∂θK

k · n
|k|

û(t, k)dk = 0, (38)

since k · n = 0 vanishes for k ∈ ∂θK. See Fig. (1)(b)
for an illustration. Therefore choosing the volumes K of
the type considered above is natural: they are adapted to
the radial symmetries of the operators and of the forcing.
Moreover, this choice is adapted to describe the advection
behavior in the radial variable |k|, which is exhibited in
the identity (14).

It is worth mentioning that all the calculations per-
formed so far are exact, in other words no approximation
procedure has been introduced yet. To proceed further,
let us describe more precisely the finite volume mesh that
we will consider. Let

(
Θa

)
a∈A denote a finite volume de-

composition of the sphere Sd−1 where A is a finite set and
assume that the volume of |Θa| does not depend on a. In
addition, in order to preserve the Hermitian symmetry
of the random fields in the k variable the finite volume
mesh also needs to satisfy some symmetry property. In-
stead of describing this in arbitrary dimension d, we give
details about the cases d = 1, 2, 3 below.

3. Discretization of the unit sphere in dimensions
d = 1, 2, 3

Let us make the description of the volumes Θa in the
unit sphere more precise in dimension d = 1, 2, 3.
In dimension d = 1, any k ̸= 0 can be written as

k = sign(k)|k|, thus one can consider A = {±1}, and
the volumes Θ+ = {1} and Θ− = {−1} are symmetric
with respect to 0. In practice owing to the Hermitian
symmetry property it is sufficient to deal with Θ+.
In dimension d = 2, one has the polar decomposition

k = |k|(cosϑ, sinϑ) with angle ϑ ∈ [0, 2π] for any k ̸= 0.
Let ∆ϑ = π/Nϑ for some integer Nϑ, then one can con-
sider A = {0, . . . , 2Nϑ−1}, and for all a ∈ A, one can set
Θa = {(cosϑ, sinϑ); a∆ϑ ≤ ϑ ≤ (a + 1)∆ϑ}. Observe
that one has −(cos(ϑ), sin(ϑ)) = (cos(ϑ+π), sin(ϑ+π)),
therefore for any a ∈ {0, . . . , Nϑ−1}, the volumes Θa+Nϑ

and Θa are symmetric with respect to 0. In practice ow-
ing to the Hermitian symmetry property it is thus suffi-
cient to deal with Θa for a ∈ {0, . . . , Nϑ − 1}.
In dimension d = 3, one has the spherical decompo-

sition k = |k|(cosϑ, sinϑ cosφ, sinϑ sinφ) with angles
(ϑ, φ) ∈ [0, π] × [0, 2π], for any k ̸= 0. Note that one
has −(cosϑ, sinϑ cosφ, sinϑ sinφ) = (cos(π−ϑ), sin(π−
ϑ) cos(φ+π), sin(π−ϑ) sin(φ+π)). Given ∆ϑ = π/(Nϑ)
and ∆φ = π/Nφ, with integers Nϑ and Nφ, one can
consider A = {(aϑ, aφ); 0 ≤ aϑ ≤ Nϑ − 1, 0 ≤
aφ ≤ 2Nφ − 1}, and for all a = (aϑ, aφ) ∈ A one
can set Θa = {(cosϑ, sinϑ cosφ, sinϑ sinφ); aϑ∆ϑ ≤
ϑ ≤ (aϑ + 1)∆ϑ, aφ∆φ ≤ φ ≤ (aφ + 1)∆φ}. The
volumes Θ(Nϑ−1−aϑ,aφ+Nφ) and Θa are symmetric with
respect to 0. In practice owing to the Hermitian sym-
metry property it is thus sufficient to deal with Θa for
a ∈ {(aϑ, aφ); 0 ≤ aϑ ≤ Nϑ − 1, 0 ≤ aφ ≤ Nφ − 1}.
The description could be extended to higher dimen-

sions, the details are omitted since we only deal with
dimensions d = 1, 2, 3 in practice.

4. Discretization of the radial component

It remains to make the discretization of the radial
component |k| of the wave vector k more precise. Let(
ρi− 1

2

)
i≥1

be an increasing sequence of positive real num-

bers, and assume that ρ 1
2
= κ. Then for all i ≥ 1 and all

a ∈ A we set

Ki,a = {k = |k|θ; ρi− 1
2
≤ |k| ≤ ρi+ 1

2
, θ ∈ Θa}. (39)

See Fig. (1)(a) for a representation of the discretization
method using finite volumes Ki,a given by (39) in dimen-
sion d = 2.
For all i ≥ 1, define the radial step size

∆ρi = ρi+ 1
2
− ρi− 1

2
. (40)

As will be explained below, it is crucial that ∆ρi depends
on i ≥ 1. Therefore the mesh is not uniform in the ra-
dial component, as can be observed in Fig. (1)(a). The
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FIG. 1: (a) Representation of the discretization of the plane spanned by the wave vector k in dimension d = 2 using finite
volumes method, each cell corresponds to a finite volume Ki,a (Eq. 39) with radial step ∆ρi. (b) Representation of a unit cell
Ki,a with our notation. We superimpose the non-vanishing radial fluxes (Eq. 37).

values of ρi+ 1
2
and of ∆ρi are imposed below depending

on the time step size ∆t. In Fig. (1)(b), we represent a
volume Ki,a (39) with the corresponding non-vanishing
radial fluxes (37) and the vanishing transverse fluxes (38).

5. Approximation of the integrals

To define the finite volume semi-discrete scheme, it is
necessary to approximate the integrals appearing in (34)
for each volume K = Ki,a. First, we employ the upwind
scheme [36] to deal with the advection (recall that c >
0): we obtain the following approximations for the radial
fluxes (37), for i ≥ 1 and a ∈ A,

1

|Ki,a|

ˆ
∂+Ki,a

û(t, k)dk ≈ |∂+Ki,a|
|Ki,a|

ûi,a(t),

1

|Ki,a|

ˆ
∂−Ki,a

û(t, k)dk ≈ |∂−Ki,a|
|Ki,a|

ûi−1,a(t).

Note that the volumes of Ki,a and ∂±Ki,a are given by

|Ki,a| = |Θa|
ρd
i+ 1

2

− ρd
i− 1

2

d
,

|∂±Ki,a| = |Θa|ρd−1
i± 1

2

.

As a result, one obtains the following approximation for
the advection term (35) that enters in the evolution (34):

c

 
Ki,a

divk

(
k

|k|
û

)
≈ c

|∂+Ki,a|
|Ki,a|

ûi,a − c
|∂−Ki,a|
|Ki,a|

ûi−1,a

= c
dρd−1

i− 1
2

ρd
i+ 1

2

− ρd
i− 1

2

(
ûi,a − ûi−1,a

)
+ cd

ρd−1
i+ 1

2

− ρd−1
i− 1

2

ρd
i+ 1

2

− ρd
i− 1

2

ûi,a.

The last expression above can be written as

c
ûi,a − ûi−1,a

hi
+ diûi,a (41)

with auxiliary parameters hi > 0 and di > 0 defined for
all i ≥ 1 by

hi =
ρd
i+ 1

2

− ρd
i− 1

2

ρd−1
i− 1

2

,

di = cd
ρd−1
i+ 1

2

− ρd−1
i− 1

2

ρd
i+ 1

2

− ρd
i− 1

2

.

(42)

In the approximation (41) of the advection term

from (34), the first term c
ûi,a−ûi−1,a

hi
accounts for the ad-

vection in the radial coordinate whereas the second term
diûi,a can be interpreted as a numerical dissipation term
(di ≥ 0) due to the numerical approximation procedure.
This is not a physical dissipation but appears in the nu-
merical method due to considering curved mesh elements
Ki,a. Note that the values of hi and di depend on the
choice of the sequence

(
ρi− 1

2

)
i≥1

.
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For the other integral terms appearing in (34), a mid-
point approximation is applied: for all i ≥ 1, set

ρi =
ρi− 1

2
+ ρi+ 1

2

2
, (43)

then we consider the approximations 
Ki,a

(H + 1
2 )

|k|
û ≈

(H + 1
2 )

ρi
ûi,a

 
Ki,a

|k|2û ≈ ρ2i ûi,a.

6. Final spatial discretization method

Finally, combining the approximations above we ob-
tain the finite volume method: for t ≥ 0, i ≥ 1 and
a ∈ A, one has

∂tûi,a(t)+c
ûi,a(t)− ûi−1,a(t)

hi
+Diûi,a(t) = f̂i,a(t), (44)

where

f̂i,a(t) = f̂Ki,a
(t) =

 
Ki,a

f̂(t, k)dk

and with the auxiliary parameters Di defined for all i ≥ 1
by

Di = di +
(H + 1

2 )

ρi
+ ν(2πρi)

2.

The expression Diûi,a(t) in (44) can be interpreted as
a dissipation term, which combines several effects. Re-
call that di is not a physical dissipation term, it results
from the numerical approximation procedure. On the
contrary, the two other terms in the definition of Di have
a physical meaning as dissipation terms.

The finite volume method (44) needs to be supple-
mented with initial and boundary conditions

ûi,a(0) = 0, i ≥ 1, a ∈ A,

û0,a(t) = 0, t ≥ 0, a ∈ A.

The structure of the stochastic forcing
(
f̂i,a

)
i≥1,a∈A is

simple: these are independent δ-correlated temporal
white noise processes: one has

E[f̂i,a(t)f̂j,b(s)] = δ(t− s)δi,jδa,b
1

|Ki,a|2

ˆ
Ki,a

Ĉf (k)dk,

(45)
where we have used the notation δi,j for the Kronecker
delta function. In the finite volume method (44), the
advection behavior only takes place in the |k| vari-
able in (11) and this is represented in the numerical
method (44) by the index i, whereas a ∈ A can be con-
sidered as a parameter.

So far, we have only taken into account the spatial
discretization in the construction of the finite volume
method (44). It remains to deal with the temporal dis-
cretization.

B. Temporal discretization: splitting integrator

Let us denote by ∆t > 0 the time step. The objective is
to define a computable approximation denoted by ûn

i,a of
ûi,a(tn), at discrete times tn = n∆t for integers n ≥ 0. In
order to propose an approximation scheme for (44) which
is able to capture accurately the stationary state of the
exact solution, we cannot rely on the standard explicit
Euler scheme. We propose to apply a splitting method,
see for instance [37, 38]: this consists in decomposing the
evolution into subsystems which can be solved exactly or
approximately (starting from any initial condition) and
in combining the results at each time step to define a
numerical approximation of the full system.
The evolution equation for the finite volume

scheme (44) contains three terms: an advection term,
a dissipation term, and a stochastic forcing term. There
are several possible choices to combine them. The choice
we propose in this article is made to treat carefully all
the three contributions.
On the one hand, we consider the dissipation and

stochastic forcing terms together (and the advection term
is omitted): we obtain the subsystems

∂tû
sd
i,a(t) +Diû

sd
i,a(t) = f̂i,a(t), (46)

parameterized by i ≥ 1 and a ∈ A (with boundary con-
dition ûsd

0,a(t) = 0 for all t ≥ 0 and a ∈ A). Observe
that (46) is a system of independent Ornstein–Uhlenbeck
dynamics, independence being considered up to the Her-
mitian symmetry property. For the subsystem (46) we
propose an exponential integrator in time which is exact
in distribution.
On the other hand, we consider the advection term

only (and the dissipation and stochastic forcing terms
are omitted): we obtain the subsystem

∂tû
ad
i,a(t) + c

ûad
i,a(t)− ûad

i−1,a(t)

hi
= 0, (47)

for i ≥ 1, a ∈ A, with the boundary condition ûad
0,a(t) = 0.

Note that (47) is a deterministic system. For the sys-
tem (47) we propose an explicit Euler scheme for tem-
poral discretization, which turns out to represent exactly
the advection phenomenon in the fully-discrete setting.
Below we explain the resolution of the two subsys-

tems (46) and (47) and then how to combine the solutions
in a splitting scheme.

1. Integration of the Ornstein–Uhlenbeck dynamics (46)

Given the solution ûsd(tn) at time tn, the solution
of (46) at time tn+1 = tn + ∆t has the following ex-
pression:

ûsd
i,a(tn+1) = e−∆tDi ûsd

i,a(tn)+

ˆ tn+1

tn

e−(tn+1−s)Di f̂i,a(s)ds.
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To define an algorithm which allows to compute the value
of ûsd

i,a(tn+1) as a function of ûsd
i,a(tn), it is sufficient to

give the distribution of the random variables

ĝni,a =

ˆ tn+1

tn

e−(tn+1−s)Di f̂i,a(s)ds.

Indeed, as previously mentioned we are interested only
in the statistical properties of the spatio-temporal ran-
dom fields. Being able to sample ûsd

i,a(tn+1) from ûsd
i,a(tn)

and ĝni,a is a consequence of the Markov property for the
Ornstein–Uhlenbeck dynamics. Since the forcing is δ-
correlated in time and in the variables i and a, see (45),
the ĝni,a are independent centered Gaussian random vari-
ables: using (45) the correlation structure is given by

E
[
ĝni,aĝ

m
j,b

]
= δm,nδi,jδa,b

1− e−2∆tDi

2Di

1

|Ki,a|2

ˆ
Ki,a

Ĉf .

Since the volume |Ki,a| of Ki,a only depends on i and

does not depend on a, and since Ĉf only depends on the
radial component |k| of k, one has

E
[
ĝni,aĝ

m
j,b

]
= δm,nδi,jδa,bϱ

2
i

where

ϱi =

√
1− e−2∆tDi

2Di|Ki,a|2

ˆ
Ki,a

Ĉf .

In other words, one has the equality in distribution

ĝni,a = ϱiγ̂
n
i,a

where
(
γ̂n
i,a

)
i≥1,a∈A,n≥0

are independent standard com-

plex Gaussian random variables (independence being un-
derstood up to Hermitian symmetry):

E[γ̂n
i,aγ̂

m
j,b] = δm,nδi,jδa,b.

Setting ûn,sd
i,a = 0 and for all n ≥ 0

ûn+1,sd
i,a = e−∆tDi ûn,sd

i,a + ϱiγ̂
n
i,a, (48)

provides an algorithm which computes exactly in distri-
bution the solution of the Ornstein–Uhlenbeck subsys-
tem (46): one has the equality in distribution

ûn,sd
i,a =

(law)
ûsd
i,a(n∆t),

or all i ≥ 1, a ∈ A and n ≥ 0 and for any choice of the
time-step size ∆t.
Using the exact simulation in distribution (48) of the

Ornstein–Uhlenbeck dynamics (46) is elementary and al-
lows us to capture correctly the asymptotic behavior of
the model. This would fail if for instance the explicit
or the implicit Euler schemes were considered. We refer
for instance to [35] for a description of this issue when
discretizing the stochastic heat equation.

2. Integration of the discrete advection dynamics (47)

The deterministic system of equations (47) can be ap-
proximated using the explicit Euler scheme: for all n ≥ 0,
one obtains

ûn+1,ad
i,a − ûn,ad

i,a +
c∆t

hi

(
ûn,ad
i,a − ûn,ad

i−1,a

)
= 0, (49)

for all i ≥ 1 and a ∈ A. The fully-discrete scheme (49)
can be interpreted as the upwind scheme applied to
the auxiliary radial advection equation of a given field
v̂ad(t, |k|, θ) which would read

∂tv̂
ad(t, |k|, θ) + c∂|k|v̂

ad(t, |k|, θ) = 0 (50)

parametrized by θ, with time-step size ∆t and with a
mesh size hi which will be chosen to be non constant.
Usually, the stability of the scheme (49) above is en-

sured when the Courant–Friedrichs–Lewy (CFL) condi-
tion

c
∆t

hi
≤ 1, ∀ i ≥ 1,

is satisfied. In addition, numerical dissipation occurs if
the equality does not hold. In order to capture the long-
time behavior and the low regularity properties of the
random field, it is desirable to minimize numerical dissi-
pation. This leads us to impose the condition

c
∆t

hi
= 1, (51)

for all i ≥ 1. Observe that when the condition (51) is
satisfied, then the expression of the solution of the nu-
merical scheme (49) is simple: one has for all n ≥ 0 and
all i ≥ 1, a ∈ A

ûn+1,ad
i,a = ûn,ad

i−1,a, (52)

taking into account the boundary conditions ûn,ad
0,a = 0.

The algorithm to compute ûn+1,ad
i,a from ûn,ad

i,a is straight-

forward, and one can compute all values of ûn,ad
i,a once the

initial values û0,ad
i,a are imposed.

Notice that the explicit Euler scheme (49) does not pro-
vide the exact solution of the advection subsystem (47),
even if the condition (51) is satisfied. However, in fact
it provides the exact solution of the auxiliary advection
problem (50) at grid points of the spatio-temporal mesh.
The condition (51) implies that hi = c∆t does not

depend on i. Using the definition (42) of hi, one obtains
the recursion formula for ρi+ 1

2

ρdi+ 1
2
= ρdi− 1

2
+ hiρ

d−1
i− 1

2

= ρdi− 1
2

(
1 +

c∆t

ρi− 1
2

)
, (53)

for all i ≥ 1, where ρ 1
2
= κ. Therefore the mesh is not

uniform if d ≥ 2, i.e. ∆ρi depends on i ≥ 1. Choosing a
constant hi for numerical reasons thus imposes the geom-
etry of the mesh, which is not standard in the scientific
computing literature.
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3. Splitting integrator

We have now presented all the ingredients in order to
provide the definition of the fully-discrete scheme. We
consider the mesh given by (39) and (53), and we recall
that the time-step size is denoted by ∆t and that tn =
n∆t. Assume that the condition (51) is satisfied. The
initial value is given by

û0
i,a = 0, ∀ i ≥ 1, a ∈ A,

but one may also consider more general initial values. In
addition boundary conditions

ûn
0,a = 0

are also imposed for all n ≥ 1.
We consider a Lie–Trotter splitting scheme, which

combines two steps. Assume that the approximation(
ûn
i,a

)
i≥1,a∈A has been computed. Then ûn+1

i,a is given

by û
n+ 1

2
i,a = e−∆tDi ûn

i,a + ϱi γ̂
n
i,a

ûn+1
i,a = û

n+ 1
2

i−1,a,
(54)

for all i ≥ 1 and a ∈ A, using (48) in the first step
and (52) in the second step.

Note that at each iteration only linear operations on
the solutions and addition of independent Gaussian ran-
dom variables are performed. As a result, the numerical
scheme is a Markov and Gaussian process.

We recall that in this article we are not interested in
proving rigorous convergence results when the time-step
and the mesh sizes vanish. We investigate in the next
section the behavior of the scheme and we show that it
is able to capture the power-law behavior predicted by
theoretical analysis for the power spectral density (24)
and for the second order structure function (26)), as well
as the asymptotic behavior of the velocity variance (23).

III. PRESENTATION OF THE NUMERICAL
RESULTS

A. General comments regarding simulation in
dimensions d = 1, 2 and 3

In the sequel, recalling previous developments pre-
sented in Section II, we will be conducting numerical sim-
ulations of the evolution depicted in Eq. 34, for a finite
viscosity ν > 0, where the wave vectors k are discretized
according to the finite volume method in the spherical
symmetry pointed in Eq. 36. In all subsequent simula-
tions, we make the choice to take the mesh size hi = h
(Eq. 42) along the radial direction to be constant, i.e. in-
dependent of the index i, and will be expressed in units
of the cut-off parameter κ. Also, we will be working with
a unit Courant number (Eq. 51), such that the discrete

advection dynamics (Eq. 49) is solved in an exact fash-
ion according to the relation pointed in Eq. 52. As a
consequence, the time step ∆t is automatically set to the
value h/c following Eq. 51. The remaining linear part of
the dynamics, within the splitting approach described in
Section II B 1, will be eventually solved according to the
exponential scheme defined in Eq. 48. The full integra-
tion procedure is summarized by the two steps described
in (54). Hereafter, without loss of generality, all simula-
tions will be conducted with the value c = 1. Henceforth,
to simplify the notation, we will be using often the misuse
of language ûK(t) to refer to the fully discretized version
of the finite-volume Fourier mode ûn

i,a at time t = tn for
the cell K = Ki,a located at the radial coordinate ρi and
the angular coordinate a.
Notice that choosing the mesh size hi = h (Eq. 42)

to be constant, in units of the cut-off parameter κ, is
different from assuming a constant radial step size ∆ρi =
ρi+ 1

2
− ρi− 1

2
, as it is represented in Fig. (1)(a). It is

nonetheless true that the correspondance h = ∆ρi = ∆ρ
is exact in dimension d = 1, but it is no more the case
for d ≥ 2. Thus, to compute ρi under the midpoint
approximation (43), we use the recursion relation (53) to
compute ρi− 1

2
and ρi+ 1

2
, which yields ∆ρi.

Furthermore, the discretization procedure of the unit
sphere Sd−1 is detailed in Paragraph IIA 3, and finally,
we enforce the Hermitian symmetry of ûK(t) at each time
step while time evolving the relevant Fourier modes, and
completing if necessary the remaining modes located at
the opposite side of the origin.

B. Estimation of the relevant statistical quantities
taking time and volume averaging

We will first estimate the power spectral density E(t, k)
defined in (3), where the expectation is taken over the in-
stances of the random forcing. This is crucial for the sta-
tistical characterization of the regularity of the solution,
and it consists of several steps.
First of all, for a given value of the viscosity ν, the

solution reaches a statistically stationary state as proved
in Ref. [1], in which the variance of the solution be-
comes finite, and independent of viscosity for sufficiently
low viscosities (Eq. 23). Starting from a vanishing ini-
tial condition, the characteristic time scale at which the
system reaches this statistically stationary state should
exclusively depend of ν if all wave numbers were numer-
ically accessible. For a realistic simulation with a finite
number of accessible wave numbers, viscosity has to be
chosen such that spectral energy of the highest accessible
wave number is negligible, following an exponential de-
crease as expected from the formal solution written in Eq.
18. It is easy to get convinced that the underlying linear
transport mechanism that enters in the present dynam-
ics (Eq. 11) would transfer an initially injected amount
of energy at low wave numbers towards high wave num-
bers |k| in a time of order |k|/c, such that, at the very
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best, the system will take a characteristic time of order
T ⋆ = kmax/c to reach the end of the spectral domain,
where kmax = ρN , with N being the number of finite
volumes K along the radial direction. Chosen values of
viscosity will be such that energy at kmax is negligible,
i.e. exponentially small, compared to say energy at low
wave numbers, thus T ⋆ can be considered as an opti-
mistic upper-bound for the beginning of the statistically
stationary state.

Hereafter, estimation of various expectations entering
in forthcoming statistical quantities will be based on em-
pirical averages starting at time T ⋆, each instances in
these empirical averages will be taken at various instant
such that they can be considered, in good approximation,
as being statistically independent. The time lag between
these samples will be specified later when discussing our
numerical results in various space dimensions.

Because we only have access to the finite volume av-
eraged ûK(t) Fourier mode (33) of the velocity field, we
need to specify its relationship with the genuine PSD
E(t, k) defined in (3). We thus define the periodogram
EK(t) as the expectation of the square of the amplitude
of ûK(t), which is linked to the PSD E(t, k) as

EK(t) ≡ E |ûK(t)|2

=
1

|K|2

ˆ
K
E(t, k)dk, (55)

that follows from the expressions given in (3) and (33).
As a consequence of (55), using the exact expression of
E(t, k) obtained in (24) which eventually behaves pro-
portionally to a pure power-law |k|−(2H+d) as |k| → ∞
in the statistically stationary state and when ν → 0,
|K|EK is also expected to behave as a similar power-law

ρ
−(2H+d)
i if the finite volume K is far from the origin,

i.e. when ρi → ∞, with a remaining multiplicative fac-
tor that can be derived from (55). In the sequel, because
of the statistical isotropy in Fourier space, we will only
display angle-averaged versions EΘ

K of EK defined by

EΘ
K(t) =

1

Ωd

ˆ
Θ∈Sd−1

EK(t), (56)

where Ωd is the surface of the unit sphere in dimension
d, given explicitly by the formula

Ωd =
2πd/2

Γ(d/2)
, (57)

with Γ standing for the usual gamma function.

C. Back to physical space and averaging procedure
for the second-order structure function

Of tremendous importance from the physical point
of view is the evaluation of the velocity field in the
physical space as the inverse Fourier transform of the
finite volume Fourier modes ûK(t). Recall first that,

as a function of a continuous wave vector, the finite-
volume Fourier mode ûK(t) is a piecewise-constant func-
tion of the coarse-grained distributional Fourier trans-
form û(t, k) (33). Furthermore, in space-dimension d ≥
2, because the shape and volume of the finite volume K
depend on its location in the spectral domain, see for in-
stance the cartoon displayed in Fig. (1), we cannot define
the coarse-graining procedure over K as a convolution of
û(t, k) with a given windowing function. For these rea-
sons, the relationship between the inverse Fourier trans-
form of the piecewise-constant function ûK(t) and the
continuous field u(t, x) is not obvious.
Nonetheless, going back to the discrete formulation, we

propose to define the following field ũ∆(t, x), at a given
time t and for a given position x ∈ Rd,

ũ∆(t, x) =

N∑
n=1

∑
a∈A

e2iπx·kn ûKn,a
(t)ρd−1

n ∆ρn∆Θa, (58)

where A is the discretized subset of Sd−1, defined in para-
graph IIA 3, kn = ρnθ with θ ∈ Θ, the radial resolution
∆ρn, and the corresponding differential solid angle ∆Θa

at the angular coordinate a. The validity of that approx-
imation is a non-trivial question that we do not treat in
this work. Note that in dimension d ≥ 2, ρd−1

n goes to
infinity when n increases due to imposing the condition
(51) on hi, therefore the convergence when N → ∞ in
(58) needs to be considered with care.
Then, following a similar time averaging procedure as

for the estimation of the PSD that is described in the pre-
vious paragraph, we define the respective second-order
structure function as follows:〈

(δℓũ∆)
2
〉
≡

〈
(ũ∆(t, x+ ℓ)− ũ∆(t, x))

2
〉
, (59)

where the brackets ⟨·⟩ stand for the empirical average
of the expectation over time, as previously done for the
periodograms, but also over space, i.e. averaging over all
positions x at which the field ũ∆ (58) is computed. As we
will see, positions x will be distributed over a Cartesian
grid, using a uniform resolution ∆x, that will be chosen
in units of k−1

max in every direction, where kmax is the
largest accessible wave number.

D. Experiments and comments

1. One dimensional (d = 1) simulations

We conduct numerical simulations as described in
paragraph IIIA, and we begin performing these simu-
lations in space dimension d = 1. In Fig. (2)(a), we
display the absolute value of a snapshot of the volume-
averaged spectral field ûKn,a

(t) in the statistically sta-
tionary regime which is reached after a transient at time
t > T ⋆, where T ⋆ is defined and commented in paragraph
III B. Relevant additional parameters of the simulations
are provided in the caption of Fig. (2).
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FIG. 2: Solution to the dynamics in Fourier space and phys-
ical space in the statistically stationary regime. All simula-
tions are conducted with H = 1/3, c = 1, ∆ρ = h = κ = 2−3

and Ĉf (k) = 1κ ⩽ |k|⩽kf
(see (45)), with kf = 4κ. (a) Volume-

averaged Fourier mode amplitude |ûKn,a(t)| in the statisti-

cally stationary regime (i.e. for t > T ⋆), choosing ν = 10−9

and using N = 212 collocation points in the radial direction,
as a function of the radial coordinate ρi (43). (b), (c) Phys-
ical space representation of the solution in the statistically
stationary regime for ν = 10−5 and 10−9 using correspond-
ingly N = 27 and 212, at a given time in the statistically sta-
tionary regime, as a function of the non dimensional variable
xkf . The physical space representations are obtained using
the inversion formula (60) over |x|⩽Ltot/2, with the spatial
resolution ∆x = 1/kmax with kmax = κ+N∆ρ, and the total
length Ltot of the physical domain chosen to be Ltot = 1/∆ρ.

As we can see in Fig. (2)(a), at a given time in the
statistically stationary regime, the logarithmic represen-
tation of ûKn,a(t) displays a clear power-law decrease as a
function of the radial component when ρi remains in the
so-called inertial range. Moreover, we observe a rough be-
havior, as expected given the regularity of a white noise,
i.e. the independence of the instances as a function of
the radial coordinate.
In one spatial dimension d = 1, we propose the inver-

sion formula (58)

ũ∆(t, x) =

N∑
n=1

∑
m=±1

e2iπxmρn ûKn,m
(t)∆ρ, (60)

with ρn = n∆ρ and the Hermitian symmetry ûKn,−1
(t) =

ûKn,1(t) being understood for any integers 1⩽n⩽N .
In Figs. (2)(b) and 2(c), we display the profiles of

the inverse Fourier transform ũ∆(t, x) (60) as a function
of space x at two different viscosities. It is clear that,
as viscosity decreases by four orders of magnitude, ν =
10−5 in Fig. (2)(b) and ν = 10−9 in Fig. (2)(c), the
solution becomes rougher and rougher, i.e. it develops
smaller and smaller length scales, as it is expected from
the theoretical analysis. Also, we notice that the typical
correlation length of the profile is of order of k−1

f , as
predicted in the theoretical analysis.
Let us now focus on the estimated statistical quan-

tities that have been obtained following the procedure
described in paragraph (III B). Recall that in dimension
d = 1, averages in the statistically stationary range, are
obtained as empirical averages over time, every 10 time
units. In Fig. (3)(a), we display the periodogram EΘ

K
(56), based on the finite-volume Fourier mode ûKn,a

(t),
properly weighted by the volume of the unit cell |K| to
make it independent of the resolution ∆ρ, for decreas-
ing values of viscosities (provided in the caption). As we
can see, once averaged at various instants of time, which
corresponds to the average of the profile represented in
Fig. (2)(a) at a given viscosity, periodograms are smooth
functions of the radial component ρi, and show at higher
wave numbers than kf and smaller than the character-
istic dissipative ones a power-law behavior of exponent
−2H − 1. Recall that we have chosen here the particular
value H = 1/3, thus this power-law decrease, governed
by the exponent −2H − 1 = −5/3, corresponds to the
one suggested by the phenomenology of fluid turbulence.
As viscosity decreases, the inertial range gets larger and
larger, after which the power-law is replaced by an ex-
ponential decrease, as it is expected from the action of a
viscous Laplacian in the dynamics.

Let us next derive the precise power-laws that are ob-
served in Fig. (3)(a) in order to make our theoretical
analysis clear and to check the fine statistical proper-
ties of our numerical simulations. This will also allow
us to establish a link between the continuous and spec-
trally finite-volume approaches. We first note that the
asymptotic value of the function F (22) entering in the
expression of the power spectral density (24) can be easily
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FIG. 3: Numerical estimation of second-order statistical
quantities for the one dimensional d = 1 fields: (a) Peri-
odograms EΘ

K (56) as a function of the radial coordinate ρi
and (b) Second-order structure functions

〈
(δℓũ∆)2

〉
(59). In

both figures, the representation is made in a logarithmic fash-
ion, and the darker the curve, the lower the viscosity. These
quantities have been estimated while averaging over 103 in-
stances in the statistically stationary regime, every 10 time
units. All the simulations are conducted with the same pa-

rameters h, c, H, h = κ, kf and Ĉf (k) as they are given in
the caption of Fig. (2). Values of viscosity correspond to,
from lighter to darker, ν = 10−5, 10−6, 10−7, 10−8, 10−9, with
corresponding number of collocation points along the radial
directionN = 27, 28, 29, 210, 211. With dashed lines, we super-
impose the theoretical predictions of the power-law behaviors
in (a) based on (62) with the particular value d = 1, and in
(b) based on (26), with geometrical factor c1 (27).

computed when we take Ĉf (k) = 1κ ⩽ |k|⩽kf
(see (45)).

Indeed, in any spatial dimension d, the PSD (24) reads

lim
ν→0

lim
t→∞

E(t, k) =
1κ ⩽ |k|⩽kf

2H + d+ 1

[
|k| −

(
κ

|k|

)2H+d

κ

]

+
1|k|⩾kf

2H + d+ 1

[
k2H+d+1
f − κ2H+d+1

]
|k|−(2H+d).

(61)

Taking into account that the volume of the cell |Ki,a|
depends solely on the radial index i and is independent of
the angle coordinate a, the volume averaged periodogram

EΘ
K(t) (56) satisfies

lim
ν→0

lim
t→∞

EΘ
K(t)

∼
ρi→∞

∆ρi
|Ki,a|2

k2H+d+1
f − κ2H+d+1

2H + d+ 1
ρ
−(2H+1)
i .

(62)

We superimpose in Fig. (3)(a) with a dashed line the
expected asymptotic power-law provided in (62), and we
observe a perfect matching with the estimates obtained
based on our numerical simulations, without any fitting
procedure. Notice that, as a consequence of the averag-
ing procedure of the finite volume K, recalling that in
dimension d = 1 the volume |Ki,a| = ∆ρi = ∆ρ is con-
stant and independent of the index i, the periodogram
EK is expected to be also inversely proportional to the
radial discretization ∆ρ, as it is clarified in (62). The fact
that the periodogram diverges as the volume K shrinks
to 0, i.e. ∆ρ → 0, is reminiscent of the distributional
nature of the continuous solution (see in particular the
correlation structure of the continuous modes (19) that
are proportional to a Dirac function).
In a similar fashion to how the periodograms were ob-

tained, we estimate the second order structure function〈
(δℓũ∆(t, x))

2
〉
(59), where the expectation is estimated

using an empirical average over both time and space, by
summing over all computed positions x. Once again, our
estimates have been obtained in the statistically station-
ary range and results are expected to be independent of
time. We display the results of our simulations and av-
eraging procedure in Fig. (3)(b), as a function of the
scale |ℓ| and for various viscosities. At large length scales
|ℓ|⩾kf , i.e. above the correlation length scale of the ve-
locity profile ũ∆(t, x) (58) in the physical space, the sec-
ond order structure function (59) reaches a plateau that
coincides, in a good approximation, with 2σ2, where σ2 is
the variance of the continuous solution (23). Indeed, we
could compute in the present situation, with the same

Ĉf (k) as we already specified before, in the limit ∆ρ
much smaller that kf , that, in any spatial dimension d,

lim
ν→0

σ2 =
Ωd

2H(d+ 1)

(
kd+1
f − κd+1

)
, (63)

which is obtained as the integration over k ∈ Rd of
the PSD (61). Once non-dimensionalized by 2σ2, using
the formula provided in (63) with the particular value
d = 1 and the relevant values of the other parameters,
we can see from inspection of Fig. (3)(b) that second-
order structure functions reach a plateau of value unity.
A power-law behavior of exponent 2H follows at smaller
scales |ℓ|⩽k−1

f which remain larger than the dissipative
length scale, i.e. in the so-called inertial range of scales,
as expected from the asymptotic continuous prediction
given in (26). Furthermore, we once again observe a per-
fect match between theory and the results of our simula-
tions when including the multiplicative constant entering
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FIG. 4: Snapshot of the solution for the 2D dynamics, in
(a) Fourier and (b) physical spaces, at a time pertaining to
the statistically stationary regime. In both cases, we have
used the following parameters: ν = 10−5, N = 27, H = 1/3,

c = 1, h = 2−7, Nϑ = 29, κ = 1, and Ĉf (k) = 1κ ⩽ |k|⩽kf
(see

(45)), with kf = κ+3h. Notice that to get the inverse Fourier
transform ũ∆(t, x, y), represented in (b), based on the modes
ûK(t) displayed in (a), we have used the inversion formula
based on (64).

in this asymptotic power-law behavior, whose exact ex-
pression is also given in (26), using in particular the value
of the geometric factor c1 (27) predicted in this situation.
Finally, in the dissipative range, which is seen at smaller
and smaller length scales as the viscosity decreases, we
observe the trivial power-law of exponent 2, which is rem-
iniscent of a smooth behavior, due to the action of the
viscous Laplacian in the dynamics.

2. Two dimensional (d = 2) simulations

Let us now present the results of our simulations in
spatial dimension d = 2. In order to do so, we need to
discretize also the angle of the polar decomposition used
in our finite-volume approach, as detailed in paragraph
IIA 3. Once again, we propagate the solution in time ac-
cording to the splitting method (54) until time T ⋆, com-
mented in paragraph III B, which can be considered as
the beginning of the statistically stationary range.

In Fig. (4)(a), we display a logarithmic representation
of the finite volume Fourier modes ûK(t) in the spectral
plane, spanned by the wave vector k = (kx, ky), with
kx = ρi cosϑ and ky = ρi sinϑ. As we can observe, the
spectral repartition of energy is clearly isotropic, and it
is expected to be statistically invariant by rotation. Also,
we notice a rough behavior as a function of the location
of the finite volumes, as expected from the independence
of the modes, which yields homogeneity in space. This
is a clear progress with respect to former numerical ap-
proaches that were based on pseudo-spectral simulations,
presented in Ref. [1], where strong anisotropies were ob-
served mainly along the horizontal (ϑ = 0) and vertical
(ϑ = π/2) lines. This fully justifies our choice to develop
a finite volume approach, beyond the aforementioned the-
oretical arguments. As we will see later (see Fig. (5)),
the spectral energy will distribute according to a power-
law, and will be ultimately exponentially damped by the
action of viscosity.

To get a numerical representation of the counterpart
in the physical space of the finite-volume Fourier modes
represented in Fig. (4)(a), we propose the inversion for-
mula provided in (58), which reads explicitly in two-
dimensional space d = 2 as

ũ∆(t, x, y) =

N∑
n=1

2Nϑ−1∑
m=0

e2iπ(xρn cosϑm+yρn sinϑm)ûKn,m
(t)ρn∆ρ∆ϑ,

(64)

where ∆ϑ = π/Nϑ and ϑm = m∆ϑ (see paragraph
IIA 3 for details), and we recall the Hermitian symme-
try ûKn,Nϑ+m

= ûKn,m , where Nϑ + m is taken modulo
2Nϑ since ϑ is defined modulo 2π. Contrary to the one
dimensional case (d = 1), only the parameter hi = h
(42) is chosen to be a constant, and as a consequence,
the radial coordinate ρn (43), or equivalently the radial
stepping ∆ρn, of the volumes Kn,a that enters in the ex-
pression (64) has to be determined following the recursion
procedure specified in (53). The inversion formula (64)
can be further simplified in order to make its numerical
computation more efficient. First, let us split the sum
over the angular variable into a sum over m between 0
and Nθ − 1 and a second sum for m ranging from Nθ to
2Nθ − 1. Shifting the summation variable of −Nϑ in the
second sum and exploiting the hermitian symmetry, we
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end up with

ũ∆(t, x, y) =

2ℜ
N∑

n=1

Nϑ−1∑
m=0

e2iπρn(x cosϑm+y sinϑm)ûKn,m
(t)ρn∆ρ∆ϑ,

(65)

where ℜ sands for the real part. The transform (65) is
more efficient than (64) from a computational standpoint
since it requires two times less operations.

We perform the double series entering in (65) for each
positions (x, y) ∈ [−Ltot/2, Ltot/2], which are chosen on
a uniform cartesian grid, using ∆x = 1/kmax as the spa-
tial resolution in any direction. The largest accessible
wave number is given by kmax = ρN , in a box of length
Ltot = 1/h. We display the result of this inversion in Fig.
(4)(b).

As we can see, the solution ũ∆(t, x, y) does not exhibit
any preferential directions, as it is expected from theo-
retical predictions and from the statistical homogeneity.
Also, the field ũ∆(t, x, y) is clearly correlated over a fi-
nite length scale, which can eventually be related to the
characteristic inverse wave number k−1

f . Finally, the field
seems to develop roughness in the inertial range of scales,
and becomes smooth at the smallest scales, i.e. in the
dissipative range. This rough behavior will be precisely
quantified later while computing respective periodograms
and second-order structure functions. Once again, the
present numerical method is a real progress compared to
pseudo-spectral simulations performed in Ref. [1].

Similarly to the one-dimensional case, we now focus
on the estimation of the relevant second-oder statistical
quantities, including the angle-averaged periodograms
Eθ

K (56). To average in time in the statistically station-
ary regime, we follow the procedure given in paragraph
(III B), and we additionally average in this d = 2 situa-
tion over the polar angle ϑ (see caption of Fig. (5) for
further details on the statistical sample). We display in
Fig. (5)(a) the results of our estimations for various vis-
cosities. Notice that in dimension d = 2, the volume of
the cell is given by |Ki,a| = ρi∆ρi∆ϑ which depends on
the radial index i, thus one must not forget the remaining
multiplicative factor ∆ρi/|Ki,a|2 in (62), which has a non
trivial dependence on i. In particular, because of this fac-
tor, Eθ

K is not expected to behave as a power-law in the
inertial range. As a matter of fact, a power-law behavior
is only expected for the quantity |Ki,a|EΘ

K , as displayed
in Fig. (5)(a), with an exponent given by −(2H + 2).
Indeed, in Fig. (5)(a) we superimpose the exact formula
provided in (62) and observe that it is in very good agree-
ment with our estimations in the inertial range of scales
based on our simulations, without any fitting procedure.
Once again, for larger wave numbers in the dissipative
range, we observe an exponential decrease.

Let us now display the results for the second-order

structure function
〈
(δℓũ∆(t, x))

2
〉

(59), which are esti-

mated using the field ũ∆ defined in (65). A value is

FIG. 5: Numerical estimations of the second-order statisti-
cal quantities for the two dimensional case (d = 2). In both
figures, darker the curves, lower viscosities. These quanti-
ties are computed in the statistically stationary regime with
500 instances of the corresponding fields, every 10 units of
time. All the simulations are conducted with H = 1/3,
c = 1, h = 2−7, Nϑ = 29, κ = 1, kf = κ + 3h and the

same Ĉf (k) used in Fig. (4). Chosen values of viscosi-
ties are ν = 10−5, 10−6, 10−7, 10−8, 10−9 with, respectively
N = 210, 211, 212, 213, 214 collocation points in the radial di-
rection. (a) Angle averaged periodograms Eθ

K (56), as a
function of the radial coordinate ρi, weighted by the corre-
sponding volume of unit cells |Ki,a| (which is independent
of the angle coordinate a). (b) Second-order structure func-
tions

〈
(δℓũ∆(t, x))2

〉
(59) for different values of the viscosity

(solid line). We superimpose with dotted lines in (a) the pre-
cise asymptotic power-law behavior given in (62), and in (b)
the predicted asymptotic power-law based on (26) with corre-
sponding geometrical factor c2 (28). In (b), we also indicate
as a guide to the eyes the dissipative behavior ℓ2.

represented in Fig. (4)(b) at a given viscosity ν. Let
us recall that we perform an average in time in the sta-
tistically stationary regime, and an additional average
in space. We display the results of our estimations in
Fig. (5)(b) as a function of the scale ℓ, for various val-
ues of the viscosities and in a logarithmic representation.
Once again, when non-dimensionalized by two times the
variance σ2 of the solution in physical space, using the
formula provided in (63) for the particular case d = 2,
we observe that structure functions at various viscosities
reach a plateau of unit value at large scales ℓ ≥ k−1

f . A
power-law behavior with the expected exponent 2H fol-
lows at smaller scales, in the inertial range. This is in
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FIG. 6: Plane cuts of the solution to the 3D Fourier space dynamics. Figures represents the fourier modes in the planes
(kx, ky, 0) (fig (a)), (kx, 0, kz) (fig (b)) and (0, ky, kz) (fig (c)) respectively. Parameters are H = 1/3, c = 1, κ = 1, h = 0.15κ,

N = 28, Nθ = Nφ = 27, kf = κ+3h, Ĉf (k) = 1κ ⩽ |k|⩽kf
, and ν = 10−6. In physical space the cartesian grid is computed over

a cubic box of side Ltot = 1/(2h) with a resolution ∆x = 1/ρN in every direction.

a fairly good agreement with the one predicted in (26),
without any fitting parameter, when taken into account
the proper multiplicative factor which includes the geo-
metrical factor c2 (28). At even smaller scales than the
ones of the inertial range, i.e. in the dissipative range
where viscosity acts, the smooth behavior is once again
recovered with the characteristic power-law exponent 2.

3. Three dimensional (d = 3) simulations

We finally explore the instances and statistical behav-
iors of the solution of our proposed dynamics in space
dimension d = 3. In this situation, when compared with
the d = 2 case, the numerical complexity gets multiplied
by the number of discretization points of the second an-
gle φ entering the spherical decomposition of the solution
ûKi,a

(see paragraph IIA 3). A similar remark could be
made on a representation of the solution in physical space
through an inversion formula (58). In this case, this in-

version formula reads

ũ∆(t, x, y, z) =

N∑
n=1

Nϑ−1∑
m=0

2Nφ−1∑
p=0

ûKn,(m,p)
(t)

e2iπρn(xk̃x,(m,p)+yk̃y,(m,p)+zk̃z,(m,p))ρ2n sinϑm∆ρ∆ϑ∆φ,
(66)

where ∆ϑ = π/(Nϑ−1), ∆φ = π/Nφ such that 0 ⩽ ϑm =

m∆ϑ ⩽ π and 0 ⩽ φp = p∆φ < 2π. In (66), k̃(m,p) =

(k̃x,(m,p), k̃y,(m,p), k̃z,(m,p)) corresponds to the projec-
tion of the unit vector in spherical coordinates, that

is k̃(m,p) = (sinϑm cosφp, sinϑm sinφp, cosϑm). The
hermitian symmetry now writes, ûKn,(Nϑ−1−m,p+Nφ)

=

ûKn,(m,p)
. Similarly to the two dimensional case, p+Nφ is

taken modulo 2Nφ. This symmetry allows us once again
to simplify further (66). As in the two dimensional case,
we split the sum over p into a sum for p between 0 and
Nφ − 1 and a second one for p between Nφ and 2Nφ − 1.
After changing the variables for l = Nϑ − 1 − m and
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q = p−Nφ the second sum writes,

N∑
n=1

0∑
l=Nϑ−1

Nφ−1∑
q=0

ρ2n sinϑmûKn,(Nϑ−1−l,q+Nφ)
(t)

e2iπρn(xk̃x,(Nϑ−1−l,q+Nφ)+yk̃y,(Nϑ−1−l,q+Nφ)+zk̃z,(Nϑ−1−l,q+Nφ)).
(67)

The definition of the angles along with the one

of the spherical unit vector k̃(m,p) yield k̃(m,p) =

−k̃(Nϑ−1−m,p+Nφ). This relation combined with the her-
mitian symmetry and a rearrangement of the sum over l
in (67) yields

ũ∆(t, x, y, z) = 2ℜ
N∑

n=1

Nϑ−1∑
m=0

Nφ−1∑
p=0

ûKn,(m,p)
(t)

e2iπρn(xk̃x,(m,p)+yk̃y,(m,p)+zk̃z,(m,p))ρ2n sinϑm∆ρ∆ϑ∆φ,
(68)

Because of the increase of numerical complexity owing
to space dimension, we are eventually limited in explor-
ing the behavior of the numerical solution at very low
viscosities, which would ask for high values of the radial
(N) and angular (Nϑ and Nφ) numbers of collocation
points. We nonetheless managed to perform simulations
with reasonable computing power able to represent be-
haviors expected in an inviscid asymptotic state. In par-
ticular, as we will see, our numerical solutions will ex-
hibit power-law behaviors that are characteristic of the
asymptotic solutions in the inertial range of scales (see
in particular (62) and (63)).
In Figs. (6)(a), (b) and (c), we display the values of the

volume-averaged Fourier modes ûKn,(m,p)
(t) at a given in-

stant in the statistically stationary range and for a given
value of viscosity (see caption) in the three planes de-

fined by, respectively, k̃x,(m,p) = 0, k̃y,(m,p) = 0 and

k̃z,(m,p) = 0. As we can see, similarly to the d = 2
case (Fig. (4)(a)), the energy is distributed in a statis-
tically isotropic way, i.e. in a rotation invariant way, in
all three different planes. Also, notice the rough nature
of this distribution, which is reminiscent of the statis-
tical independence of these modes. Once again, this is
a real progress compared to pseudo spectral simulations
performed in Ref. [1] where a strong anisotropy was ob-
served along the axes in the Fourier space.
In Figs. (6)(d), (e) and (f), we represent the physi-

cal counterpart ũ∆(t, x, y, z) (68) of the Fourier modes
ûKi,a

displayed in Figs. (6)(a), (b) and (c). These fields
are statistically homogeneous and isotropic in a good ap-
proximation, with nonetheless some weak anisotropies
along the Cartesian directions. We believe that these
weak anisotropies are a consequence of the finiteness of
radial ∆ρ and angular ∆ϑ and ∆φ steps. We indeed
performed other simulations with larger steps (data not
shown) which gave stronger anisotropies. Nonetheless,
we will see that this spurious anisotropies barely pol-
lute the estimation of forthcoming statistical analyses,

FIG. 7: Statistical estimation in the three-dimensional
case. The statistical sample corresponds to 5 instances of
the fields in time every 1 unit of time. The grayscale of
each solid lines corresponds to various viscosities. Param-
eters of the simulations are the same as those provided in
the caption of Fig. (6), but for various values of viscosi-
ties ν = 10−5, 10−6, 10−7, 10−8, 10−9 with increasing values
of the number of collocation points in the radial coordinate
N = 28, 29, 210, 211, 212. We superimpose with dashed lines
the expected asymptotic behaviors in the inertial range, in
(a) based on (62), and in (b) based on (26) with the corre-
sponding geometrical factor c3 (29). In the two cases, we do
not make use of additional fitting parameters. In (b), we also
indicate the dissipative range with corresponding smooth be-
havior (i.e. proportional to ℓ2).

that will eventually be in good agreement with theoreti-
cal predictions.
As we did at lower space dimensions, we now present

the results of the estimation of angular-averaged PSDs
and second-order structure functions at various viscosi-
ties, and display our results in Fig. (7). We obtain similar
results, which include power-law behaviors for EΘ

K (56)

(see Fig. (7)(a)) and E (δℓũ∆(t, x))
2
(59) in the inertial

range of scales, corresponding to exponents −(2H+3) (in
very good agreement with the analytical prediction pro-
vided in (62) once the nontrivial dependence on the radial
coordinate of the volume |Ki,a| of the cells has been taken
into account) and 2H (also in excellent agreement with
the prediction (26) with the corresponding geometrical
factor c3 (29)), respectively. The action of viscosity can
be observed at the highest wave numbers or at the small-
est scales. As a final remark, the variance of the fields
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ũ∆ is very close to the prediction obtained in the contin-
uous framework in the limit of vanishing viscosities (63).
Interestingly, at the highest value of viscosity ν = 10−5,
we notice that the variance of our numerical simulation
underestimate the predicted asymptotic value (63). This
can be understood as realizing that for such a high value
of viscosity, the system is not yet representative of the
asymptotic regime ν → 0 for which the variance is ex-
pected independent of ν. This goes the same concerning
the power-law behavior in the inertial range. Nonethe-
less, we can see that as ν gets smaller and smaller, both
variance of the solution, and the power-law behaviors in
the inertial range of scales get closer and closer to the
asymptotic predictions.

IV. CONCLUSION AND PERSPECTIVES

In this article, we have presented an original numerical
simulation of a recently proposed dynamics which can be
written in Fourier (11) or in physical (15) domains. The
underlying physical mechanism is based on a transport of
the solution in Fourier space, which must be treated with
great care from both a theoretical and numerical points
of view. Previous simulations based on pseudo-spectral
methods [1] were able to give results which are consis-
tent with analytical predictions in a statistical sense, but
failed at giving correct solutions. The numerical method
proposed in this article is based on a finite-volume ap-
proach which allows first to give a proper meaning to the
Fourier modes of the solution, and secondly is amenable
to effective numerical simulations. Numerical results are
in excellent agreement with theoretical predictions, both
for fields and for their statistical behaviors.

This investigation leaves many possible extensions and
further improvements which are discussed below.

A. Rigorous analysis of the numerical method

First, we plan to provide rigorous results on the con-
vergence of the numerical method proposed in this work.
This is challenging because one needs to identify appro-
priate functional spaces where the exact and numerical
solutions can be compared quantitatively. Due to the loss
of regularity phenomenon on the considered model, the
solutions at finite times are more regular than at infinite
time in the statistically stationary regime. Being able
to state rigorously that the proposed numerical method
reproduces this behavior and in particular reaches a sta-
tistically stationary regime is also an interesting question.

When considered in the Fourier domain, the solution
is rough due to the white noise forcing, which is a non
standard and non trivial situation for finite volume meth-
ods, hence the need to develop new tools in the numer-
ical analysis of the scheme. In addition, the temporal
discretization is based on a splitting method, where solv-
ing the radial transport dynamics exactly is crucial. The

condition (51) is thus imposed, and it has been explained
that it has important consequences on the geometry of
the mesh. In practice, to increase the stability property
of the numerical method or to be able to introduce other
terms in the dynamics, it would be desirable to impose
the more standard and less stringent CFL condition

c
∆t

hi
≤ 1

instead of (51). Under this CFL condition, the radial
transport dynamics is not solved exactly anymore and
it is well-known that numerical dissipation and regular-
ization effects appear [39–41]. In that setting, it is not
clear whether the numerical method would be able to
reproduce the qualitative behavior of the model.
Finally, note that we are mainly interested in the ap-

proximation of the probability distribution of the solu-
tion. This calls for the application of weak error analysis
techniques to obtain error estimates, which need to be
developed for the considered model.

B. Generalization to vector fields

From a physical point of view, whereas it was of
tremendous importance to design proper generalizations
to higher dimensions, as we did in a theoretical fashion
in Ref. [1], we now need to deal with vector fields, in
particular incompressible ones (i.e. divergence-free) if we
want to propose realistic models of fluid mechanics in
turbulent situations. Some progress have already been
done in that direction and will be communicated in the
near future.

C. Definition and computation of the inverse
Fourier transform

We also need to give a proper meaning to the physical-
space counterpart of the finite-volume spectral field
û(t, k) (33). We have here proposed an approximation
ũ∆(t, x) of such a field based on the inversion formula
(58). It would be insightful to make a clear link between
this approximation and the solution u(t, x) of the contin-
uous formulation (15).
From a physical viewpoint, obtaining the solution in

physical space allows to answer several questions regard-
ing fluid mechanics. Indeed, the present approach focuses
on the Eulerian framework, that is obtaining a mod-
eled fiels which depends on space and time. Another
description of fluids, called the Lagrangian formulation,
focuses on the flow of velocity fields, i.e. the velocity of
tagged fluid particules along their trajectory X(t). The
path X(t) is defined as the solution of the flow equa-
tion dX/dt = u(t,X) given an initial position X(t0), in a
unique fashion if the advecting field is smooth in space,
while u has been possibly generalized to a divergence-
free vector valued field. The Lagrangian investigation
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of laboratory and numerical turbulent flows has been in-
tensively developed over the last thirty years, as reviewed
in [42, 43] and [44], following an intense and vast effort
aimed at characterizing with precision the statistical be-
havior of the Eulerian velocity field [2]. An important
question would be devoted to the consequence on the
regularity of the velocity v(t) = dX/dt along trajectories
while imposing a given Hurst exponent H on the Eule-
rian field u(t, x), as it has been preliminary explored in
a different setup in [45].

D. Modeling the intermittency phenomenon

Also, we have here focused at modeling fluid turbu-
lence at a statistical level up second-order. Observations
based on experimental and numerical investigations of
the turbulent velocity field show that velocity fluctua-
tions are non-Gaussian, which is usually refereed in tur-
bulence literature as the intermittency phenomenon [2].
In the present approach, we could wonder how to include
the intrinsically non-Gaussian nature of the fluctuations
at the finest scales. A first proposition was made in Ref.
[12] consisting in defining the particular case H = 0,
that leads to logarithmically correlated Gaussian fields,
corresponding to the Gaussian free field in space dimen-
sion d = 2 [46], which are known when exponentiated to
lead to a Gaussian multiplicative chaos measure [47, 48].
Additional heuristics were then provided in Ref. [12] to
include such a probabilistic object in a dynamical pic-
ture, leading to nonlinear (quadratic) corrections to the
evolution of the type proposed in (15), in a different, but
complementary, spirit than the approach developed in
Ref. [49]. The analysis of such a nonlinear evolution gets
much more complicated and we could wonder whether
tractable approaches could be designed amenable to rig-
orous treatments. We also keep these developments for
future investigations.

E. Kinetic energy budget and limitations of the
present dynamical model regarding the

phenomenology of turbulence

In the present evolution (15), we could wonder about
identifying the mechanism that plays a key role in the es-
tablishment of a statistically stationary regime, in which
the velocity variance gets finite, and moreover uniformly
bounded with viscosity (23). To do so, we need to derive
the kinetic energy budget, that is the time evolution of
the velocity variance E (u(t, x))

2
. Concerning real fluids,

governed by the Navier-Stokes equations (1), this budget
is crucial in the understanding of the core of turbulent
phenomenology, can be derived locally (i.e. without ex-
pectations), as it is done in Ref. [50] and reviewed in
Refs. [18, 51] in the context of the Onsager’s conjecture.
In this case, assuming incompressibility, and statistical
homogeneity and isotropy, it can be derive from (1) in

a straightforward manner that the kinetic energy budget
which governs the time variation dE |u(t, x)|2 /dt is solely
given by the competition between energy injection and
viscous diffusion. Concerning the present model, with
evolution in physical space given in (15), this balance
is modified by the transport operator A entering in the
evolution.
Since the solution at any time t is statistically homo-

geneous (see in particular the formal solution in Fourier
space (18)), taking into account the independence in time
of the instances of the forcing (8) that asks for applying
Itô’s lemma, we obtain from (15) in an exact manner that

1

2

d

dt
E (u)

2
=

1

2
Cf (0)− νE |∇u|2 − E (uAu) , (69)

where it is understood that the solution u is evaluated at
time t and at the position x. The first term entering at
the RHS of the kinetic energy budget (69) is the energy
injection, which form is a consequence of Itô’s lemma,
and Cf (0) is the value at the origin of the spatial corre-
lation structure of the forcing f (8). The second term,
obtained from E (u∆u) after having used the statistical
homogeneity of the solution, represents viscous dissipa-
tion, and the last term quantifies the contribution of the
operator A to this budget. As time goes on, we have
already shown that the solution reaches a statistically
stationary regime in which the variance of the solution
gets finite and independent of viscosity as ν → 0 (23).
The question that we want to address now is what are
the role played by the terms entering in the RHS of (69)

to ensure that dE (u)
2
/dt → 0 as t → ∞.

Let us focus on the contribution of the operator A in
the kinetic budget (last term on the RHS of (69)). Mak-
ing use of the Parseval’s identity, and the formal solu-
tion of the evolution provided in (18), which in particu-
lar leads to the independence of the Fourier modes (19),
we can easily see that the transport term (expressed as a
divergence with respect to the wave vector k that enters
in the operator (16)) does not contribute, only the addi-
tional dissipation term proportional to |k|−1 eventually
contributes. Indeed, making use of (20), we can then
easily get that

E (uAu) =

c

(
H +

1

2

)ˆ
|k|−(2H+d+1)e−

8π2ν
3c |k|3Fν(t, |k|)dk,

such that at infinite time and as viscosity goes to 0, us-
ing the respective expression F (|k|) of Fν(t, |k|) in this
double limit (22), we obtain

lim
ν→0

lim
t→∞

E (uAu) =
1

2
Cf (0),

which says that the contribution of the operator A in
the kinetic energy energy budget (69) compensates in an
exact manner the energy injection in this double limit. As
consequence, because the LHS of (69) vanishes at infinite
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time for any values of viscosity, this means that viscous
dissipation has no contribution as ν → 0. This behavior
differs from the one observed for the Navier-Stokes where
it is expected that velocity gradients variance diverges
exactly as the inverse of viscosity [2–4, 18, 19]. Instead,
we can show, using the formal solution provided in (18)
that velocity gradient variance diverges much slower than
ν−1 as ν → 0, according to

0 < lim
ν→0

lim
t→∞

ν
2
3 (1−H)E |∇u|2 < +∞,

similarly to what was found in the simpler framework
developed in Ref. [12].

Thus, it would be of tremendous importance from a
physical point of view to build a simple dynamics able
to reproduce the two aforementioned properties of fluid
turbulence, that is the finiteness of velocity variance (2)

and the generation of small scales according to the Kol-
mogorov spectrum (4), while ensuring the independence

of the average dissipation νE |∇u|2 with respect to vis-
cosity as the latter gets smaller and smaller. We keep
this perspective for future investigations.
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l’Institut Henri Poincaré C, 39(3):575–646, 2022.

[26] G. Beck and A. Beni Hamad. Electromagnetic waves
propagation in thin heterogenous coaxial cables. Com-
paraison between 3D and 1D models. October 2023.
working paper or preprint.

[27] Y. Colin de Verdière and L. Saint-Raymond. Attractors
for two-dimensional waves with homogeneous hamiltoni-
ans of degree 0. Communications on Pure and Applied

http://arxiv.org/abs/2301.00780


22

Mathematics, 73(2):421–462, 2020.
[28] Y. Colin de Verdière. Spectral theory of pseudodifferen-

tial operators of degree 0 and an application to forced
linear waves. Analysis & PDE, 13(5):1521–1537, 2020.

[29] L.R.M. Maas and F.-P. A. Lam. Geometric focusing of
internal waves. Journal of Fluid Mechanics, 300:1–42,
1995.

[30] M. Rieutord and L. Valdettaro. Inertial waves in a rotat-
ing spherical shell. Journal of Fluid Mechanics, 341:77–
99, 1997.

[31] C. Brouzet, E.V. Ermanyuk, S. Joubaud, I. Sibgatullin,
and T. Dauxois. Energy cascade in internal-wave attrac-
tors. EPL (Europhysics Letters), 113(4):44001, 2016.

[32] M. Shavit, O. Bühler, and J. Shatah. The role of sign
indefinite invariants in shaping turbulent cascades. arXiv
preprint arXiv:2311.04183, 2023.

[33] S. Dyatlov and M. Zworski. Microlocal analysis of forced
waves. Pure and Applied Analysis, 1(3):359–384, 2019.

[34] J. Galkowski and M. Zworski. Viscosity limits for zeroth-
order pseudodifferential operators. Communications on
Pure and Applied Mathematics, 75(8):1798–1869, 2022.
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