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Abstract. We present a new algorithm for solving the connected
multi-agent path finding problem (connected MAPF) which consists
in finding paths for a set of agents that avoid collisions but also en-
sure connectivity between agents during the mission. Our algorithm
is based on heuristic search and combines ODrM∗, a well known al-
gorithm without connectivity constraints, and an efficient but incom-
plete solver for the connected MAPF from the literature. We present
a formal analysis of the termination and completeness of our algo-
rithm, and present an experimental evaluation, showing a significant
improvement over the state of the art.

1 Introduction

Multi-agent pathfinding (MAPF) involves computing paths for a set
of agents so that each one reaches a given destination while avoiding
collisions and satisfying other constraints [19]. Solving this problem
entails planning for agents with different objectives that must coop-
erate to achieve their respective goals [16]. This has applications in
planning for warehouses, search and rescue missions, and nuclear
decommissioning. The problem has been extensively studied for dis-
crete maps including grids but many algorithms also apply to maps
in the Euclidean space [19].

Some applications of MAPF require connectivity constraints
among agents. In some cases, a periodic connection between agents
is sufficient [7], but specific applications require agents to remain
connected during the mission; for example, in order to transmit an
uninterrupted video stream or other critical data to human opera-
tors [1]. Connectivity constraints also appear as structural constraints
in some motion planning problems with the objective of minimizing
the stretch of group of agents [5].

The variant of MAPF with connectivity constraints, called the con-
nected MAPF (CMAPF) have thus been considered and various as-
pects have been studied in the literature [20, 7, 3, 13, 14]. Follow-
ing [19], we consider the classical setting where the environment is
modeled by a discrete graph whose nodes are locations that can be
occupied by a single agent at any time. The graph contains movement
edges along which each agent can move at every step. Moreover, in
CMAPF we consider an additional type of edges called communica-
tion edges which specify whether agents at two given vertices are in
direct communication. This is a general setting which can model, for
instance, communication by radius (two agents communicate if they
are within a given distance). Agents start in a given source configu-
ration and have to reach target locations, while forming a connected
graph through communication edges at each step.

The theoretical complexity of the problem is PSPACE-complete
[20], even in three-dimensional grids with communication by ra-
dius [2]. Several suboptimal algorithms have been given. Most sig-
nificantly, greedy heuristic algorithms with backtracking appear in
[20], and a randomized algorithm based on cooperative A∗ [17] ap-
pears in [2] improving the former in terms of performance; the latter
being currently the best performing algorithm for CMAPF.

Our goal in this paper is to improve the performance of solving
CMAPF. Let us first present the idea of M∗[21] and ODrM∗[6], al-
gorithms solving basic MAPF (without connectivity); we will then
explain how our solution for CMAPF builds upon these.

The algorithm M∗ consists in improving over a basic A∗ search,
and the main idea can be summarized as follows: at each search node,
all agents are moved towards their targets for one step in a decoupled
way; if this does not cause any collisions, then we keep these suc-
cessors; otherwise, we backtrack and enumerate the successors for
agents involved in collisions. Moreover, groups of agents entering
collisions are put together to form sets of agents, called meta-agents.
The algorithm uses recursive calls to find successors for meta-agents.

Contributions In this work, we design an algorithm that improves
the state of the art for solving CMAPF by providing a suboptimal but
complete algorithm, based on the ideas of M∗.

M∗ computes optimal executions for agents by using their individ-
ual optimal paths. If a group of agents collides, the algorithm uses A∗

to plan for those agents. ODM∗ is a variant of M∗ that uses Opera-
tor Decomposition (OD) instead of A∗. Our work is inspired by a
recursive modification of ODM∗ called ODrM∗.

While ODrM∗uses recursive calls to solve instances for the meta-
agents, our target was to define a modular algorithm where the reso-
lution of the smaller instances for meta-agents is addressed by any
given algorithm, including efficient but possibly incomplete algo-
rithms. One reason behind this design choice is the following: recur-
sive calls in ODrM∗are used as “quick guesses” and the computed
successors are only kept if no conflicts are detected; thus it does
not make sense to spend too much computational power to compute
these guesses. However, when meta-agents become large, these quick
guesses become problem instances that are almost as hard as the orig-
inal problem. As we will see, because connectivity constraints con-
cern all agents, they cannot be dealt with considering pairs of agents
locally, and they create large meta-agents. Connected MAPF is also
harder computationally (the decision problem is PSPACE-complete
[20] while MAPF optimization problems are NP-complete [23, 24]),
so a recursive algorithm would not have been a good choice.

In our setting, the solver used for the smaller instances is referred



to as the subsolver. Our main algorithm for CMAPF we present
here, called CODM∗, can be seen as a variant of ODrM∗in which
the subsolver is Connected-CA∗ [2], which is basically cooperative
A∗ [17] applied to CMAPF. Our algorithm can be seen as a direct
improvement over the results of [2]. In fact, while Connected-CA∗

is efficient, the simple variant is incomplete (and suboptimal); it is
only rendered probabilistically complete by a randomization scheme,
which yields an exponential worst-case expected termination time.
Our algorithm can be seen as a search layer above Connected-CA∗

which also alleviates some of its limitations: We use the simple
variant of Connected-CA∗ without the randomization scheme as a
subsolver (which is fast but incomplete), while the additional layer
brought by ODrM∗guides the search, and renders it complete.

Our algorithm brings several modifications to ODrM∗ by mak-
ing it compatible with incomplete subsolvers, and by handling con-
nectivity conflicts (i.e. disconnections). Note that when connectivity
constraints are ignored, and when the subsolver is replaced by re-
cursive calls, our algorithm becomes equivalent to ODrM∗. On the
other hand, if one considers a trivial subsolver which always fails,
then our algorithm is equivalent to ODM∗. While our main moti-
vation and contribution are the design of a faster algorithm for the
connected MAPF problem, the termination and completeness proofs
we present, and the invariants we identify are also useful to under-
stand the ODrM∗algorithm whose formal correctness and termina-
tion proofs do not appear in [6]. In particular, we present a formal
treatment of the merging of meta-agents and their relations inside
the search graph. We prove that the search graph has the invariant
that along each edge, a partial order on the meta-agents sets is main-
tained. This turns out to be a critical invariant (illustrated in Fig. 3) on
which the completeness proof relies. This implies that if two agents
belong to a meta-agent at some search node, they are also in the same
meta-agent in the parent node. Intuitively, this is because agents are
merged into meta-agents if they are in conflict or if the subsolver
fails, so propagating meta-agents means that we are aware of this
difficulty already in the parent nodes. We evaluate our algorithm on
several benchmarks, and show significant improvement on the suc-
cess rate over previous algorithms [2].

2 Preliminaries

Topological graph We consider multiple agents moving in dis-
crete environments. A typical example of such environments is grids,
as shown in Figure 1. Here, each agent occupies a cell, which
is its position. At each discrete step, an agent can either stay or
move to an adjacent cell. A common setting is that two agents can
communicate if they are within a given range. In this example, let
us assume that two agents can communicate if they are within a
distance of at most 3 (we assume that cells are of size 1 × 1).
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Figure 1: Example of an environ-
ment modelled by a topological
graph G = (V,EM , EC). There
are also three agents: 1, 2 and 3.

For more generality and
also for simplicity, environ-
ments are represented by a so-
called topological graph G =
(V,EM , EC) where V is a
non-empty finite set of posi-
tions, EM is the set of move-
ment edges, and EC is the set
of communication edges.

Example 1. Figure 1 is modeled by G = (V,EM , EC) with V =
{xy | x, y = 1..5} \ {42, 23, 24} (we write pairs (x, y) as xy for

simplicity), EM = {(xy, x′y′) ∈ V 2 | |x − x′| + |y − y′| ≤ 1},
EC = {(xy, x′y′) ∈ V 2 |

√
(x− x′)2 + (y − y′)2 ≤ 3}.

Configurations We consider a set Ag = {1, ..., n} of n agents that
must move in (V,EM ) from their initial vertices to their target ones.
A configuration c is a mapping from Ag into V . It can be thought as
a tuple of n vertices of V , denoted (c1, ...cn) where for a ∈ Ag, ca is
the position of the agent a. Given a subset ma of agents, we write cma

for the restriction of c to agents in ma, i.e. (ca)a∈ma. A configuration
is connected if it forms a connected sub-graph of (V,EC).

Example 2. Figure 1 depicts configuration (11, 13, 25), which is
connected since (11, 13) ∈ EC and (13, 25) ∈ EC ; that is, the sub-
graph of G restricted to positions 11, 13, 25 is connected. Intuitively,
agent 1 at 11 can communicate with the agent 3 at 25 via the agent
2 at 13 (we consider multi-hop communication).

Two configurations c and c′ of length n are consequent if for each
a ∈ {1, ..., n} we have (ca, c

′
a) ∈ EM ; thus, each agent makes

one move along an edge in EM . We allow agents to idle, that is,
EM contains all self-loops. An execution of length ℓ is a sequence of
configurations, denoted (c1, ..., cℓ) such that for each i ∈ {1, ..., ℓ−
1}, ci and ci+1 are consequent.

As in MAPF (and unlike some previous work on CMAPF [7, 20]),
we are interested in computing executions without collisions. We
consider two types of collision constraints: a weaker form requiring
agents to occupy distinct vertices at all times (e.g. following [3, 2]);
and a stronger one forbidding agents to take the same edge in oppo-
site directions as well (e.g. as in [25]). We present our experiments
for both types of constraints to compare with previous work.

Formally, a configuration c is collision-free if all the ca are distinct.
A pair of consequent configurations (c, c′) is collision-free if for all
agents a ̸= b, c′a = cb implies that c′b ̸= ca (the agents do not swap
positions in one step). An execution (c1, ..., cℓ) is collision-free if
all its configurations are collision-free, and all pairs (ci, ci+1) are
collision-free. It is connected if all its configurations are connected.

The Connected MAPF Problem Given an initial configuration
s = (s1, ..., sn) and a final one t = (t1, ..., tn), the goal in the
connected MAPF (CMAPF) problem is to compute a connected and
collision-free execution from s to t.

The CMAPF problem was proven to be PSPACE-complete on gen-
eral graphs [20] and also for 3D grids with range-based communica-
tion [2]. All hardness results hold regardless of the types of collision
constraints, including in the absence of such constraints.

Operator Decomposition When expanding a search node n whose
configuration is n.c, a naïve approach would consist in creating all
nodes n′ with n′.c being a consequent configuration of n.c. This leads
to an exponential branching factor. Operator Decomposition (OD) is
a technique to reduce this branching degree [18]. The idea is to assign
positions to agents one by one. We thus need to work with incomplete
configurations, which are partial mappings from Ag to V (in which
not all agents have been assigned positions yet). Given an incomplete
configuration c, let dom(c) the domain of c, that is, the set of agents
for which c is defined.

More precisely, each search node contains a pair (n.c, n.c′) where
n.c is a complete configuration, and n.c′ an incomplete configuration
such that for all agents a, if c′a is defined, then (ca, c

′
a) ∈ EM . The

configuration n.c contains the current vertices of the agents, while
n.c′ provides the successor vertices. A node n is complete when
n.c′ = ∅ (the empty partial map), and incomplete otherwise1.

1 In [18], these are called standard and intermediate, respectively.



Connected-CA∗ The Cooperative A∗ (CA*) is an incomplete al-
gorithm that consists in choosing an order of agents, and computing
paths for the agents in this order while avoiding conflicts with pre-
viously computed paths [17]. Here, each agent is assigned its short-
est path to target (among paths avoiding conflicts with previously
assigned paths); in particular, the first considered agent follows its
shortest path. This algorithm is incomplete because it only considers
executions where at least one agent follows its shortest path, while
some instances require none of the agents to follow their shortest
path. There are several optimizations that improve the performance,
namely, the Windowed Hierarchical CA∗ (WHCA*) consists in re-
arranging the agents after a given window size, and dynamically
updating the heuristic values. The algorithm Connected-CA∗ of [2]
is a direct application of the former with an additional randomiza-
tion scheme which generates temporary random target configurations
which help configurations get out of deadlock situations. This im-
proves the success rate in practice and renders it complete proba-
bilistically (it finds a solution with probability 1, if there is one).

3 Our algorithm CODM∗

We design an algorithm based on heuristic search with OD which
build a search graph over configurations, following the lines of
ODrM∗. The originality of our algorithm is that we combine this
with incomplete solvers. We first explain the nodes of the search
graph, comment on its fields, and present some other notions used
in the algorithm. The full algorithm is then given in Section 3.3.

3.1 Node Data Structure

Following [6], a node is an object containing the following fields:

n.c Current configuration in n
n.c′ Partial next configuration in n
n.ODAgts the set of agents on which we apply OD
n.meta the set of meta-agents, a partition of Ag
n.cost the current cost from the source node to n
n.h the heuristic of n to the target configuration
n.predecessors the set of predecessors of n
n.bestpred the best predecessor so far of n

Configurations. The configurations n.c and n.c′ represent par-
tially expanded nodes, and allow us to apply OD (see Subsection 2).

Meta-Agents. A meta-agent is a subset of Ag. We denote by
n.meta the set of meta-agents at node n, which is a partition of Ag.
Each node stores a subset n.ODAgts of agents on which OD is to be
applied when computing successors. By a slight abuse of language,
we say that an agent is OD at node n if it belongs to n.ODAgts.

While ODrM∗processes meta-agents recursively, in our algorithm,
successors are computed in two ways: either n.ODAgts is non-
empty, and OD is applied on these agents, or n.ODAgts is empty,
and all meta-agents are assigned successors using a subsolver, which
is an external algorithm; in our case, this is Connected-CA∗. A sub-
solver is expected to return a plausible next configuration for the
meta-agent (for instance, a configuration with good heuristic value
to the agents’ target). While OD returns all possible successors, the
use of the subsolver always yields a single next configuration for a
given meta-agent, thus a single successor node for n.

Initially, in the root node (Fig. 2a), there are no OD agents, and
the meta-agents are {1}, . . . , {n}. Accordingly, a successor node
is computed by calling the subsolver independently for each meta-
agent, as illustrated in Fig. 2a. The algorithm visits nodes several

times, merge meta-agents at each visit, and add some agents to
n.ODAgts. Thus a typical node looks like in Fig. 2b, where suc-
cessors are computed differently for OD and other meta-agents.
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(a) In the root node, all
meta-agents are singletons
and no agent is OD. Their
next positions is a priori
given by the subsolver.

1

2

3

4 5

c

cc

(b) In a typical node, some agents
are OD (e.g. agents 4 and 5). The
others are partitioned into meta-
agents (e.g. {1} and {2, 3}) and
the subsolver gives the next posi-
tions for each meta-agents.

Figure 2: Treatment of regular meta-agents and OD agents in a node.

Predecessors. Each node n also stores the set of node predeces-
sors in n.predecessors: this is the set of nodes from which the cur-
rent node was reached in one step during the search. A special field
n.bestpred contains the predecessor with the least cost; this is used
to compute the optimal execution to a given node. A node n′ is a suc-
cessor of n if n belongs to n′.predecessors; this is written n → n′.
We write n

∗−→ n′ if n = n′ or n′ can be reached from n by succes-
sively applying→.

Cost, Heuristic, and Priority. We now describe the cost, heuristic
and priority of a node that are standard notions in heuristic search
algorithms. The field n.cost is the minimal cost of reaching n from
the source node so far in the search graph.

The heuristic n.h of node n is defined as

n.h = ϵ

|n.c|∑
a=0

shPathCost(n.ca, ta) (1)

where shPathCost(n.ca, ta) is the cost of a shortest path from posi-
tion n.ca to the target ta. The factor ϵ is called inflation factor and
increases the weight of the heuristic which allows to find sub-optimal
executions faster but at the cost of suboptimality. Previous works
have considered inflation factors varying between 1 and around 10
in the setting of MAPF [21, 4].

The priority of a node n in the priority queue in the search algo-
rithm is priority(n) = n.cost+ n.h.

Algorithm 1 Node constructor
1: Input: a complete configuration c, a (possibly complete)

configuration c′, subset ODAgts of agents
2: Output: a node n with n.c = c and n.c′ = c′

3: function NODE(c, c′,ODAgts):
4: ifNG contains n with n.c=c and n.c′=c′ then
5: if n.ODAgts ̸⊆ ODAgts then
6: n.ODAgts← n.ODAgts ∪ ODAgts

7: return n
8: create an object n of type Node:
9: if c′ is complete then (n.c, n.c′)← (c′, ∅)

10: else (n.c, n.c′)← (c, c′)
11: n.cost← +∞; set n.h by (1)
12: n.ODAgts← ODAgts;
13: n.meta← {{a} | a ∈ Ag}
14: return n



Node Constructor. Algorithm 1 explains how a node is con-
structed. line 4 ensures that there is at most one node for a given pair
(c, c′). If there is already a node n with n.c = c and n.c′ = c′, we
return it. Otherwise, we create a fresh node. In case c′ is complete,
we construct a complete node (see line 8). Agents ODAgts are OD
agents and thus form n.ODAgts, while all other agents are singleton
meta-agents. Initially, when a node n is created, n.cost is set to +∞.

3.2 Conflicts

A node that is created temporarily by the algorithm can contain col-
lisions or can be disconnected. For a node n, we define the following
set of agent pairs that are in vertex conflict:

{(i, j) ∈ Ag2 |i ̸= j, n.c′i = n.c′j or n.ci = n.cj}. (2)

We moreover consider pairs of agents in swapping conflict:

{(i, j) ∈ Ag2 |i ̸= j, n.ci = n.c′j and n.cj = n.c′i}. (3)

We define collisions(n) as the union of (2) and (3). In our experi-
ments, we will distinguish the setting with only vertex conflicts (fol-
lowing some previous work e.g. [2]), and the one with both vertex
and swap conflicts (as in e.g. [4]).

We see collisions(n) as a set of undirected edges between agents,
and we write Comp(collisions(n)) for the set of connected compo-
nents of that graph: it is a partition of the set of agents. For example,
if Ag = {1, 2, 3, 4, 5} and collisions(n) = {(1, 2), (2, 5)} then we
have Comp(collisions(n)) = {{1, 2, 5}, {3}, {4}}. Define

conflicts(n) =


Comp(collisions(n)) if n is incomplete or connected,
{Ag} if n is complete and not connected,
∅ otherwise.

A node has conflicts if conflicts(n) ̸= ∅, and is conflict-free oth-
erwise. Our definition of conflicts follows [6], except we consider
the connected component of agents in conflict, and add disconnec-
tivity. Unlike collisions, connectivity is a constraint concerning all
agents, so it cannot be dealt with by handling pairs of agents locally.
We thus form a big meta-agent by gathering all agents in case of a
connectivity conflict. We will show that we can still guarantee good
performance in this case thanks to the use of the efficient subsolver.

In the original ODrM∗, forming such a large meta-agent would
mean falling back to OD (since recursive calls require smaller in-
stances), which is less efficient. Our insight is to rely on an efficient
but possibly incomplete subsolver here (which often does find solu-
tions), and switch to OD only as a last resort. This will be formally
explained in the following description algorithm.

3.3 Main Procedure

The main procedure, given in Algorithm 2, has similar skeleton as
Dijkstra’s algorithm. A priority queue OPEN initially contains the
root node associated with the source configuration s (line 4). As long
as OPEN is non-empty, we pop a most prioritized node from OPEN.
If the current n contains the target configuration t (line 9), we extract
the execution by following the pointers to the best predecessors (line
10). Line 12 computes the set of successors of n. If there are no OD
agents, we get exactly one successor using the subsolver as an oracle
for each meta-agent. Otherwise, we compute the successors via OD.

Algorithm 2 Algorithm CODM∗

1: Input: graph G, source and target configurations s, t.
2: Output a conflict-free execution from s to t.
3: function SEARCH(G, s, t):
4: OPEN← priority queue containing Node(s, ∅)
5: CLOSED← ∅
6: while OPEN ̸= ∅ do:
7: pop from OPEN a node n with priority(n) minimal
8: add n into CLOSED
9: if n.c = t then:

10: return the execution [s, . . . , n.bestpred.c, n.c]

11: aToMerge← ∅

12: S ←

{
{SUBSOLVERSUCC(n, t)} if n.ODAgts = ∅
ODSUCCESSORS(n) otherwise

13: for n′ in S do
14: if conflicts(n′) ̸= ∅ then:
15: aToMerge← merge(aToMerge, conflicts(n′))
16: else
17: add n to n′.predecessors
18: cost′ ← n.cost+ GETCOST(n, n′)
19: if n′ ̸∈ CLOSED and cost′ < n′.cost then
20: n′.cost← cost′

21: n′.bestpred← n
22: add n′ in OPEN
23: if n′∈CLOSED and n′.ODAgts was modified then
24: remove n′ from CLOSED, add n′ into OPEN

25: aToMerge← merge(aToMerge, n′.meta)

26: BACKPROPMERGE(n, aToMerge,OPEN,CLOSED)
27: if no node was added to OPEN in this iteration then
28: BACKPROPODAGTS(n,OPEN,CLOSED)
29: return No Solution

We then process all successors n′. If n′ has conflicts, we discard
it but keep information about conflicting agents in aToMerge. Oth-
erwise, we update n′ in the Dijkstra/A∗ style (line 18-21). On line
18, GETCOST(n, n′) refers to

∑
a∈Ag\dom(n.c′) dist(n.ca, n

′.ca) +∑
a∈dom(n′.c′)\dom(n.c′) dist(n.ca, n

′.c′a), where dist(p, p′) ∈ {0, 1}
is the distance in the topological graph between two positions p and
p′. If n′ is a complete node, then n′.c′ = ∅ and the second part of
the sum will be zero. But if n′ is an incomplete node, then the first
part of the sum will be equal to zero because ∀a ∈ Ag, n.ca = n′.ca
implies dist(n.ca, n′.ca) = 0, the second part however will give us
the number of agents that have changed positions between n and n′.

On line 24, we reopen a node n′ if it is in CLOSED, and if its OD
agents were modified (this modification refers to line 6 of the node
constructor). This line is crucial for completeness, and is specific to
our algorithm due to the use of incomplete subsolvers.

Agents to merge. When n′ has conflicts, variable aToMerge gath-
ers information about which meta-agents to merge to avoid recom-
puting successors with conflicts. If two agents are in conflict in the
successors computed by the subsolver, these are merged into a sin-
gle meta-agent (see Fig. 4a). However, to ensure completeness, such
merge operations must be backpropagated to the predecessors of the
node. We impose that the partition of meta-agents in a node is always
finer than the ones in its predecessors, as shown in Fig. 3. The merge
and its backpropagation is performed in BACKPROPMERGE.

{{1, 2, 3}}

{{1, 2}, {3}}

{{1, 2}, {3}}

{{1}, {2, 3}}

{{1}, {2}, {3}} {{1}, {2, 3}}

Figure 3: Nodes shown with their predecessors and their meta-agents.
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(a) A conflict in the next configuration produced by the subsolver re-
sults in merging the meta-agents.
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(b) If the subsolver fails to find a solution for a given meta-agent, then
all the agents in that meta-agent become OD.

Figure 4: Treatment of the meta-agents: merging and OD.

OD as a last hope. If the algorithm has made no progress in a
given iteration, that is, if no nodes were added to OPEN, then on
line 27, BACKPROPODAGTS is called on this node, which has the
effect of falling back to OD for this node and some of its predeces-
sors. This part of the algorithm is new compared to ODrM∗, and is
necessary for ensuring completeness.

3.4 Successor Computation

Algorithm 3 Successors given by an optimal solver.
1: Input: A node n, the target configuration t.
2: Output: a set S of (possibly with conflict) successors for

the node n.
3: function ODSUCCESSORS(n, t):
4: pick the smallest agent a in n.ODAgts \ dom(n.c′)
5: C′ ← {n.c′[a← v] | (n.ca, v) ∈ EM}
6: return {NODE(n.c, c′, n.ODAgts \ {a}) | c′ ∈ C′}

Nodes with OD agents. The set of successors is computed by
Alg. 3. We pick an agent a, and create a node successor for each
possible next position for a. Here, we write n.c′[a← v] for denoting
a new configuration which is a copy of n.c′, but in which agent a has
been assigned to position v.

Algorithm 4 Single successor given by the subsolver.
1: Input: A node n, the target configuration t.
2: Output: the successor (possibly with conflict) for the

node n.
3: function SUBSOLVERSUCC(n, t):
4: c′ ← ∅; ODAgts← ∅
5: for ma in n.meta do
6: match SUBSOLVER(n.c|ma, t|ma):
7: case Success(c1, . . . , cℓ): c′ma ← c2

8: case Fail: ODAgts← ODAgts ∪ma

9: return NODE(n.c, c′,ODAgts)

Nodes without OD agents. In this case, the set of successors is
a singleton containing the node returned by Alg. 4. For each meta
agent ma, we call the subsolver from n.c|ma with target t|ma (line 6).

If this call is successful, it returns a conflict-free execution
c1, . . . , cℓ with c1 = n.c|ma and cℓ = t|ma (this execution is only
for agents in ma). We then move agents of ma to their next positions
given by the second configuration in that execution (line 7).

If the subsolver fails, we declare the faulty agents in ma to become
OD in the next node (line 8), see Figure 4b.

Although there are no conflicts in each c′ma, the obtained config-
uration c′, thus the returned successor node, might contain conflicts
since the meta-agents were processed separately. These are handled
on line 14 in Alg. 2.

3.5 Merging Meta-agents

In this section, we formalize the relations between the meta-agents
of the nodes of the search graph, and the property of the merge func-
tion which merges meta-agents. This formalization turns out to be
crucial for expressing the invariants and the properties used in the
termination and completeness proofs (see Section 4).

Definition 1. Let A and B be two disjoint sets of meta-agents. We
say that A is included/finer in B, denoted by A ⊑ B if all the meta-
agents of A are a subset of at least one meta-agent of B. Formally:
A ⊑ B if for all ma ∈ A, there exists ma′ ∈ B such that ma ⊆ ma′.

Example 3. {{1}, {2, 3}, {4, 5}} ⊑ {{1, 2, 3}, {4, 5}}. However,
{{1, 2}, {3, 4, 5}} ̸⊑ {{1, 2, 3}, {4, 5}}.

Let us define the merge of two disjoints sets X and Y of meta-
agents. It is the finest disjoint set that is coarser than X and Y .

Definition 2. Let X,Y be two disjoint sets of meta-agents. We define
merge(X,Y ) to be the disjoint set Z of meta-agents which contains
all agents in X,Y (i.e. ∪Z = ∪ma∈X∪Y ma), such that X ⊑ Z,
Y ⊑ Z and Z is ⊑-minimal2.

Example 4. The merge of X = {{1, 2, 3}} (singleton set of a meta-
agent made of three agents) and Y = {{3, 4, 5}, {6, 7}} (set of
two meta-agents) is the following set of two disjoint meta-agents:
{{1, 2, 3, 4, 5}, {6, 7}}.

Given two sets X,Y of meta-agents, merge(X,Y ) can be ob-
tained from X ∪ Y by repeatedly merging pairs of meta-agents with
non-empty intersection. More precisely, this is a fixed point that can
be computed by Algorithm 5.

Algorithm 5 Merge of two disjoint sets X and Y of meta-agents.
1: Input: two disjoint sets X and Y of meta-agents.
2: Output: the merge of X and Y .
3: function MERGE(X,Y ):
4: Z ← X ∪ Y
5: while ∃ma,mb ∈ Z and ma ∩mb ̸= ∅ do
6: Z ← (Z \ {ma,mb}) ∪ (ma ∪mb)

7: return Z

Example 5. The computation of merge(X,Y ) in Ex-
ample 4 proceeds as follows. Initially, we have Z =
{{1, 2, 3}, {3, 4, 5}, {6, 7}}. At the first iteration, we as-
sign Z ← {{6, 7}} ∪ ({1, 2, 3} ∪ {3, 4, 5}), and return
{{1, 2, 3, 4, 5}, {6, 7}}.

3.6 Backpropagation merging

The goal of BACKPROPMERGE, given in Algorithm 6, is to merge
meta-agents along the predecessors of the given node, to ensure that
if n→ n′, then n′.meta ⊑ n.meta (see Invariant (4) in Section 4).

There is a second back propagation algorithm BACK-
PROPODAGTS which puts all agents not in dom(n.c′) to n.ODAgts;
this implements the “OD as a last hope” strategy explained above,
and is needed for completeness.

2 meaning that there is no Z′ with Z ̸= Z′, X ⊑ Z, Y ⊑ Z and Z′ ⊑ Z



(a) Office 2D (80×60). (b) Rooms 2D (36×43). (c) Pyramid 3D (21×15×5). (d) Obstacles 2D (70×60×5).
Figure 5: Environments from [2] used for experiments. The communication radius are respectively 1 pixel, 4 pixels, 3 pixels and 3 pixels.

Algorithm 6 Back propagation
1: Inputs: Node n, and a set of meta agents aToMerge
2: Output: true iff at least one node was added to OPEN
3: Effects: . Local variables of Algorithm 2 are updated.
4: function BACKPROPMERGE(&n, aToMerge,&OPEN,&CLOSED):
5: if aToMerge ̸⊑ n.meta then
6: n.meta← merge(n.meta, aToMerge)
7: if n ∈ CLOSED then
8: remove n from CLOSED , add n into OPEN

9: for n′ in n.predecessors do
10: BACKPROPMERGE(n′, n.meta,OPEN,CLOSED)

Algorithm 7 Back propagation of ODAgts

1: Inputs: Node n, and a set of meta agents aToMerge
2: Effects: . Local variables of Algorithm 2 are updated.
3: function BACKPROPODAGTS(&n,&OPEN,&CLOSED):
4: if n∈CLOSED and n.ODAgts ̸= Ag \ dom(n.c′) then
5: n← NODE(n.c, n.c′,Ag \ dom(n.c′))
6: remove n from CLOSED , add n into OPEN
7: else if n ̸∈ OPEN then
8: for n′ in n.predecessors do
9: BACKPROPODAGTS(n′,OPEN,CLOSED)

3.7 Optimizations

We noticed that CODM∗ performs better when target configurations
agents are not packed, since the very last steps require careful plan-
ning to allow all agents enough space to reach their targets. We
consider an optimization where we alternate forward and backward
search, switching between the two every k iterations (we empirically
chose k = 500 in our experiments). Moreover, we use a simple scor-
ing system for start and target configurations to decide at which mode
to start the search. A higher score intuitively means that the agent at
v is free to move around (the agents are less packed). If the target
configuration has a higher score, then we start with forward search,
otherwise we start with the backward search. The optimized version
of the algorithm is referred to as CODM∗-opt.

4 Theoretical Analysis of the Algorithm
We assume that the subsolver, when presented with an instance of
CMAPF, either fails, or returns a successor configuration which is
conflict-free. Moreover, if the instance has a single agent, then the
returned successor must be part of a shortest path to target.

The search graph denoted by G is, at a given iteration, a di-
rected over the node set NG which contains all nodes in OPEN
or CLOSED; with an edge n from n′, denoted n → n′ iff n ∈
n′.predecessors. We use the notation ∗−→ as defined previously.

Proving termination is not trivial as visited nodes can be reopened.
We prove termination by arguing that at each iteration, either the
number of total meta-agents decreases (i.e. some meta-agents are
merged), or the number of OD agents increases.

Theorem 1 (Termination). Algorithm 2 terminates.

We now address completeness which is nontrivial to prove. First
notice that the algorithm ensures that each n.meta is a partition of
Ag, and that all nodes in G are conflict-free. We prove that all nodes
n, n′ ∈ NG satisfy the following invariant (see Fig. 3):

if n ∗−→ n′ then n′.meta ⊑ n.meta. (4)

The proof of completeness crucially relies on (4) which is used to
prove more detailed invariants that prove completeness. Intuitively,
we show that every node n ∈ CLOSED is either OD and all its pos-
sible successors have been generated, or n has a descendant n′ in
OPEN, which means that when n′ is processed, back propagation
will possibly reach n and merge its meta-agents. But merging meta-
agents means that these will eventually form a single meta-agent, and
then become OD; then completeness follows since OD does generate
all possible successors.

Theorem 2 (Completeness). If an instance ⟨G, s, t⟩ of the CMAPF
problem admits a solution, then Algorithm 2 finds one.

Proofs of both theorems are given in the appendix.

5 Experiments
We evaluate CODM∗ and CODM∗-opt by comparing them with the
implementation of Connected-CA∗ of [2]. We do not compare here
with the algorithms of [20] which were shown to be significantly
slower than Connected-CA∗ [2]; and the algorithm of [12] which
fails to improve over [20]. Other algorithms such as [7] consider a
different model of connectivity constraints so comparison is not easy.
Last, [3] describes an algorithm for a class of topological graphs but
it is not clear whether the considered environments here fall in this
class; and they do not provide an implementation.

While we compare with WHCA* that is probabilistically complete,
the subsolver used in CODM∗ is obtained by disabling the random-
ization scheme which means that it becomes incomplete, but always
returns a result fast, either by providing a successful execution or by
failing. The experiments were conducted on an Intel core i7 CPU on
an Ubuntu 23.10 system. Each run was allowed 6 GB of RAM, and
130 seconds of computation time.

Benchmarks We consider the environments used in [2] with minor
modifications (e.g. one map modified to remove an isolated pixel
causing deadlocks); we randomly generated 20 fresh instances with
n agents, for 1 ≤ n ≤ 300. The environments are shown in Fig. 5;
the 3D maps were obtained by copying the shown bitmap along the
z axis, and adding random obstacles in each dimension.

Results We evaluate our algorithms by distinguishing the case with
connectivity and only vertex conflicts, and the case with connectiv-
ity, vertex, and swap conflicts. Because [2] and several earlier works
only considered the former setting, this allows us to compare with the
previous work under the same conditions, while we believe the latter
case is more realistic. CODM∗ performed systematically better than
Connected-CA∗ on all benchmarks. In the case without swapping
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Figure 6: Success rates with connectivity, and vertex conflicts only. Each point (x, y) in the graph of an algorithm means that the percentage of
success was y among the instances with x agents in the given environment.
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Figure 7: Success rates considering connectivity, vertex and swapping conflicts: the y axis represent the percentage of success and the x axis
the number of agents.

conflicts (Fig. 6), CODM∗ has near 100% success rate on instances
over 100 agents (and up to 170 agents in Pyramid 3D). The opti-
mized version improved the success rate on the two first benchmarks;
but not on the two others. This might be due to our scoring system
giving less relevant information in higher dimensions; this will be
further investigated in future work. In the case with swapping con-
flicts (Fig. 7), we compare our algorithm with our modification of the
Connected-CA∗ implementation of [2] to account for these conflicts.
Here, the success rate decreased faster; with CODM∗ still perform-
ing better than Connected-CA∗: CODM∗ ensured a success rate of
above 90% on instances with at least 60 agents, while Connected-
CA∗ could only achieve this success rate up to 30 agents. We believe
the additional difficulty in the case of swapping conflicts is due to the
density of the start and target configurations: connectivity constraints
force agents to remain close to each other, and when the number of
agents increase, the algorithm fails to find successors to many agents
due to congestion, which creates an excessive number of collision
conflicts, and we end up processing many agents by OD.

Our algorithm computed executions whose makespan (i.e. the size
of the longest path) was often comparable with that of Connected-
CA∗, except that on many instances that are hard for Connected-
CA∗, CODM∗ computed shorter executions. Some data comparing
the makespans is provided in the supplementary material.

Alternative Variants of CODM∗ We considered a direct exten-
sion of ODrM∗ for connectivity constraints, that is CODM∗ where
recursive calls replace the calls to the subsolver. This approach hardly
scaled to instances with 10 agents, so we do not include the details
here. We also tried using CODM∗ to solve MAPF instances (with-
out connectivity constraints). This had comparable performance to
ODrM∗, in some cases yielding better success rates due to lower
memory usage (ODrM∗ can run out of memory on difficult instances
rather quickly, where the subsolver CA∗ of CODM∗ needs much less
memory). Despite some improvement in performance, this did not
achieve the performance of state-of-the-art suboptimal solvers [8].

6 Related Works and Conclusion

The CMAPF problem is closely related to the MAPF problem (with-
out connectivity) where a large body of work exists. Some other
algorithms used for MAPF are conflict-based search (CBS) and its
variants [15, 9]. These algorithms belong to the decoupled approach
where paths are computed separately for each agent, and possible
conflicts are handled at a higher search level. An alternative approach
for CMAPF could be considering MA-CBS which CBS with meta-
agents and using Connected-CA∗ for computing paths for meta-
agents. Suboptimal algorithms have also been investigated for MAPF
in order to improve the scalability, e.g. EECBS [10], and large neigh-
borhood search [11]. Our algorithm is suboptimal because the sub-
solver is suboptimal, but we have not investigated further any tech-
niques to exploit suboptimality in favor of performance.

Our algorithm is modular. Indeed, by replacing the functions
ODSUCCESSORS and SUBSOLVERSUCC, we obtain different ver-
sions of M∗. For example, if the subsolver always fails, we obtain
ODM∗; and if, in addition, ODSUCCESSORS is replaced with A∗,
then this yields M∗. Replacing ODSUCCESSORS with A∗, and us-
ing recursive calls instead of the subsolver, we obtain rM∗; and using
ODSUCCESSORS with recursive calls yields ODrM∗. CODM∗ can
thus be seen as an extension of all these variants allowing the use of
incomplete (and suboptimal) MAPF and CMAPF subsolvers.

Connectivity constraints imply, as a side effect, that agents remain
close to each other during the mission; this is thus related to other
types of constraints such as crowd planning in video games where
the goal is to move agents from a configuration to another while
keeping them grouped [22]. This application has however different
constraints such as real-time performance, and connectivity, in our
sense, is not a hard constraint; we leave the investigation of similari-
ties for future work.

Acknowledgement. This work was supported by the ANR EpiRL
project ANR-22-CE23- 0029.
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A Appendix
A.1 Additional Experiment Data

Figures 8 and 9 show cactus plots of running times for three al-
gorithms we consider, namely, Connected-CA∗ [2], CODM∗, and
CODM∗-opt with and without swapping conflicts.

Figures 10 and 11 show the cactus plots of makespans of the com-
puted executions for the three algorithms we consider, with and with-
out swapping conflicts. The makespan of an execution is the size of
the longest path of an individual agent.

CODM∗ often computed executions with shorter makespan, es-
pecially on instances that are hard for Connected-CA∗. One excep-
tion was on Office 2D with swapping conflicts (Fig. 11), where
Connected-CA∗ found slightly shorter executions (but it failed to
solve many instances).

A.2 Proofs

Before diving into the proofs, let us present the notations used to talk
about the search graph. We then give the proofs.

A.2.1 Notations

At any iteration, the nodes created by the algorithm define the search
graph denoted by G: For a search graph G, let NG denote the set of
nodes (which is the union of OPEN and CLOSED). Recall that there
is an edge from n to n′, denoted n→ n′ iff n ∈ n′.predecessors. We
write n

∗−→ n′ if there is a sequence of nodes n1, . . . , nn such that
ni → ni+1 for all 1 ≤ i ≤ n − 1, n1 = n, and nn = n′. Note
that we have n

∗−→ n by definition. We distinguish the initial node,
denoted init, which is the node that contains the initial configuration.
Note that by construction, after each iteration, for all nodes n of G,
we have init

∗−→ n.

A.2.2 Termination

We call a pair (c, c′) where c is a full configuration and c′ an incom-
plete configuration a configuration pair. Let CC denote the finite set
of configuration pairs.

Proof of Theorem 1 (Termination). For each search graph G, we de-
fine the following function fG mapping configuration pairs (c, c′) to
N, as follows. Given (c, c′) ∈ CC,

fG(c, c
′) =

{
|n.meta|+ |Ag \ n.ODAgts| if n ∈ NG
2|Ag|+ 1 otherwise.

Intuitively, fG(c, c′) assigns, to any node of the graph, the number
of meta-agents plus the number of non-OD agents at that node, and
2|Ag| + 1 to any configuration pair that is not a node in the graph.
Note that the number of meta-agents in any node of G is at most
|Ag|, and we also have |n.ODAgts| ≤ |Ag|. So assigning 2|Ag|+ 1
to configuration pairs not yet in the graph ensures that when a node
with the said pair is added to the graph, fG(c, c′) decreases.

Consider

V =

 ∑
(c,c′)∈CC

fG(c, c
′), |CC| − |CLOSED|


The first component V1 is the sum of the function fG over all con-

figuration pairs (c, c′). The second component V2 is the difference
between the size of the finite set CC and the size of the CLOSED set.

We always have |CC| ≥ |CLOSED| since there is at most one node
per configuration pair. Both components of V are nonnegative. We
are going to prove that V decreases at each iteration, in the lexico-
graphic order.

First, notice that fG(c, c′) can only decrease or stay unchanged at
every iteration. In fact, when a fresh node is created with (c, c′), we
have fG(c, c

′) < 2|Ag| + 1 so the value decreases. If one modifies
an existing node for a pair (c, c′), this is only done either by merging
meta-agents (in which case n.meta decreases), or by adding agents
to n.ODAgts in which case |Ag \ n.ODAgts| decreases (while none
of the terms can increase).

Consider an iteration of Algorithm 2. On line 8, a node n is added
to CLOSED: this is the only place a node is added to CLOSED, and
this happens at every iteration. If no node is removed from CLOSED
in iteration, then V2 decrease and so does V . We are going to distin-
guish cases where a node is removed from CLOSED, and argue that
V decreases at each case.

There are three places where a node is removed from CLOSED.

Case 1. Main Algorithm Assume that some node n′ is removed
from CLOSED in Algorithm 2, on line 24. This is only possible if
n′.ODAgts was modified in the node constructor on line 6, which
means that |Ag \ n.ODAgts| decreases (and recall that n.meta never
increases). Thus V1 decreases.

Case 2. BACKPROPMERGE Assume a node is removed from
CLOSED inside BACKPROPMERGE. By the conditional of line 5,
we have aToMerge ̸⊑ n.meta, and the merge operation of line 6
merges some meta-agents in n. Thus, |n.meta| decreases, that is, V1

decreases.

Case 3. BACKPROPODAGTS Assume a node is removed from
CLOSED in BACKPROPODAGTS. By the conditional, this only hap-
pens for a node n with n.ODAgts ̸= Ag \ dom(n.c′), while line 5
calls the node constructor with ODAgts = Ag \ dom(n.c′), which
means that |Ag \ n.ODAgts| decreases, and so does V1.

It follows that Algorithm 2 terminates.

A.2.3 Completeness

Lemma 1. Consider the search graph G at the beginning of any
iteration of the algorithm. For all nodes n, n′ ∈ NG , if n ∗−→
n′, then n′.meta ⊑ n.meta.

Proof. Initially the graph only contains one node, so the property
holds trivially.

Consider any iteration where the property holds.
We are going to prove this property for all n, n′ such that n→ n′.

In fact, if n → n′′ → n′, and n′′.meta ⊑ n′.meta, n′.meta ⊑
n′′.meta, then by transitivity of the relation ⊑, we have n′.meta ⊑
n.meta.

Let the node popped from the open list in a given iteration be called
the pivot node. Let p denote the pivot node of the considered itera-
tion.

There are two types of nodes whose meta-agents are modified in
an iteration: newly created successor nodes of p; and all predecessor
nodes n with n

∗−→ p on which backPropagate is called (recall that
backPropagate is called recursively along predecessors of p).

We prove that the property holds for all edges n → n′ where
backPropagate was called on n. We proceed by induction on the
recursion depth of backPropagate.

Base case. The base case (with recursion depth 0) is when n = p.
Let us first show that the property holds for edges of type p → n′
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Figure 8: Cactus plots of executions times for the three algorithms in the case with connectivity, and vertex conflicts only. Each point (x, y) in
the graph of an algorithm means that x benchmarks were solved each within y seconds. Thus a graph that is lower than the other means the
algorithm is faster.
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Figure 9: Cactus plots of executions times for the three algorithms in the case with connectivity, and vertex with swapping conflicts. Each point
(x, y) in the graph of an algorithm means that x benchmarks were solved each within y seconds. Thus a graph that is lower than the other
means the algorithm is faster.

where n′ was added as a successor to p. Here if n′ is a new node,
then, by definition, n′.meta contains |Ag| singletons, and we do have
n′.meta ⊑ p.meta trivially. Assume that n′ belongs to CLOSED or
OPEN. By line 25, and Definition 2, we have n′.meta ⊑ aToMerge;
moreover, backPropagate is called on p in Algorithm 2 (line 26). It
follows that, by line 6 of Algorithm 6, p.meta is updated so that
aToMerge ⊑ p.meta. By transitivity, we have n′.meta ⊑ p.meta.

Inductive Case. Consider now nodes n → n′ with n →∗ p and
n′ →∗ p such that n′ was visited by backPropagate before n is vis-
ited. But then backPropagate was called on n with second argument
n′.meta (on line 10), which implies that at the end of the said call,
n′.meta ⊑ n.meta.

Proof of the Theorem 2 (Completeness). The algorithm has the fol-
lowing invariants:

• (I1)∀n ∈ NG , n.ODAgts ⊆ Ag \ dom(n.c′).
• (I2)∀n ∈ CLOSED, n.ODAgts = Ag \ dom(n.c′) or ∃n′ ∈

OPEN, n
∗−→ n′.

• (I3)For all nodes n ∈ NG , if n.ODAgts = Ag \ dom(n.c′) then
either n ∈ OPEN or for some agent a ∈ n.ODAgts, all conflict-
free nodes

{Node
(
n.c, n.c′[a← v], n.ODAgts \ {a}

)
(n.ca, v) ∈ EM}

(5)
are inNG .

We first prove (I1). Assume that the invariant holds at the be-
ginning of an iteration. The only place where n.ODAgts is mod-
ified for a node n is the node constructor, Algorithm 1, line 6,
where n.ODAgts is updated as n.ODAgts∪ODAgts. The node con-
structor is called in three places: in Algorithm 4 with ODAgts =
Ag \ dom(n.c′), in Algorithm 3 with ODAgts = n.ODAgts \ {a},

and in Algorithm 7 with ODAgts = Ag \ dom(n.c′). In all cases,
(I1)is preserved.

We now prove (I2). Initially, CLOSED is empty, so the invariant
holds. Assume that (I2)holds at the beginning of an iteration. At
each iteration, a single node n is removed from OPEN, and is added
to CLOSED. Moreover, other operations in the main loop, or inside
backPropagate possibly adds nodes in OPEN but do not add any
other node to CLOSED. To prove that (I2)holds after the iteration,
we thus only need to check whether the condition still holds for n
itself and all nodes from which n is reachable, that is n′ such that
n′

∗−→ n.
During the iteration where n is popped from OPEN, if there exists

n′′ ∈ S that is without conflicts, and not in CLOSED, then the edge
n → n′′ is added to G and n′′ is in OPEN, and the invariant is sat-
isfied for n and all n′ with n′

∗−→ n. If no successor of n was added
to OPEN, but some n′′ ∈ S is in CLOSED, and its n′′.ODAgts was
modified (either Algorithm 3, line 6, or Algorithm 4, line 9, then n′′

is also added to OPEN. The invariant also holds for all nodes.
Assume no node in S was added to OPEN during the iteration. If

n is added back to OPEN during the call to backPropagate (Algo-
rithm 6, line 8), the invariant holds again (recall that n ∗−→ n). Oth-
erwise, no node was added to OPEN in the current iteration (Algo-
rithm 2, line 27). In this case, Algorithm 7 is called, which visits the
current node and all its predecessors until, some node in CLOSED
is encountered with n.ODAgts ̸= Ag \ dom(n.c′), in which case
n.ODAgts is modified and n is added to OPEN. Thus, along each
branch, all visited nodes n either n.ODAgts = Ag \ dom(n.c′), or
they are added to OPEN; therefore the invariant holds for all nodes
that can reach n.

We consider now (I3). Initially, the graph only contains the ini-
tial node with n.ODAgts = ∅, so the invariant holds.

Consider an iteration, and assume that (I3)holds at the begin-
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Figure 10: Cactus plots of costs for the three algorithms in the case with connectivity, and vertex conflicts only. Each point (x, y) in the graph
of an algorithm means that x benchmarks were solved providing an execution with makespan y (which is the size of the longest path). Thus a
graph that is lower than the other means that the algorithm finds shorter executions.
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Figure 11: Cactus plots of costs for the three algorithms in the case with connectivity, vertex, and swapping conflicts.

ning.
Consider an iteration in which some n ∈ NG was modified or

freshly created and added to NG and satisfies n.ODAgts = Ag \
dom(n.c′). Notice that any modification to n.ODAgts occurs either
in the node constructor, or in BACKPROPODAGTS. In the former
case, n belongs to S.

We distinguish two cases. First, assume that n belongs to S at the
considered iteration, and that it is conflict-free (if it has a conflict, n
is never added toNG).

• If n is not in CLOSED and its cost was improved, then it is added
to OPEN (Algorithm 2, line 22) and the property holds for n.

• If n is in CLOSED and n.ODAgts was just modified in the node
constructor, n is re-added to OPEN, and the property holds for n.

• Otherwise, both of the conditionals evaluate to false, which means
that one of the conditions hold:

– n ∈ CLOSED and n.ODAgts was not modified. Consider the
latest iteration where n was popped from OPEN (such an iter-
ation exists since n is in CLOSED). Furthermore, at that itera-
tion, we must already have n.ODAgts = Ag \ dom(n.c′) since
any modification to n.ODAgts means n is put back to OPEN
(see BACKPROPODAGTS). During this iteration, ODSucces-
sors was called, thus, all of successors of n were added to S
for some agent a ∈ n.ODAgts (Algorithm 3, line 6). Thus,
all conflict-free successors n → n′ were added to NG , which
means (I3)holds.

– cost ≥ n.cost and (either n ̸∈ CLOSED or n.ODAgts was not
modified). If n ̸∈ CLOSED, then n is in OPEN (because n is in
NG), and the invariant holds for n. Otherwise, if n ∈ CLOSED,
then n.ODAgts was not modified, and this is the previous case.

Assume now that n.ODAgts was modified in BACK-
PROPODAGTS. But this function sets n.ODAgts = Ag \ dom(n.c′)
and adds n to OPEN, so (I3)holds.

We now prove the main statement. Consider an execution
c1, . . . , cn that is a solution of the problem. Assume that the algo-
rithm has terminated without a solution, and has generated the graph
G. Let i ≤ n be the maximal index such that there is a complete node
n in G with n.c = ci. By assumption, i < n since otherwise the algo-
rithm would have returned a solution; and i ≥ 1 since c1 is the initial
configuration. By the maximality of i, no node with configuration
ci+1 is reachable from n.

Because the algorithm terminates without a solution only when
OPEN is empty, by (I2), we must have n.ODAgts = Ag. But
(ci, ci+1) is a consequent pair of configurations, so by a successive
application of (I3), we get that, because OPEN = ∅, there exists
n1, . . . , n|Ag| with n→ n1 → n2 → . . .→ n|Ag| where n|Ag| a com-
plete node with n|Ag|.c = ci+1; such that for all 1 ≤ k ≤ |Ag| − 1,
|dom(nk.c

′)| = k, and nk.c
′ = ci+1

j |dom(nk.c
′). In other terms, ci+1

j

is reached step by step by applying OD |Ag| times. Thus, because the
algorithm terminates by Theorem 1, it must terminate by returning a
solution.


