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A B S T R A C T   

Background and purpose: 3D image registration is now common in many medical domains. Multimodal regis
tration implies the use of different imaging modalities, which results in lower accuracy compared to monomodal 
registration. The aim of this study was to propose a novel approach for deformable image registration (DIR) that 
incorporates an unsupervised deep learning (DL)-based generation step. The objective was to reduce the chal
lenge of multimodal registration to monomodal registration. 
Material and methods: Two datasets from prostate radiotherapy patients were used to evaluate the proposed 
method. The first dataset consisted of Computed Tomography (CT)/ Cone Beam Computed Tomography (CBCT) 
pairs from 23 patients using different CBCT devices. The second dataset included Magnetic Resonance Imaging 
(MRI)/CT pairs from two different care centers, utilizing different MRI devices (0.35 T MRIdian MR-Linac, 1.5 T 
GE lightspeed MRI). Following a preprocessing step essential for ensuring DL synthesis accuracy and standard
izing the database, synthetic CTs (sCTreg) were generated using an unsupervised conditional Generative 
Adversarial Network (cGAN). The generated sCTs from CBCT or MRI were then utilized for deformable regis
tration with CT scans. This registration method was compared to three standard methods: rigid registration, 
Elastix registration based on BSplines, and VoxelMorph-based registration (applied exclusively to CBCT/CT). The 
endpoints of comparison were the dice coefficients calculated between delineated structures for both datasets. 
Results: For both datasets, intermediary sCT generation provided the highest dice coefficients. Dices reached 
0.85, 0.85 and 0.75 for the prostate, bladder and rectum for the dataset 1 and 0.90, 0.95 and 0.87 respectively for 
the dataset 2. When the sCT were not used, dices reached 0.66, 0.78, 0.66 for the dataset 1 and 0.93, 0.87 and 
0.84 for the dataset 2. Furthermore, the evaluation of the impact of registration on sCT generation showed that 
lower Mean Absolute Errors were obtained when the registration was conducted with a sCT. 
Conclusions: Using unsupervised deep learning to synthesize intermediate sCT has led to improved registration 
accuracy in radiotherapy applications employing two distinct imaging modalities.   

1. Introduction 

3D deformable image registration has become common practice in 
various medical applications and imaging modalities. Radiotherapy, a 
technique employing high-energy radiation to target and eliminate 
cancer cells, often involves the acquisition of multiple images. Among 
these, a CT scan is typically obtained and designated as the reference 
image for dose calculation in formulating the treatment plan. To 

accomplish this, a medical physicist utilizes specialized treatment 
planning software to design a radiation therapy plan. This process en
tails selecting the appropriate treatment beams, shaping them to 
conform to the tumor, and optimizing the dose distribution to maximize 
tumor control while minimizing side effects. Subsequently, as treatment 
delivery occurs over several days, a daily image such as Cone Beam 
Computed Tomography (CBCT) or Magnetic Resonance Imaging (MRI) 
[1] is acquired to register the target volume before irradiation. 

* Corresponding author. 
E-mail address: cedric.hemon@univ-rennes.fr (C. Hémon).   

1 C. Hémon & B. Texier contributed equally to this work. 

Contents lists available at ScienceDirect 

Image and Vision Computing 

journal homepage: www.elsevier.com/locate/imavis 

https://doi.org/10.1016/j.imavis.2024.105143 
Received 1 February 2024; Received in revised form 29 April 2024; Accepted 17 June 2024   

mailto:cedric.hemon@univ-rennes.fr
www.sciencedirect.com/science/journal/02628856
https://www.elsevier.com/locate/imavis
https://doi.org/10.1016/j.imavis.2024.105143
https://doi.org/10.1016/j.imavis.2024.105143
https://doi.org/10.1016/j.imavis.2024.105143
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imavis.2024.105143&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Image and Vision Computing 148 (2024) 105143

2

Nowadays, the required targeting accuracy is at the millimeter level. 
Image registration can occur at various stages of the radiotherapy 
workflow: 1) during treatment plan definition, using a reference CT and 
a secondary image (MRI, PET…), and 2) during each treatment session 
to align the patient/tumor position. The 3D daily image enables moni
toring of inter-session variations and estimation of the delivered dose to 
the target volume (TV) and organs at risk (OARs) [2]. In the field of 
radiation therapy (RT), a significant challenge lies in achieving precise 
registration across different imaging modalities, known as multimodal 
registration, which often results in lower accuracy compared to mono
modal registration. Additionally, given the variation in acquisition de
vices across centers (acquisition protocol, magnetic field, field of view), 
it is crucial to develop a training method that can be applied across 
multiple centers. Multicenter learning emerges as a promising solution 
to address this need [3]. 

Another recent interest in deformable image registration (DIR) in 
radiotherapy is the evaluation of the accuracy of generating synthetic CT 
(sCTeval) by comparing the intensities (measured in Hounsfield Units =
HU) with those of a reference CT (deformed CT to correspond to the 
daily image). The generation of an sCT from the secondary image be
comes essential for calculating the dose delivered to the patient [4]. In 
the context of MRI-only radiation therapy, the generation of sCTs by 
deep learning (DL) is widely proposed in the literature [4–6]. Most su
pervised DL-based synthesis methods [5] require accurate registration of 
the training image pairs to ensure optimal convergence. Moreover, for 
accurate voxel-to-voxel evaluation of the sCTeval, precise registration is 
necessary. Any medical image registration is confronted with anatom
ical variations, which particularly depend on the acquisition delay be
tween images. Moreover, multimodal registration presents additional 
challenges compared to monomodal registration due to differences in 
the intrinsic characteristics of imaging modalities and image quality 
(such as noise and artifacts) [7–10]. Different imaging techniques cap
ture various aspects of anatomy and physiology, resulting in variations 
in image appearance, texture, and intensity. Artifacts can interfere with 
the accurate identification of corresponding features, leading to errors in 
the registration process [11]. 

The standard workflow of registration relies on four elements: the 
optimizer, the interpolation, the correlation measures, and the spatial 
transformer [12,13]. The most commonly used approach in multimodal 
registration involves the introduction of non-linear correlation measures 
[14,15]. These measures quantify the similarity between images by 
considering the non-linear relationships between their pixel values, thus 
enabling more robust registration of multimodal data. Despite their 
effectiveness, non-linear correlation measures have limitations. Their 
effectiveness may vary depending on the specific multimodal data types 
encountered, primarily due to the presence of many local maxima in 
these functions [16]. This prevalence of local maxima poses challenges 
for optimization methods, often resulting in registration errors. 

In the field of DL-based registration, recent studies have led to 
innovative multimodal metrics [17]. These metrics leverage neural 
networks to estimate the similarity between the source and target im
ages. The advent of these metrics based on neural networks has paved 
the way for the development of non-linear metrics, enabling registration 
processes that involve projecting the two images into a non-linear 
feature space [18], characterized by increased discriminating capa
bility and reduced size. Despite their advantages, DL models come with 
several drawbacks, including their inherent complexity, lack of inter
pretability, and the necessity for substantial computational resources 
and extensive datasets. 

To overcome these limitations and move away from relying on 
multimodal metrics, researchers have explored the concept of trans
forming multimodal problems into monomodal ones [19–23]. One 
approach involves generating an image of the target modality from the 
source image, which offers a potential solution to enhance model per
formance and interpretability. Several studies have suggested solving 
registration and synthesis tasks jointly using combined networks, as 

highlighted in the works of Liu et al. [19], Han et al. [20], Deng et al. 
[21], and Zhou et al. [22]. In their study, Liu et al. performed MR/CT 
(pelvis and brain) registration steps prior to generation to minimize 
monomodal loss. Han et al. [20] undertook MR/CBCT registration 
(brain), by incorporating a generation step to align both modalities by 
projecting them into the CT definition space. Deng et al. [21] and Zhou 
et al. [22] employed a registration step to enhance the generation of sCT 
(head & neck) from MRI, aiming to mitigate registration faults during 
the learning process. 

Using deep learning-based registration as their foundation, these 
approaches encounter the specific challenges outlined above. Addi
tionally, they employ cycleGAN for unsupervised generation, which is a 
resource-intensive approach posing problems of instability and collapse 
modes [24]. In the natural image domain, while unsupervised contras
tive learning and transfer learning have gained prominence, particulary 
as proposed in [25,26], contrastive learning remains less prevalent in 
medical image generation [27,28] in a monochrome context. Never
theless, transfer learning, particularly for tasks such as segmentation, is 
becoming increasingly popular, helped by the emergence of pre-trained 
networks, such as TotalSegmentator [29]. Alternatively, Yang et al. [30] 
proposed using an intermediate sCT to achieve monomodal registration 
(CT/sCT). To enable unsupervised training of their generation model, 
they performed data augmentations (combining spatial and intensity 
techniques) on their initially paired dataset (nine sets of brain MR-CT). 

The main contributions and novelties of this paper are:  

• An accurate unsupervised synthesis method based on a cGAN was 
used. This technique had previously been employed as part of the 
SynthRAD2023 challenge within a multicenter context (involving 
two different acquisition devices per modality) [31]. Indeed, the 
synthesis approach employed incorporates the CREPs loss function, 
using only the style term of the ConvNext-based perceptual loss.  

• The multimodal registration problem is translated into a monomodal 
registration problem through a two-step process (generation, regis
tration) in the pelvic area for two multimodal registration chal
lenges: CBCT/CT and MRI/CT. However, to our knowledge, this has 
not yet been achieved. This technique is specifically applied to the 
pelvic region, which poses greater challenges compared to some 
other anatomical sites due to the dynamic movements induced by 
digestion and bladder filling.  

• In contrast to the literature, the used model does not follow an end- 
to-end deep learning approach. Instead, it represents a combination 
of deep learning for generation and conventional methods for 
registration, overcoming the typical constraints associated with deep 
learning in registration tasks. 

• An alternative solution is also explored for CBCT, aimed at elimi
nating the generation step. This alternative consists of using a deep 
learning network for registration estimation and employs a new 
multimodal and non-linear similarity measure between CBCT and 
CT. This metric is developed to be in line with the underlying prin
ciples of the proposed method, which integrates both content and 
style aspects. 

2. Material and methods 

In the field of radiation therapy, achieving multimodal DIR between 
MRI and CT images, as well as between CBCT and CT, is imperative. 
Commonly, multimodal registration methods rely on metrics such as 
mutual information, yet algorithms often encounter challenges in 
establishing spatial correspondences between these diverse modalities. 
In response to this issue and to improve the registration accuracy, this 
paper introduces an innovative approach: using image synthesis to 
translate the inherently multimodal issue into a more manageable 
monomodal one. 

For the image synthesis process, supervised algorithms demonstrate 
greater accuracy. However, the efficiency of supervised deep learning 
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models is compromised due to the lack of registration in the training 
cohort. To address this limitation, recent studies propose unsupervised 
algorithms as a solution, aiming to obtain more accurate images despite 
the absence of explicit correspondences in the training set. 

The Fig. 1 illustrates the registration method and the workflow of the 
study. The registration method was compared to rigid registration and 
other deformable registration methods. Two types of endpoints were 
used for the evaluation. 

2.1. Dataset 

Two datasets of prostate cancer patients were used in this study: one 
composed of 60 pairs of CT/MRI planning images, and the other 
composed of 23 patients, each with a planning CT and CBCTs acquired 
during sessions (daily or weekly acquisition), totaling 341 CBCTs. 

Dataset 1 corresponds to the CT/MRI dataset, with images acquired 
at two different centers. The first 30 patients from Center 1 (C1) had CT 
scans acquired in a head-first supine position on a GE Light-SpeedRT16, 
and MRIs obtained on a 0.35 T MRIdian (ViewRay) MRI-Linac using a 
Trufi sequence. Center 2 (C2) comprised 30 patients with CT scans ac
quired in a head-first supine position on a Philips BigBore Scanner, and 
MRIs obtained on a 1.5 T Siemens Skyra MRI scanner, using a T2 
sequence. 

The dataset 2 corresponds to the DELPEL project [2]. This dataset 
includes 23 planning computed tomography (CT) and 341 cone beam CT 
(CBCT) images from 23 patients with localized prostate cancer. All 
planning CT scans were acquired in a head-first supine position with a 
rectal catheter and intravenous iodine contrast, covering the sacroiliac 
joints to the lower edge of the lesser trochanters, using a 3 mm slice 
thickness. The CBCT images were acquired in a head-first supine posi
tion either weekly (17 patients corresponding to 132 images) or daily (6 

patients corresponding to 209 images) during the 8 weeks of treatment. 
The CBCT images were acquired using either Varian On-Board Imager 
(n = 16) or Elekta XVI (n = 7), with a 1 mm slice thickness. Patients were 
asked to have a full bladder at the time of treatment. All images were 
delineated by experts to obtain the prostate, bladder, and rectum 
structures. 

To quantify the need for deformation between modalities, the vol
umes of each structure were evaluated. Table 1 shows the intra-patient 
differences (with CT as the reference) in terms of volume for each 
structure between both imaging modalities. 

2.2. Image preprocessing 

For dataset 1, preprocessing steps were performed due to the het
erogeneity between images. First, a threshold was applied to eliminate 
outlier values, with [− 1000;1600] HU for the CTs and [0;500] for MRIs. 
Then, to correct MRI non-uniformity, images underwent preprocessing 
steps, including: (1) N4 bias field correction [32]; (2) histogram 
matching; and (3) filtering using gradient anisotropic diffusion [33] 

Fig. 1. Workflow of the proposed method for MRI or CBCT/CT registration. First, a learning dataset composed of preprocessed and rigidly registered MRI/CT or 
CBCT/CT pairs is used to synthesize a synthetic CT (sCTreg) with an unsupervised cGAN. Then, this sCTreg is used to guide the deformable image registration (DIR) 
with the CT using the Elastix library based on BSplines. For the MRI dataset, the MRI and the registered CT are used to train a supervised 3D cGAN. Then, the different 
models of sCTeval generation obtained with the different kinds of registration are evaluated with the mean absolute error (MAE) metric. Finally, the registrations 
(CBCT/CT and MRI/CT) were evaluated with dice coefficients on the manually delineated structures of body, bladder, prostate, and rectum. 

Table 1 
Volumes differences of delineated structures (CT minus MRI/CBCT) ± standard 
deviation.   

Difference (in cm3) Absolute difference (in cm3) 

Structures Prostate Bladder Rectum Prostate Bladder Rectum 

Dataset 1: 
MRI/CT 

7.9 ±
23.6 

99.7 ±
217.0 

1.6 ±
31.3 

14.4 ±
20.5 

159.0 
± 177.4 

19.8 ±
24.2 

Dataset 2: 
CBCT/ 
CT 

5.9 ±
9.3 

− 91.3 
± 83.8 

− 14.17 
± 42.1 

6.7 ±
8.7 

96.6 ±
83.8 

29.5 ±
33.2  
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(with 10 iterations, time step: 0.03, conductance: 1.0). 
For dataset 2, to ensure proper patient positioning and to initiate the 

DIR process, the CBCTs were aligned with the CT anatomy through 
bone-based rigid registration. Subsequently, for each patient, both the 
CT and CBCT images were adjusted to match the smaller field of view of 
the CBCT and resized to a uniform size of 256x256x128 voxels. This 
resizing was accomplished using B-Spline interpolation, resulting in a 
consistent resolution for comparison. 

Furthermore, this registration process was applied to a supervised 
DL-based sCT synthesis learning cohort. One of the main preprocessing 
steps for pelvic sCT synthesis is the standardization of field of views 
(FOV). A shared FOV between the two modalities improves coherence. 
FOV size was homogenized as follows: 12 cm above and below the 
prostate barycenter for the first sCTreg generation before registration and 
8 cm for the second generation to eliminate edge effects due to organ 
deformations from the registration. After each FOV unification and to 
achieve a uniform size of 256x256x128 voxels, B-Spline interpolation 
was used. 

2.3. Unsupervised sCT generation to guide registration 

The initial phase of registration of the two images from distinct 
modalities consisted of generation on sCT. This was achieved through 
unsupervised learning by using unpaired patient data and by not using a 
voxel-wise loss function on the ground truth (CT), thus eliminating the 
need for both a registration step and the use of a paired database. 

2.3.1. CBCT-to-CT synthesis 
The proposed algorithm to generate sCTreg from CBCT was an un

supervised 2D cGAN [34]. This approach used a customized 2D gener
ator consisting of a 6-block residual network positioned between a single 
down-sampling block and an individual up-sampling block. No biases 
are incorporated into the convolution kernel throughout the network 
architecture. Following each convolutional operation, batch normali
zation is applied, subsequently followed by the activation function. A 
LeakyReLU activation with a fixed slope of 0.2 is employed for the 
ResNet-Block, while ReLU activation is used for other blocks, except for 
the final convolution, where no activation function is applied. Binary 
Cross Entropy is used as the discriminator loss (a PatchGAN). 

To generate sCT in an unsupervised manner, avoiding the intro
duction of registration bias and to address the instability and collapse 
issues resulting from the absence of an explicit loss function [35], the 
sCT generation process has been approached as a style transfer problem. 
Neural style transfer, considered as a domain adaptation technique [36] 
for unsupervised training, reduces these challenges [37] through the 
incorporation of perceptual loss, for instance. 

The unsupervised network was trained on CT and CBCT of two 
distinct patients. CBCT/CT pairs are being randomly selected at each 
epoch within the training dataset. To achieve independence between the 
style and content of an image, the perceptual loss was used [38]. The 
perceptual loss was used to generate the sCT by preserving the content of 
the CBCT and applying the style of the CT. The loss of style and content 
represents the projection of the input and output images into a feature 
space designed specifically to capture information. The content features 
of the pre-trained neural network capture important semantic infor
mation of the images, including their shapes, textures, and the objects in 
the images. By minimizing the difference between these content features 
for input and output images, the aim is to produce results that preserve 
the overall visual content of the image while modifying other aspects, 
such as style or color. Content loss is a measure of the similarity of high- 
level, multi-scale content between input images and target images. 

The content loss is defined as follows: 

lϕ,jcont(sCT,CBCT) =
⃦
⃦ϕj(sCT) − ϕj(CBCT)

⃦
⃦2

2
where ϕj(CBCT) is the activation at the jth layer for the CBCT

(1) 

The definition of style loss is outlined as follows: 

Gramϕ
j (I) =

ψψT

Cj*Hj*Wj
(2)  

ψ being the flattened matrixϕj(I)of size : Cj*HjWj (3)  

lϕ,jstyle(sCT,CT) =
⃦
⃦Gramj(sCT) − Gramj(CT)

⃦
⃦F

2 (4) 

The use of style in feature maps differs from their content; instead of 
directly employing the feature maps, the square Frobenius norm (‖…‖

F
2) 

between the Gram matrix Gramϕ
j of sCT features maps and the target CT 

features maps were computed. The Gram matrix (Eq. 2) captures in
formation about characteristics that tend to activate together. As 
demonstrated by Li [36], minimizing the Gram matrices of two images is 
equivalent to minimizing a specific form of maximum mean discrep
ancy. Consequently, this process can be interpreted as aligning the dis
tribution of the content image with that of the style image. The 
perceptual loss lϕperceptual is the weighted sum of these two functions (lϕ,jcont 

and lϕ,jstyle): 

lϕperceptual(sCT,CBCT,CT) = α*lϕcont(sCT,CBCT) + β*lϕstyle(sCT,CT)
whereαandβare the weighting factors

(5) 

Due to the memory limitations of conventional perceptual loss, 
which was based on the VGG network, a novel perceptual loss was 
formulated using the ConvNext-tiny architecture referred to as Content 
and Style Representation for Enhanced Perceptual synthesis (CREPs) 
loss [39]. The ConvNext network, as detailed in the work by Liu et al. 
[40], mainly uses the ConvNeXt module, inspired by both convolutional 
neural networks and Vision Transformer (ViT) architectures [41]. 
ConvNext surpasses the capabilities of advanced Transformer-based 
models while adhering to a purely convolutional design. It adopts the 
standard ResNet-50 architecture [42] and refines it to align more closely 
with the design principles of ViT. The ConvNext-Tiny network has fewer 
parameters and better accuracy on object recognition tasks (28.6 M 
parameters and 82.52 Acc@1) than VGG-19 (143.7 M params and 
72.376 Acc@1). It was used to compute a new PL with lower compu
tational cost. 

2.3.2. Unsupervised MRI-to-CT synthesis 
For the MRI-to-CT synthesis, a 3D method similar to that used for the 

CBCT approach was employed. The network was trained on CT and 
CBCT of two distinct patients. MRI/CT pairs are being randomly selected 
at each epoch within the training dataset. To impose constraints on the 
generator’s output, only the style term of the CREPs loss was used, 
comparing the sCTreg with a randomly selected CT image from the 
database. 

This decision was made due to noticeable distinctions in content 
between MRI and CT modalities, which resulted in the inability to 
generate the desired output when minimizing content loss from MRI. It 
underscores the importance of capturing and preserving the distinctive 
stylistic features during the process of generating sCTreg images. The 
unsupervised synthesis model was trained for 400 epochs with a 
learning rate set at 0.0002. These settings were empirically chosen. The 
trained model selected for use was the one obtained at the last epoch. To 
ensure the convergence of the synthesis network on each sCTreg, a visual 
evaluation of the sCTreg was conducted before registration. 

2.4. Deformable image registration methods 

To register CBCT/CT and MRI/CT pairs, the trained models discussed 
in previous sections are used for inference, resulting in the generation of 
an sCT and subsequent monomodal registration. This approach was 
compared with two multimodal techniques. 
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2.4.1. DIR with free-form deformation (FFD) 
To evaluate and compare the performance of the novel sCT-based 

registration approach with conventional iconic non-rigid methods, a 
point of reference was established using an FFD-based DIR method 
implemented with the Elastix library [43]. This method is one of the 
most used in the literature [12]. The FFD was computed using the 
adaptive stochastic gradient descent optimizer and normalized mutual 
information (NMI) similarity measure following a 4-step multi- 
resolution scheme, where the image resolution was divided by factors 
of 8, 4, 2, and 1. The final grid spacing was defined as 14.0 × 14.0 ×
14.0 mm. 

2.4.2. DIR with VoxelMorph (VXM) 
The accuracy of the proposed non-rigid registration approach was 

assessed by employing the VoxelMorph network [44] for performance 
comparison. The VoxelMorph network was used to estimate the defor
mation vector field (DVF) between the planning CT and daily CBCT 
images for each patient. 

To assess the feasibility of eliminating the generation step, this 
approach minimizes the loss of content (L CREPcontent) by registering 
CBCT and CT. The content feature space used in this method serves to 
represent the patient’s anatomy in a simplified manner. Consequently, 
minimizing the representation of our two images within this space en
sures the preservation of crucial anatomical information relating to the 
patient. The application of this method has been limited to CBCT, as the 
challenge of minimizing content loss in MRI/CT pairs hinders optimal 
registration, as mentioned in section 2.3.2. The disparity in content, 
involving distinct aspects of anatomy and physiology, between these 
two modalities poses a significant obstacle to effective implementation. 

VoxelMorph, a weakly supervised U-Net architecture [45], was 
employed to generate a DVF by leveraging the inputs from both the 
encoder and decoder. Additionally, the estimated DVF was regularized 
by applying a diffusion regularizer to the spatial gradients, resulting in a 
smooth diffeomorphic transformation. 

The loss function LVXM considered in the VoxelMorph model was: 

L VXM = α*L CREPcontent (CT, sCT)+ λ*L smooth(ϕ) (6)  

where CT and sCT were the fixed and moving images and ϕ was the DVF. 
L smooth was the regularization function to encourage a smooth DVF. 

L CREPcontent [39] was derived from the perceptual loss introduced by 
Johnson et al. [38]. 

The weighting parameter values, selected empirically, were: α = 1 
and λ = 4. To train the VoxelMorph networks, the data were randomly 
separated into three folds of 50% (11 patients), 15% (3 patients), and 
35% (9 patients) images, which were successively used as training, 
validation, and test datasets. The intensities of the images (CT and 
CBCT) were cropped around − 1024 and 1575, and linearly normalized 
to the range [0, 1]. The VoxelMorph models were trained using the Adam 
optimizer with a learning rate scheduler starting at a value of 0.0005 and 
multiplied by 0.7 every 10 epochs. 

2.4.3. DIR through sCT generation 
The novelty proposed in our study was to translate multi-modal 

image registration into mono-modal registration by generating an 
sCTreg from MRI or CBCT. As in Liu et al. [9], the sCTreg images were 
generated from the MRI or CBCT, and then the corresponding sCTreg and 
CT images were registered. sCTs were generated in an unsupervised 
manner as described in the previous section. 

For the registration task, the FFD method based on B-Splines, as 
implemented in the Elastix library [43], was employed, using identical 
hyperparameters to those detailed in Section 2.4.1. The only difference 
was the adoption of a monomodal similarity metric (normalized cross- 
correlation instead of the NMI), which arises from the simplification 
of the registration problem into a mono-modal scenario. 

For CBCT/CT registration, the intensities of CT and sCTreg were not 

modified. However, to aid the convergence of the MRI/CT registration, a 
density assignment was performed in the OARs (bones, bladder, pros
tate, rectum) guiding the registration. Furthermore, to minimize po
tential edge effects induced by large deformations, the estimation of the 
DVF was performed in a distinct space (12 cm above and below the 
center of the prostate) compared to the space defined for sCTeval gen
eration (8 cm above and below the center of the prostate). 

2.5. Registration evaluation 

2.5.1. Dice similarity coefficient (DSC) 
To quantify the accuracy of the DIR methods, the Dice Similarity 

Coefficient (DSC) was calculated. This metric was computed by 
comparing the deformed contours to the reference contours for the 
rectum, bladder, and prostate. DSC was computed as follows: 

DSC = 2
|A ∩ B|
|A| + |B|

(7) 

In this context, A and B represent the two segmentation datasets 
under consideration, which are the planning and deformed contours. To 
assess the extent of deformations within the database, the DSC after rigid 
registration was evaluated. To evaluate the accuracy of the DIR 
methods, a qualitative assessment was carried out. The evaluation was 
performed for each registration method: rigid registration, BSplines with 
and without an intermediary sCTreg synthesis, and the VoxelMorph 
method (only for dataset 2). 

This assessment involved the presentation of deformed images and 
masks along with their corresponding DVF for three distinct cases: the 
worst, median, and best scenarios, determined based on the average DSC 
across three anatomical structures. 

2.5.2. MRI-to-CT synthesis to evaluate the registration impact on supervised 
sCT generation accuracy 

To evaluate the MRI/CT registration practically, a voxel-wise com
parison of an L1 norm known as the Mean Absolute Error (MAE) be
tween different sCTeval/sCTs was performed. 

The MAE in HU is calculated as: 

MAE =
1
n
∑

i = 1n∣sCTi − CTi∣ (8)  

where i represents the summation index corresponding to each voxel of 
the image. 

Images were preprocessed as described in Section 2.2, then divided 
into training, validation, and test sets. For training, 40 image pairs were 
selected (20 from each center), 4 (2 + 2) were selected for validation, 
and 16 (8 + 8) for the test. As reported in [3,46], the results obtained by 
a network trained in a monocenter or multicenter manner are similar, 
highlighting the network’s ability to generalize. 

The MRI-to-CT generation was performed with a supervised 3D 
conditional GAN using a ResNet-9blocks as the generator and a 707,070 
PatchGAN as the discriminator. The loss function for generators was the 
VGG-16 perceptual loss [38], and the Binary Cross Entropy was used for 
discriminators. Models were trained for 400 epochs, and the best model 
according to Mean Square Error on the validation set was selected. 
Finally, a 3-fold cross-validation was performed to evaluate the stability 
of the synthesis. 

The comparison was performed according to six cases: Cases 1–3 
with test data rigidly registered for training and for the test, using 
respectively rigidly registered data, data registered using BSpline with 
MRI and CT, and data registered using BSpline with sCTreg and CT. Cases 
4–6 used the same training data, and test data registered by the best 
registration according to the DSC. 

2.5.3. Computation 
The DL based methods were implemented in Python 3.8 using 
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PyTorch 1.12 with CUDA 11.7. The models were trained and tested on 
an NVIDIA RTX A6000 with 48 GB of VRAM. No over-fitting was 
observed (i.e. no increase of the loss on the validation data). 

3. Results 

3.1. CBCT/CT registration results 

Table 2 summarizes the DSC metrics for body, prostate, bladder, and 
rectum for the rigid method and 3 DIR methods. 

The DSC obtained after the rigid registration is the smallest for all 
structures (TV and OARs). By using L CREPcontent to guide the defor
mation estimation, the VoxelMorph method provided better accuracy 
for the prostate and rectum. Compared to all other registration methods, 
VXM provided significantly better DSC for the bladder. Furthermore, 
when using sCTreg instead of CBCT for multimodal registration, it out
performed rigid registration and other deformable approaches. 

Fig. 2 shows the planning CT, original CBCT, and the deformed 
CBCTs for each method for three patients corresponding to the worst, 
median, and best DSC results. 

3.2. MRI/CT registration results 

Table 3 summarizes the DSC metrics for the contours of the body, 
bladder, prostate, and rectum according to the registration method: 
rigid, the BSpline-based method with MRI and CT images, and the 
BSpline-based method with sCTreg and CT images. 

The highest DSC was obtained with the BSpline-based registration 
method using an intermediary sCTreg for all three organs (bladder, 
prostate, and rectum). It reached 0.95 for bladders, 0.90 for prostates, 
and 0.87 for rectums for the first center, and 0.91, 0.87, and 0.84, 
respectively, for the second center. 

To further evaluate the impact of the registration on the supervised 
DL MRI-to-CT synthesis, a study was performed using a 3D supervised 
conditional GAN (cGAN). The multicenter study was conducted on the 
data used in both the training and test cohorts. 

Table 4 presents the results of the MRI-to-CT synthesis under six 
distinct scenarios. In Cases 1–3, the test data were rigidly registered for 
training, using rigidly registered data, data registered using BSpline with 
MRI and CT, and data registered using BSpline with sCTreg and CT, 
respectively. In contrast, Cases 4–6 used identical training data, but the 
test data were registered using the optimal method based on DSC: 
BSpline using an intermediary sCTreg instead of MRI. 

The results reveal that the most precise Mean Absolute Error (MAE) 
was achieved when training with BSpline-registered data, employing an 
intermediary sCTreg (39.2 ± 5.9 HU for C1 and 59.6 ± 9.3 HU for C2). In 
contrast, less accurate synthesis occurred when both training and test 
data were rigidly registered (55.3 ± 11.2 HU for C1 and 80.6 ± 20.2 HU 
for C2). Accurate evaluation of sCTeval requires precise non-rigid 
registration. 

Furthermore, across the cGAN models trained with three different 
cohorts registered with different methods, superior outcomes were 
consistently obtained when the test was conducted with data registered 
using BSpline and an intermediary sCTreg. Notably, superior results were 
consistently observed for center C1. 

4. Discussion 

This study introduced an innovative approach to multimodal 
deformable image registration, enhancing accuracy. The proposed 
registration method, using an unsupervised generated intermediary 
sCTreg, provides better registration results of CT with both CBCT and MRI 
in the pelvic area. These results were emphasized based on the Dice 
Similarity Coefficient (DSC), aligning with the conclusions drawn from 
the supervised sCTeval generation procedure. 

Another objective of the registration process was to perform a 
rigorous voxel-wise assessment of sCTeval. Our method outperformed 
classical multimodal registration using Elastix based on B-splines (refer 
to Table 2 and Table 3). Furthermore, the evaluation of the second 
sCTeval multicenter generation demonstrates that the rigidly registered 
training dataset leads to the worst sCTeval results. This underscores the 
importance of registration quality not only for a less biased evaluation of 
sCTeval but also for ensuring higher-quality training data. Consequently, 
the quality of registration has consequences for the convergence of the 
model and the accuracy of a supervised synthesis of sCTeval, as 
mentioned by Florkow et al. [47]. Finally, all models were accurate for 
both centers of the training cohort, highlighting the network’s ability to 
generalize. 

One limitation associated with this registration approach is its reli
ance on the accuracy of the sCTreg. Using an unsupervised generation 
method introduces potential variability in the quality of the sCTreg, 
consequently influencing the overall registration accuracy. Even though 
preprocessing aims to reduce noise in MRI and artifacts in CBCTs, the 
registration process may still be affected by noise or artifacts. 

For the CBCT/CT database, transitioning from multimodal to mon
omodal registration provided the best scores for three out of four 
structures. The Dice Similarity Coefficient (DSC) achieved on the 
bladder with the VXM method based on CREPs loss outperformed our 
method. These superior performances can be attributed to the chal
lenges posed by heterogeneity and contrast variations in CBCTs, leading 
to suboptimal reconstructions and artifacts in the sCT for bladders. 
Consequently, iconic registration faces difficulties, especially when 
compared to its performance for other organs. In contrast, the content 
loss employed in the VXM method enables effective preservation of the 
bladder’s shape. Even though DSC results are worse than those obtained 
with the intermediary sCT method, it represents a first step toward ac
curate multimodal registration for CBCT. 

It is crucial to note that existing DL registration methods place sig
nificant limitations on image input sizes and the type of deformation 
employed, predominantly based on optical flow. In particular, DL 
methods for FFD applied to medical problems are rare, highlighting the 
need for more versatile and adaptive approaches in this field. The DSC of 
the proposed method reached 0.75 on the rectum. The other DSCs are 
clinically acceptable (¿0.8) [48,49]. These results are among the best in 
the literature when the registration is not guided with contours [13]. 

However, it is crucial to highlight that the sCT-based MRI/CT 
registration approach adopted in this study is hybrid, incorporating both 
iconic and contour-guided elements. Despite the challenges, the results 
obtained for the target (DSC = 0.85 for CBCT, DSC = 0.90 for MRI) and 
OARs are considered among the best in the existing literature 
[19,50,51]. It’s noteworthy that these references primarily rely on 
iconic information for registration, limiting the scope of direct com
parison due to the hybrid nature of the methodology employed in this 
study. 

Despite the increasing interest in unsupervised generation algo
rithms to bypass the requirement for registration, supervised generation 
methods have so far demonstrated superior accuracy [4]. Additionally, 
although voxel-wise assessment methods are emerging [52], their 
adoption by the community remains limited [13]. 

Moreover, in radiotherapy where CT is still the standard imaging 
modality for planning, the daily acquisition of CBCT or MRI (with the 

Table 2 
Registration results (mean DSC ± std) on the 341 CBCTs according to the 
structure and the methodology.   

DSC 

Method Body Bladder Prostate Rectum 

Rigid 0.90 ± 0.03 0.58 ± 0.15 0.75 ± 0.08 0.65 ± 0.09 
Voxelmorph 0.96 ± 0.01 0.90 ± 0.05 0.78 ± 0.06 0.72 ± 0.11 
BSpline CBCT/CT 0.98 ± 0.01 0.66 ± 0.16 0.78 ± 0.05 0.66 ± 0.08 
BSpline sCT/CT 0.98 ± 0.01 0.85 ± 0.04 0.85 ± 0.05 0.75 ± 0.04  
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growing significance of MR linacs) highlights the imperative for multi
modal registration. The approach involves transforming the complex 
multimodal registration process into a more manageable monomodal 
registration by generating sCTs. The unsupervised synthesis algorithm 
based on the CREPs loss used in this process yields precise sCTs, facili
tating the registration with CT. 

Individuals with substantial differences in bladder or rectum vol
umes between imaging modalities are still a problem in the registration 
process. A specific case highlighted a patient from the MRI database 
with a bladder volume of 1200 cm3 on the CT scan and 250 cm3 on the 
MRI. Such significant disparities in volumes required extensive regis
tration adjustments, resulting in major deformations in the images and 
consequently depicting unrealistic anatomies. Furthermore, an addi
tional challenge arose from the presence of gas in the rectum within one 
imaging modality. This circumstance introduced a notable discrepancy 
between the two volumes, potentially giving rise to artifacts in the sCT 
or introducing bias in the evaluation process. These challenges were 
exacerbated by substantial differences in HU for the CT and CBCT or 

intensities in the MRI, further emphasizing the complexity of the 
multimodal registration process in the presence of diverse anatomical 
variations and imaging modalities. 

While this method has been assessed on two multicenter datasets, it 
is advisable to further evaluate its accuracy on other datasets to validate 
it and ensure a comprehensive and robust evaluation. Finally, current 
challenges in registration for radiation therapy are described in Hussein 
et al.’s study [53]. The study emphasizes the critical and routine 
requirement for clinicians in utilizing DL algorithms for registration 
purposes. It underlines the potential of DL algorithms in addressing 
these needs. However, it also emphasizes the necessity for a dependable 
quality analysis to instill trust in the reliability of these new tools. 

This study highlights the need for more accurate multimodal regis
tration, specifically in the pelvic region involving CBCT/CT and MRI/ 
CT. The versatility of this approach extends beyond the pelvic area, 
showcasing potential applications in various anatomical regions. How
ever, it’s crucial to acknowledge the primary constraint, which revolves 
around the convergence challenges associated with the unsupervised 

Fig. 2. CBCT/CT registration results: Row 1: CT images, Row 2: CBCT images, Rows 3–4: registered CBCT according to the registration method, respectively BSpline 
and VoxelMorph, and Row 5: the registered sCTreg . Columns represent three different cases of registration: the worst, the median case, and the best case. Delineations 
are added to the images: bladder (CT in yellow, registered CBCT in green), prostate (CT in red, registered CBCT in pink), and rectum (CT in brown, registered CBCT in 
purple). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Registration results (mean DSC ± std) on the 60 CT/MRI pairs are presented according to the structure (columns): body, bladder, prostate, rectum, the center (C1 (1.5 T 
MRI) or C2 (0.35 T MR-Linac)), and the registration methodology (rows): rigid, BSpline with MRI/CT, BSpline with sCTreg/CT.    

DSC 

Center Registration Method Body Bladder Prostate Rectum 

C1 
Rigid 0.98 ± 0.01 0.81 ± 0.12 0.78 ± 0.12 0.76 ± 0.08 
BSpline MRI/CT 0.99 ± 0.01 0.93 ± 0.06 0.87 ± 0.04 0.84 ± 0.04 
BSpline sCT/CT 0.98 ± 0.01 0.95 ± 0.02 0.90 ± 0.03 0.87 ± 0.03 

C2 
Rigid 0.95 ± 0.02 0.65 ± 0.16 0.75 ± 0.11 0.69 ± 0.10 
BSpline MRI/CT 0.97 ± 0.01 0.90 ± 0.04 0.84 ± 0.06 0.78 ± 0.08 
BSpline sCT/CT 0.95 ± 0.01 0.91 ± 0.04 0.87 ± 0.04 0.84 ± 0.04  
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sCTreg generation model. Furthermore, the proposed method presents 
broader applicability, encompassing areas such as motion detection, 
daily registration for tumor monitoring, and more. 

5. Conclusion 

In conclusion, the incorporation of intermediary synthetic images, 
generated through the implementation of an unsupervised deep learning 
model, stands out as a key advancement that significantly improves the 
precision of multimodal registration. The VoxelMorph registration re
sults suggest that integrating novel non-linear multimodal deep learning 
metrics may enhance registration performance compared to conven
tional metrics. This study not only establishes the benefits of this 
approach but also underlines the critical importance of registration ac
curacy, particularly in the context of supervised sCT generation. The 
findings of this research pave the way for broader application of the 
proposed approach, extending its utility beyond the anatomical regions 
and imaging modalities examined in the current study. 
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