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Abstract. Physics-based Patient-Specific Biomechanical models (PSBMs), par-
ticularly those using finite element methods (FEM), simulate organ behaviors ac-
curately but are computationally intensive, especially for hyper-elastic tissues. To
address this, U-Mesh [13] introduced a data-driven approach using U-Net archi-
tecture, achieving real-time inference but reliant on precise stiffness knowledge at
training. This paper introduces HyperU-Mesh, an extension that integrates a Hy-
pernetwork to condition U-Mesh based on stiffness prior distributions. By train-
ing with FEM-simulated data that varies stiffness under a predefined distribution,
HyperU-Mesh ensures accuracy across variable stiffness without retraining. Ex-
perimental results highlight its effectiveness across different scenarios, showing
comparable accuracy to FEM while significantly improving speed.
Keywords: Physics-based biomechanical models, Deep Learning, HyperNetworks

1 Introduction

In healthcare, digital twins (DTs) are virtual replicas of human organs and/or systems
created using diverse medical imaging data [1]. Their application goes from training
clinicians to intraoperative guidance. Several studies have demonstrated the benefits of
physics-based digital twins [2–4], in particular, Patient-Specific Biomechanical models
(PSBMs) for their accuracy and predictive ability over sparse and/or noisy intraoper-
ative data. PSBMs are usually based on the principles of continuum mechanics, often
employing finite element methods (FEM) to solve the numerical system describing the
physical behavior of the organ or system. While these models provide precise simula-
tions of organ and system behaviors, their computational complexity often results in
time-consuming calculations, especially when involving soft tissue hyper-elastic behav-
ior [5]. This limits their use in computer-assisted interventions, delaying real-time guid-
ance during surgical procedures and complicating their effective integration. Therefore,
significant efforts are being directed toward optimizing these models to enhance both
the accuracy and computational speed of PSBMs, addressing these critical limitations
[5].

Various trade-offs between the speed and accuracy of PSBMs have been proposed
[3, 6, 7, 13]. Haouchine et al. [3] suggested using a co-rotational model to handle large
deformations with small strain. Yet, their approach significantly loses accuracy when ad-
vanced biomechanical laws are considered. Depending on the acceptable level of accu-
racy loss, reducing the model’s degrees of freedom is a viable strategy to meet real-time
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constraints. Methods such as Proper Orthogonal Decomposition (POD) [6] and Proper
Generalized Decomposition (PGD) [7] have been proposed for this purpose. Another
category of methods leverages the high number of cores available in Graphics Process-
ing Units (GPUs) for parallel computing, which enables significant speedups in handling
computationally intensive problems [8]. Deep neural network architectures have recently
demonstrated strong capabilities in learning complex, high-level nonlinear relationships
between diverse input-output data [9, 10]. One of the strengths of these networks is their
ability to accurately perform inference in real-time when trained with sufficient data.
Several works have proposed to train deep neural networks on simulated (using FEM)
data [11–14], aiming to learn the behavior of PSBMs. Among them, U-Mesh, introduced
by Mendizabal et al. [13], stands out as a simple yet effective solution.

U-Mesh is a data-driven approach based on a U-Net [15] architecture, designed to ap-
proximate the nonlinear relationship between forces and displacement fields. It is trained
in a patient-specific manner using simulated data generated by Finite Element Method
(FEM) and achieves real-time performance during inference. U-Mesh [13] has shown
strong performance on real-world data, making it a promising approach in terms of both
accuracy and speed. However, U-Mesh is trained on a single value of material stiffness.
Hence, its accuracy at inference time depends on precise knowledge of patient-specific
stiffness during training. This dependency limits its application in computer-assisted
interventions, as such material parameters of organs are often available only during the
intervention using techniques such as FibroScan®. This paper introduces HyperU-Mesh,
an extended version of U-Mesh that incorporates conditioning on a distribution of mate-
rial stiffness. This approach ensures that HyperU-Mesh maintains accuracy even when
the stiffness is only known at inference time. Conditioning is achieved using a Hyper-
network [16], which generates a unique set of weights for U-Mesh based on the given
stiffness value at inference time. HyperU-Mesh is trained on data simulated using the
Finite Element Method (FEM). However, we generate samples where the material stiff-
ness varies according to a specified prior distribution. The structure of the paper is as
follows: Section 2 outlines our methodology. Section 3 illustrates its effectiveness in two
distinct scenarios with varying tissue properties and domain geometries. Section 4 dis-
cusses our findings. Finally, Section 5 concludes the paper and explores future research
directions.

2 HyperU-Mesh

Hypernetworks [16] are an approach where one network, referred to as the hypernet-
work, generates the weights for another network, known as the primary network. This
allows the primary network’s weights to be dynamically adjusted during inference based
on specific conditions inputted to the hypernetwork. Therefore, they have emerged as a
way to enhance the flexibility and performance of deep neural networks [17]. We intro-
duce HyperU-Mesh, an improved version of U-Mesh [13], incorporating a hypernetwork
to integrate patient-specific stiffness information. An overview of HyperU-Mesh is il-
lustrated in the figure 1. We use U-Mesh as a primary network that takes as input the
forces, denoted 𝐹 , and predicts the relative displacement field 𝑢. A 4-layer Multi-Layer
Perceptron ℎ predicts weights 𝑑𝜃 for a given stiffness value 𝜆.
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Fig. 1: Overview of HyperU-Mesh: U-Mesh [13] serves as the primary network, taking
forces𝐹 as input to predict 𝑢, the relative displacement field. A hypernetworkℎ enhances
U-Mesh’s predictions by incorporating stiffness information. Both networks are trained
end-to-end using data generated with FEM simulations.

Training hypernetworks is often challenging, particularly due to the proportionality
between input and output magnitudes, which leads to very slow convergence. Ortiz et
al. [18] identified and resolved this issue by treating the predicted weights as additive
changes for the primary network. For a given training iteration 𝑛, the weights 𝑑𝜃𝑛 pre-
dicted by the hypernetwork ℎ are used to update the weights of the primary network
(U-Mesh) following the equation below:

𝜃𝑛 = 𝜃0 + 𝑑𝜃𝑛 (1)

With 𝜃0 the initial weights of the U-Mesh. Unlike traditional hypernetworks [16], the
weights 𝜃0 are also trainable parameters. The weights 𝑑𝜃𝑛 influence the predictions of
the U-Mesh by incorporating knowledge of the stiffness 𝜆. This strategy permits a better
initialization of the primary network weights, which leads to fast and efficient training
of the U-Mesh. Typically, the training time of the approach is comparable to the training
time of the primary network without a hypernetwork. ℎ takes as input a parameter set 𝜆
that describes stiffness, varying depending on the specific biomechanical law used. For
example, in the context of the Saint-Venant Kirchhoff constitutive law, 𝜆 corresponds
to Young’s modulus. The output of ℎ has the same size as the number of parameters
in the U-Mesh. We conducted an ablation study on the original version proposed by
Mendizabal et al. [13] to decrease its weight count. As a result, without any loss of
accuracy, we reduced the number of weights in the initial U-Mesh architecture by 4 by
removing its unnecessary layers.

HyperU-Mesh is trained in an end-to-end manner using training data generated via
FEM. Unlike U-Mesh, we generate training data by varying the stiffness parameter(s) ac-
cording to a selected prior distribution from the literature. The training process optimizes
the weights of both networks by minimizing the Mean Square Error (MSE) between the
prediction and ground truth displacement fields.
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3 Experiments

To evaluate our method, we conducted two experiments on two different geometries with
distinct material properties. HyperU-Mesh is implemented with PyTorch4. We utilized
Adam Optimizer with a learning rate of 10−5. The FEM simulations were performed
using the SOFA Framework [19] with the SOniCS [20] plugin for soft-tissue biome-
chanics. Computation was carried out using an Nvidia Titan RTX GPU. As a metric,
we use classical Hausdorff distance in millimeters and the relative Hausdorff distance,
defined as the percentage error relative to the deformation amplitude. Both metrics are
computed using the implementation from SciPy5. We also report the computation time
for a prediction.

3.1 PDMS Beam

We aim to estimate the deformation of a PolyDiMethylSiloxane (PDMS) beam under
gravity, with the left end fixed to a vertical support, as illustrated in the left image of
Figure 2. This example, adapted from Mazier et al. [21], involves characterizing the ma-
terial behavior using the Mach-1™ mechanical testing system (Biomomentum, Canada)
for unconfined compression tests. The material is best approximated by a Mooney-Rivlin
model with 𝐶01 = 101 kPa and 𝐶10 = 151 kPa. For validation, we obtained the ground
truth deformation data from Mazier et al. [21].

Fig. 2: Left: the observed deformation of the beam, fixed on the left side and deforming
under gravity. Middle: An illustration of the simulation domain Right: The prediction
of HyperU-Mesh (in green) overlaid onto the ground truth beam.

Finite element simulation: We formulate a boundary value problem for computing
the deformation of a hyperelastic material under both Dirichlet and Neumann boundary
conditions (BCs). The beam occupies a volume Ω with boundary Γ. The Dirichlet and
Neumann boundary conditions are on Γ𝐷 and Γ𝑁 , two subsets of Γ. These domains
are illustrated in the middle image of Figure 2. The elastic properties of soft tissues
can be characterized using principles from continuum mechanics. By employing the

4 https://pytorch.org/docs/stable/index.html
5 https://docs.scipy.org/doc/scipy/index.html
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Lagrangian formulation, the relationship between the deformed (x) and undeformed (X)
states, at each point along the beam can be expressed as

x = X + u (2)
Where u is the displacement field. The deformation gradient tensor 𝑭 = I + ∇X𝑢,
provides a local description of the deformation and the Green-Lagrange strain tensor
𝑬 ∈ R3×3 as expressed following equation 3

𝑬 = 1
2
(𝑪 − 𝑰) (3)

Where 𝑪 = 𝐹 𝑇𝐹 is called the right Cauchy-Green deformation tensor and 𝐼 the identity
matrix. The material behaviour is approximated with a nearly incompressible Mooney-
Rivlin [21] with parameters 𝐶01, 𝐶10 and 𝐷1, the strain-energy density function 𝑊 is
expressed as:

W = 𝐶01(𝐽
− 2

3 I𝐂 − 3) + 𝐶10(𝐽
− 4

3 II𝐂 − 3) +
ln(J)
2𝐷1

(4)

In equation 4, J is the jacobian matrix, while I𝐂 = tr(𝑪) and II𝐂 = 1
2

(

(tr(𝐂))2 − tr
(

𝐂2))

are the classic invariants. The stress-strain relationship, also known as constitutive law,
is obtained by differentiating 𝐖 with respect to 𝐂, see equation 5

𝐒 = 2𝜕𝐖
𝜕𝐂

(5)
With 𝑆 being the second Piola-Kirchhoff stress tensor. The boundary value problem is
then formulated as in equation 3, where 𝑔 represents the body forces, 𝑛 the unit normal
to Γ𝑁 , and 𝑡 the traction forces applied on Γ𝑁 domain.

⎧

⎪

⎨

⎪

⎩

∇(𝐹𝑆) = 𝑔 on Ω
𝑢(𝑋) = 0 on Γ𝐷
(𝐹𝑆)𝑛 = 𝑡 on Γ𝑁

(6)

The domain Ω is discretized wth hexahedral elements. This is motivated by their good
convergence property, lock-free behavior and regular structure that fits well Convolu-
tional Neural Networks (CNN) inputs [22]. The equation 6 is solved with the FEM to
find the relative displacement field.

Training data generation: We generated 1,000 training samples using the finite ele-
ment simulation described earlier. For each sample, body forces were selected from a
uniform distribution over [−15 N, −7 N], while the material parameters 𝐶01 and 𝐶10were both sampled from uniform distributions over [100 kPa, 200 kPa]. The Dirichlet
domain Γ𝐷 remained fixed across all simulations. The relative displacement field for
each dataset sample was obtained through the finite element simulation outlined earlier.
A sample from the dataset includes the body forces 𝐹 as input for U-Mesh, the relative
displacement field 𝑢 to supervise U-Mesh’s prediction, and the material properties 𝜆 =
[𝐶01, 𝐶10], which serve as the input for the hypernetwork ℎ.
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Results: HyperU-Mesh was trained during 100 epochs on the 6, 000 generated samples,
with a batch size of 1. We used an MSE between the prediction and the ground truth dis-
placement fields as a loss function. Upon training, we tested HyperU-Mesh in the case
where the body forces are equal to -9.81 N and the material parameters are: 𝐶01 = 101
kPa, 𝐶10 = 151 kPa and 𝐷1 = 7.965×10−5 kPa. The predicted deformation (illustrated
in the rightmost image of Figure 2) is compared with the ground truth real deforma-
tion provided by Mazier et al. [21]. Table 1 presents the numerical results, including
the performance of U-Mesh [13], where all training was conducted with known mate-
rial parameters. The table also compares the results of a FEM simulation to the ground
truth deformation. The experiment demonstrates that HyperU-Mesh achieves compara-
ble accuracy to both standard FEM and U-Mesh while operating 750 times faster than
standard FEM. HyperU-Mesh also showcases versatility across a distribution of mate-
rial parameters, unlike U-Mesh, which is constrained to a single known value required
during training.

Hausdorff (mm) Relative Hausdorff (%) Time (ms)
FEM 4.7 3.6 3000
U-Mesh [13] 5.3 4.1 4
HyperU-Mesh 5.6 4.3 4

Table 1: Results from the beam experiments, shows comparisons between predictions
made by standard FEM, U-Mesh, and HyperU-Mesh against the ground truth deforma-
tion. HyperU-Mesh achieves results comparable to both state-of-the-art methods while
operating 750 times faster than standard FEM and offering greater flexibility than U-
Mesh [13] in handling diverse material properties.

3.2 Human liver

In this experiment, we aim to estimate the deformation of an ex-vivo human liver sub-
jected to a force estimated to 5.1 N applied to the right lobe, the rest and deformed states
of the liver are illustrated in Figure 3. The geometries of both liver states are retrieved
from a segmented CT scan. The stiffness of the organ was measured with a FibroScan®
and estimated to be 7 kPa.

Finite element simulation: Similar to the beam experiment, we formulate a boundary
value problem to compute the deformation of soft tissue under both Dirichlet and Neu-
mann boundary conditions. The underlying physics remains consistent with the beam
case, except for the material behavior, which is approximated here using a Saint-Venant-
Kirchhoff model. Thus, the strain energy density function is expressed as follows:

W = 𝜆
2
[𝑡𝑟(𝐸)]2 + 𝜇𝑡𝑟(𝐸2) (7)
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Fig. 3: Rest and deformed states of the ex-vivo liver.

In equation 7,𝐸 is the Green-Lagrange strain tensor, 𝜆, and 𝜇 are Lamé’s first and second
parameters that are related to the Young modulus and Poisson ration. In Figure 3, the
Dirichlet domain is selected at the junction between the parenchyma and the portal vein.
Traction forces are applied on the Neumann domain, which is chosen on the organ’s
surface.

Training data generation: Using finite element simulation, we generated 3,000 syn-
thetic deformations of the organ. For each deformation, we randomly selected a location
on the liver surface to apply traction forces, which were sampled from a uniform distri-
bution over [2 N, 10 N]. Additionally, Young’s modulus was sampled from a uniform
distribution over [5000 Pa, 12000 Pa] for each generated sample. Consequently, a sample
from the dataset includes the applied forces 𝐹 as input for U-Mesh, the chosen Young’s
modulus as the input 𝜆 of the hypernetwork ℎ, and the relative displacement field ob-
tained through FEM, which serves as the ground truth to supervise U-Mesh’s prediction
𝑢.

Results: HyperU-Mesh was trained for 100 epochs on 3000 synthetic deformations
of the liver with a batch size of 1. We used an MSE loss function between the pre-
dicted and FEM displacement fields to supervise the training. After training, we tested
HyperU-Mesh with applied forces of 5.1N at the right lobe and a Young Modulus of
7 kPa. The predicted deformation was compared to the ground truth deformation, and
the results are presented in Table 2. The leftmost image in Figure 4 shows the geometry
predicted by HyperU-Mesh superimposed on an image of the ground truth deformation.
As one may notice, the errors in this experiment for HyperU-Mesh and other methods
are higher than in the previous one. We attribute this to the uncertainty related to es-
timating the fixed boundary conditions. However, HyperU-Mesh achieves comparable
results with U-Mesh and FEM, while being faster than FEM and more flexible (on ma-
terial properties) than U-Mesh. To further evaluate the robustness of our method, we
compared HyperU-Mesh predictions with standard FEM solutions over 100 synthetic
deformations, resulting in a Mean Absolute Error (MAE) of 1.77 mm ± 0.82 mm. The
rightmost image of Figure 4 highlights a comparison between HyperU-Mesh and FEM
predictions on a synthetic deformation.



8 El hadramy et al.

Hausdorff (mm) Relative Hausdorff (%) Time (ms)
FEM 15.1 11.6 500
U-Mesh [13] 16.6 12.7 4
HyperU-Mesh 16.5 12.6 4

Table 2: Results of the liver experiments compare the predictions of standard FEM, U-
Mesh, and HyperU-Mesh against the ground truth deformation. HyperU-Mesh achieves
results comparable to both state-of-the-art methods while being significantly times faster
than standard FEM and more versatile than U-Mesh [13] in handling a range of material
properties.

Fig. 4: Left: Prediction of HyperU-Mesh (in red) superimposed on the ground truth de-
formation. Right: The wireframe illustrates the rest shape of the liver. The heatmap
displays the prediction of HyperU-Mesh on a synthetic deformation, highlighting the
error in millimeters compared to the FEM solution.

4 Discussion

Results show that HyperU-Mesh is a promising approach, particularly in scenarios in-
volving complex material properties and anatomical structures. The experiments demon-
strated that HyperU-Mesh achieves comparable accuracy to both standard FEM and U-
Mesh while operating significantly faster than standard FEM. Moreover, unlike U-Mesh,
which is limited to a single value of material parameters known at training time, HyperU-
Mesh demonstrates versatility over a distribution of material parameters. This flexibil-
ity allows HyperU-Mesh to adapt to patient-specific material properties intraoperatively,
enhancing its robustness and reliability in clinical applications where such variations are
prevalent. However, the liver, being a complex organ with varying mechanical properties
and physiological states, presents difficulties in accurately defining boundary conditions.
The uncertainties associated with fixed boundary conditions can lead to increased errors
across all modeling methods, as observed in experiment 2. Therefore, while HyperU-
Mesh shows promise in enhancing the efficiency and accuracy of biomechanical sim-
ulations, particularly in liver modeling, several challenges remain, including handling
uncertain boundary conditions. Addressing these challenges will be crucial in realizing
the full potential of HyperU-Mesh in clinical practice.
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5 Conclusion

In this paper, we introduced HyperU-Mesh, an extension of the U-Mesh [13] framework
designed to enhance the accuracy, speed, and flexibility of physics-based biomechanical
models (PSBMs) in real-time applications. PSBMs, particularly those based on finite
element methods (FEM), are accurate for simulating organ behaviors, yet their com-
putational intensity has hindered real-time implementation, especially for hyper-elastic
tissues. HyperU-Mesh addresses these challenges by integrating Hypernetwork into the
U-Mesh architecture. This allows HyperU-Mesh to adapt dynamically to patient-specific
biomechanical properties, such as varying stiffness parameters, without the need for re-
training. Thus, HyperU-Mesh ensures robust performance in real-world scenarios where
precise material parameters are often only available intraoperatively. Our experimental
results demonstrated the effectiveness of HyperU-Mesh across different scenarios in-
volving diverse complex material properties and geometries. Highlighting its ability to
predict deformations with accuracy comparable to traditional FEM simulations while
being real-time at inference. In future work, we will extend the application of HyperU-
Mesh to include fixed boundary conditions and geometric variation uncertainties.
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