
HAL Id: hal-04650790
https://hal.science/hal-04650790

Submitted on 17 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Elastically modulated wavy vortex flow
Theofilos Boulafentis, Tom Lacassagne, Neil Cagney, Stavroula Balabani

To cite this version:
Theofilos Boulafentis, Tom Lacassagne, Neil Cagney, Stavroula Balabani. Elastically modu-
lated wavy vortex flow. Journal of Non-Newtonian Fluid Mechanics, 2024, 330, pp.105283.
�10.1016/j.jnnfm.2024.105283�. �hal-04650790�

https://hal.science/hal-04650790
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Journal of Non-Newtonian Fluid Mechanics 330 (2024) 105283

Available online 2 July 2024
0377-0257/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Elastically modulated wavy vortex flow

T. Boulafentis a, T. Lacassagne b, N. Cagney c, S. Balabani a,*

a Department of Mechanical Engineering, University College London, WC1E 6BT, UK
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A B S T R A C T

We investigate the transition pathway of low elasticity fluids (El = 0.003 − 0.008) in a Taylor-Couette config-
uration using low-molecular-weight polyacrylamide (PAAM) and visualisation experiments in the Reynolds
range from 0 to 300. We report here for the first time an elastically modified wavy vortex flow state with altered
spectral and structural characteristics, that precedes the onset of the traditional (inelastic) Newtonian wavy
instability. This new wavy regime is characterised by oscillations of both the inflow and outflow boundaries,
associated with a weakening of the outflow regions due to low hoop stresses. The modification of the boundaries
persists at higher Reynolds numbers, where the spectral characteristics are unaltered compared to the inelastic,
Newtonian case. In addition, a hysteretic behaviour is observed for increasing elasticity, as instabilities are
shifted towards lower critical Reynolds numbers, confirming the importance of even vanishing elasticity on the
stability of Taylor-Couette flows. At higher fluid elasticity (El = 0.06), the amplitude of inflows/outflows os-
cillations increases, and momentum is transferred axially between adjacent vortices, which may contribute to the
emergence of Rotating Standing Waves.

1. Introduction

The instabilities of Newtonian fluids subjected to shear between two
concentric cylinders, with one or both rotating, namely Taylor-Couette
flow (TCF), have been well-documented [17,22,24]. The most
commonly used control parameter for these instabilities in the simplest
case of a stationary outer and rotating inner cylinder is the Reynolds
number, Re = ρΩirid/η, where ρ is the fluid density, Ωi is the rotational
speed of the inner cylinder, ri is the radius of the inner cylinder, d is the
gap between the two cylinders, η is the dynamic shear viscosity of the
fluid. The primary instability leads to the formation of equally-spaced,
axisymmetric vortices, termed Taylor Vortex Flow (TVF), named after
the pioneering work of Taylor [42]. With increasing inertia, such sec-
ondary flows undergo a transition into non-axisymmetric, axially
oscillating vortices, a regime termedWavy Vortex Flow (WVF). WVF has
been studied for a wide range of geometrical parameters, both analyti-
cally and experimentally; an abundance of wave modes have been
revealed, attributed to an azimuthally moving wave whose speed de-
pends on Re [2,28,47]. A second travelling wave emerges as Re increases
further, leading to a quasi-periodic instability termed Modulated Wavy
Vortex Flow (MWVF) [13,27,40,41], prior to the appearance of the

so-called broadband spectral component, signifying the onset of chaos
[22]. The wavy and modulated wavy instabilities are associated with
enhanced intercellular mixing compared to TVF due to the presence of
the azimuthal wave which distorts the vortices periodically, allowing
intervortex momentum transfer [1,16].

Viscoelasticity, induced by the addition of polymer chains, modu-
lates the aforementioned Newtonian TCF sequence, leading to a variety
of more complex transition pathways that depend on the Elasticity
Number, El = teη/ρd2, where te is the relaxation time. Most studies in the
literature, focus on the transitions of solutions with Elasticity numbers in
the range El = 0.023 − 27 which are highly unstable [6,44] and are
characterised by the appearance of distinct flow states like Rotating
Standing Waves (RSW), Ribbons (RB) and Flame Pattern (FP) [7,32,39].

However, in the limit of vanishing elasticities (El ∼ 0), published
literature reports Newtonian-like transitions in dilute solutions of long-
chained polymers or solutions with high polymer entanglement, which
most of the time also exhibit shear-thinning behaviour ([9–11]; [14,
18]). Yet, some observations, such as the high-frequency WVF with
reduced amplitude oscillations in [14], suggest that even in cases where
the transition appears Newtonian-like, the flow instabilities can be
modified by the smallest amount of elasticity. Performing long
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experiments in the presence of low-molecular-weight polyacrylamide
(PAAM) at a constant imposed shear rate, [36] have reported a modi-
fication of time-dependent Newtonian flows leading to oscillations at the
boundaries with varying amplitude, which were eventually dampened
after 20 h. Surprisingly, this was not the case after decreasing the
rotational speed of the inner cylinder, indicating a dependence of the
flow on the shear history. Dutcher and Muller [18] reported a similar
example of altered time-dependent flows, where a MWVF flow state was
interposed for a short Re range between two WVF regimes in the tran-
sition path. Surprisingly, this was accompanied by a delay on the onset
of TVF as the elasticity increased, also reported in [10,14,46], possibly
attributed to shear-thinning effects. At high Re, around Re ≅ 800,
well-above the Newtonian WVF stability limit and after the appearance
of MWVF, a flow state reminiscent to WVF with altered structural
characteristics appeared [18].

The presence of fluid shear-thinning in experimental [9,19,48,20]
and numerical [45,48] studies makes it difficult to disentangle the ef-
fects of elasticity and shear-thinning on observed transitions and flow
phenomena.

Nevertheless, the experimental studies outlined above indicate a
strong effect of even low elasticities on time-dependent and weakly
turbulent flow states, but it remains unclear how the flow transitions are
affected in the case of vanishingly small elasticity.

In this work, experiments with lowmolecular weight polyacrylamide
(PAAM) polymer solutions were performed, with the following two
objectives: firstly, to refine our understanding of elastic instabilities in
the case of vanishing elasticities and absence of shear-thinning-achieved
through short-chained polymers- for increasing or decreasing inertia;
secondly to ascertain whether the increasing entanglement of polymer
chains is sufficient to trigger higher-order instabilities like the RSW/FP.
To this end, an experiment with a higher elasticity fluid, i.e. using longer
chain polymers, has also been performed to link RSW to the Newtonian-
like, wavy instabilities.

2. Materials and methods

We employ the same TC geometry (Fig. 1) as in our previous work
[11,29,29,31]. It has a height of H = 135 mm, inner and outer cylinders
radii of ri = 21.66 mm and ro = 27.92 mm, respectively, resulting in a
gap width of d = 6.26 mm, an aspect ratio of Γ = H/d = 21.56, a radius
ratio of ηcell = ri/ro = 0.776 and a curvature of d/ri = 0.289. The TC was
placed in a recirculating water tank to maintain the fluid temperature
constant throughout the experiments at 20 ± 0.1∘C. Both the TC cell and
the outer water container are made of transparent material for optical
flow measurements. The inner cylinder was rotated by means of a
stepper motor (SmartDrive Ltd, Cambridge, UK), with micro-stepping
function of 52,000 microsteps/revolution as described in [29,31].

A highly viscous solvent of 72% glycerol/water (WGL-72) and a low-
molecular-weight (Mn = 20, 000 g⋅ mol− 1) PAAM polymer were
selected to introduce low values of elasticities and negligible shear-
thinning. Polymer solutions with concentrations varying in the range
of 500–7000 ppmwere prepared and their shear rheology was measured
in an ARES rheometer at 20 oC, using a Couette geometry with ri=32mm
and ro=34 mm. The resulting shear viscosity curves are illustrated in

Fig. 2a. All solutions exhibit almost constant viscosity for the range of
shear rates studied and thus can be considered Boger fluids. This can be
quantified using the average scaling exponent of shear stress with strain
rate, ne, which tends to unity for Boger fluids (Table 1). By fitting the
Huggins equation [8] in the viscosity data (Fig. 2b), the critical overlap
concentration (i.e. the polymer concentration above which polymer
chains entanglement becomes significant) was estimated to be c∗ =
3967 ppm ([η] = 0.0002, kH = 0.3695).

An additional solution was prepared with the same solvent using 200
ppm of high-molecular-weight PAAM (Mw = 5.5 × 106 g⋅ mol− 1), to
achieve higher fluid elasticity. The viscosity curve of this solution is
noted as HMW in Fig. 2a. This solution lies also in the dilute regime
(c∗ = 718 ppm) (the analysis for the estimation of c∗ for this polymer is
not shown here for brevity).

Among all the fluids characterized in Fig. 2, two polymer concen-
trations corresponding to the dilute and a semi-dilute regime (1500 ppm
and 5000 ppm, respectively) were employed in the present TC experi-
ments, alongside the pure solvent case (WGL-72, Newtonian inelastic)
and the HMW solution. The relaxation time of the two low-molecular-
weight polymer solutions was estimated using extensional rheology
implementing the Slow Retraction Method (SRM) [12,38] and was
found equal to te = 2.4 and 4.4 ms for the 1500 and 5000 ppm,
respectively, corresponding to El = 0.003 and 0.008. The

Fig. 1. The Taylor-Couette cell and visualisation setup used in this work.

Fig. 2. (a) Viscosity curves for polymer solutions of low-molecular-weight
PAAM. The solvent case is noted as WGL-72 and the high-molecular-weight
PAAM solution as HMW. All solutions have almost constant viscosity and can
be considered Boger fluids. (b) Fitting of Huggins equation to the specific vis-
cosity data, ηsp = (η0 − ηs)/ηs, where η0 is the zero-shear viscosity and ηs the
solvent viscosity.

Table 1
Rheological characteristics of the solutions used in the TC experiments.

Solution State η
[Pa.s]

ne te [ms] β = ηp/η0 El

Newtonian
WGL-72 – 0.0372 1 – – –
Low molecular weight polymer
1500 ppm Dilute 0.0469 1 2.4 0.261 0.003
5000 ppm Semi-dilute 0.0856 0.997 4.4 1.3 0.008
High molecular weight polymer
HMW Dilute 0.0436 0.987 65.6 0.172 0.06

T. Boulafentis et al.



Journal of Non-Newtonian Fluid Mechanics 330 (2024) 105283

3

high-molecular-weight solution relaxation time was estimated using the
same method at te = 65.6 ms, resulting in El = 0.06. All fluid properties
used in the TC experiments are summarised in Table 1.

Experiments for the low-molecular-weight solutions were performed
for (a) increasing Re (ramp-up) (b) decreasing Re (ramp-down) and (c)
fixed Re (steady-states). Measurements covered the range Re = 0 − 300.
Polymer degradation was considered unlikely for the short-chained
polymers used in this work. The absence of degradation was further
validated by repeating a ramp-up experiment to ascertain that the
transitional sequence remains unaltered. The inner cylinder was accel-
erated/decelerated sufficiently slowly to ensure quasi-static ramp-up/
down conditions. The non-dimensional acceleration Γ0,which takes into
account the variation of Re compared to the viscous time scale, was kept
well-bellow the quasi-static limit, Γ0 = 0.3 < 1 [11,17,29,30](Table 2).
For the high-molecular-weight solution, a steady-state experiment at Re
= 105 was performed.

The Taylor-Couette flow was visualized using mica flakes (10–100
μm, Cornelissen & Son, Pearl Lustre Pigments), added to the solution
before each experiment [5,11,29] at low enough volume fraction
(0.01% v/v) to not affect the rheological properties of the fluids [23]. A
flow strip along the height of the cell (2176 × 16 pixels) was imaged
using a high-speed camera (Phantom Miro M340, Vision Research). The
acquisition frequency was fs = 80 Hz for the Newtonian case and fs =

130 Hz and 180 Hz for El = 0.003 and El = 0.008, respectively. More
than 300 frames/Re (1/ΔRe > 300), were acquired in all cases (Table 2),
where ΔRe is the variation of Reynolds number between two consecu-
tive frames. A much higher acquisition frequency of fs = 2000 Hz was
selected for the steady-state experiments to provide high temporal res-
olution of the wavy and RSW flows.

Following the acquisition, the image intensity was averaged to
obtain a single column of intensity I values, and spatiotemporal maps
I(z, t) were assembled by stacking different time points horizontally
(where z- and t- axes indicate spatial and temporal dimensions,
respectively). The intensity was then inverted to highlight the inflows/
outflow boundaries. In the ramp-up/down experiments, the t-axis was
converted to Re. Fast Fourier Transform was applied on the spatiotem-
poral intensity maps, both temporally (along the t-axis) and spatially
(along the z-axis), to reveal the dominant frequencies and wavelengths
of the flow, respectively. Frequency maps were thus constructed by
separating the ramp-up/down maps into sections with 512 columns and
50 % overlap, as described in [29].

3. Results and discussion

The transition sequence for the solvent case (not shown here for
brevity) is non-hysteretic (i.e. the same transition sequence occurs for
ramp-up and ramp-down) and well documented in the literature [3,17,
47]. Namely, the laminar Couette flow transitions firstly into TVF at
Reru

TVF = 100 and secondly to WVF at Reru
WVF = 200, where the subscript

signifies the flow state at which the flow transitions and the superscript
either the ramp-up or ramp-down. No transition to MWVF was observed
in the range of Re studied here. The axial wavelength of the flow remains
the same for both TVF and WVF and was found equal to λ = 1.7d
(Fig. 3b). The wavy frequency in the WVF scales linearly with the
rotational frequency of the inner cylinder, f = 1.3fi, where fi = Ωi/2π.

The dilute lowmolecular weight polymer mixture (1500 ppm) has an
elasticity value El = 0.003 and exhibits a transition sequence during the
ramp-up that closely resembles the Newtonian case (Fig. 4a). The critical
Reynolds numbers for the transition to TVF and WVF remain unaffected
(Reru

TVF = 100 and Reru
WVF = 200). However, just before the appearance of

WVF, a non-axisymmetric instability is observed for a small range of
Reynolds numbers Re = 158 − 200, as evidenced by a distinct ridge on
the frequency maps (Fig. 4c, d). This instability has the same wavelength
(Fig. 3b) as TVF and WVF but occurs at a lower frequency compared to
WVF (Fig. 3a). The wave frequency is not directly proportional to the
cylinder oscillation frequency, with f = 1.15 fi at the onset of the
instability (Reru

EWVF = 158) and f = 1.08 fi at the transition to WVF
(Reru

WVF = 200). Within this range the frequency increases linearly.
We term this low-frequency instability Elastic Wavy Vortex Flow

(EWVF) and to the best of our knowledge, it has not been reported
previously. Elastic modifications of WTV flows have been reported by a
number of researchers. For example, Crumeyrolle et al. [14] observed

Table 2
Experimental settings for ramp-up/down and steady-state experiments presented later in the results section.

Solution Experiment Type Reynolds Range fs [Hz] 1/ΔRe Ωmax
[
s− 1

]
dΩ/dt

[
s− 2

] Γ0

Newtonian
WGL-72 RU/RD 0 − 300 80 336.54 68.7 0.054 0.3
WGL-72 Steady-State 180 2000 – 34.35 – –
WGL-72 Steady-State 250 2000 – 60 – –
Low molecular weight polymer
1500 ppm RU/RD 0–300 130 351.6 90.42 0.0943 0.3
5000 ppm RU/RD 0–300 180 317.84 163.67 0.309 0.3
1500 ppm Steady-State 180 2000 – 54.29 – –
1500 ppm Steady-State 250 2000 – 75.33 – –
5000 ppm Steady-State 180 2000 – 98.2 – –
5000 ppm Steady-State 250 2000 – 136.4 – –
High molecular weight polymer
HMW
(200 ppm)

Steady-State 105 2000 – 26.05 – –

Fig. 3. (a) Temporal and (b) spatial spectra for the inelastic case El = 0 (Re =

180 - TVF) and El = 0.003 (Re = 180 - EWVF, Re = 250 - WVF). TVF, EWVF,
WVF have the same spatial wavelength but different temporal characteristics.

T. Boulafentis et al.
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that the travelling waves had a higher frequency compared to the
Newtonian case, and the frequency further increased at higher elastici-
ties. Dutcher et al. [18] reported that elastic effects in wavy flows at high
Reynolds numbers (Re ≅ 800), modified the structure of inflows and
outflows. Lacassagne et al. [29] reported the sudden appearance of a
dominant periodic frequency for a highly elastic and shear-thinning
fluid, resembling the mode described in this work. However, unlike
present findings, the observed frequency of the wavy instability mode in
[29] was found to be constant, remained lower than the rotational fre-
quency at all times and was associated with the persistence of previously
existing RSW structures. The EWVF observed in the present work differs
from the aforementioned ones; it appears in low Reynolds numbers at a
purely Newtonian transition of a Boger fluid and alters the basic WVF
without adding any additional peak on the frequency spectra. This early
Hopf bifurcation is attributed to weak fluctuations caused by elastic
stresses in the flow as it does not appear in the non-elastic case. Unlike
Modulated Wavy Vortex Flow, in which a second frequency appears due
to the modulation of the basic frequency and the instability is
quasi-periodic in nature [41], the observed elastic instability is periodic,
resembling WVF, but altering its characteristic frequency (Fig. 3a).

The argument that EWVF is elastic in nature is also suggested by the
presence of hysteretic effects in the flow. Although the critical Reynolds
number for the primary bifurcation to TVF from CF during ramp-down
stays constant (Re = 100), the Reynolds range for the appearance of
EWVF becomes smaller and is shifted to lower Re numbers (Re = 143 −

161) in ramp-down experiments (Fig. 4b). However, EWVF has identical
spatial and temporal spectra at both ramp-up and ramp-down.

Following EWVF, WVF onsets at Re = 161, i.e., at a critical Re lower
than the equivalent for the ramp-up or the Newtonian case, signifying
that the transition is subcritical. This also implies destabilization of the
flow during the ramp-down by the presence of polymers even though
WVF is considered a purely inertial instability.

Increasing the polymer concentration above the critical overlap
concentration c∗ (El = 0.008), does not alter the transition observed for
the less elastic case, El = 0.003 (Fig. 5, themaps are omitted for brevity).
This implies that the appearance of elastic transitions is highly depen-
dent on the extensibility of the polymer chains [33,37] rather than the
entanglement of polymer chains.

However, the critical Reynolds numbers and the Reynolds span for
each regime vary with El. Both the primary and secondary bifurcation
onset earlier (Reru

TVF = 95 and Reru
EWVF = 140) for El = 0.008, compared

to the lower El transitions (Fig. 5) for the case of cylinder acceleration, in
agreement with the analytical work of [43]. On the other hand, the onset
of WVF is delayed (Reru

WVF = 210 for El = 0.003, compared to Recr = 200
for the Newtonian case). After this point, the elastic wavy instability is
replaced by the inelastic WVF. However, the vortex pairs drift axially
(Fig. 4b in the WVF regime), in contrast to the Newtonian case, illus-
trating the impact of the elasticity on the stability of the flow even
within the WVF regime.

For a decelerating inner cylinder, WVF extends to a lower Reynolds
number Re = 133 in the case of El = 0.008. Similarly, EWVF shifts to
lower Reynolds numbers Re = 121 − 133 and persists for a smaller Re
range. The lower critical Reynolds number in ramp-down compared to
ramp-up are evidence of hysteretic flow behaviour.

Fig. 4. Spatiotemporal maps for ramp-up (a) and ramp-down (b) experiments and corresponding frequency maps (c) and (d) for El = 0.003. The orange line in the
frequency maps (c), (d) denotes the rotational frequency. fmax in (c) and (d) corresponds to the maximum rotational speed of the inner cylinder reached throughout
the experiment.

Fig. 5. Overview of the effect of Elasticity number (El) on the critical Reynolds number for flow transitions in ramp-up (left) and ramp-down (right) experiments, El
= 0 − 0.008.

T. Boulafentis et al.
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Detailed spatiotemporal maps from steady-state experiments, 1 s in
duration, are illustrated in Fig. 6 for the inelastic case at TVF (Re = 180)
and WVF (Re = 250). To further elucidate the nature of EWVF, maps
have been produced for the two elastic cases at the same Re.

In all cases, the inflows and outflows are highlighted and noted with
arrows. Outflows appear stronger for Newtonian-like fluids due to cen-
trifugal forces [21,47]. We fit a generalized sinusoidal function
Asin(ωt + φ) to capture the periodicity of these boundaries (black and
magenta lines in Fig. 6). In the inelastic case, inflows and outflows are
stable in the TVF regime, whereas in WVF only the inflows oscillate
(Fig. 6, first column). In the low elasticity fluids, both inflows and out-
flows oscillate in the EWVF and WVF regimes, at the same frequency.
Interestingly, the oscillations are out of phaseΔφ = 2π/5 (Fig. 6, second
and third column).

The ratio between the oscillation amplitude of the outflows and in-
flows is found Ar = Aout/Ain = 0.7 for EWVF, independent of the fluid
elasticity. This is in good agreement with ([9,10]) who reported that
while in Newtonian fluids only the inflows oscillate, both inflows and
outflows tend to oscillate with the same amplitude for shear-thinning
fluids with increased elastic properties. The stronger inflow jet oscilla-
tions in Newtonian fluids have been attributed to the increased strength
of the outflow jets [47], which hinders the axial flow between adjacent
vortices.

Similarly, the oscillations of the outflow boundaries in elastic fluids
can be attributed to the weakening of the outflow strength due to the
opposing inward-acting elastic forces. In WVF, the amplitude ratio de-
creases to Ar = 0.5, with the amplitude of inflows remaining the same
and that of outflows decreasing relative to EWVF; this is due to the
outflow jets becoming stronger due to the increasing inertia, in agree-
ment with [47]. The amplitude ratio Ar seems thus, highly dependent on
the Reynolds number, decreasing as the role of inertia increases.

Although the fluid elasticity does not alter the ratio Ar, it has a strong
effect on the amplitude of the oscillations of both inflows and outflows.
For El = 0.003, the amplitude of outflows and inflows are Aout = 0.07d
and Ain = 0.1d for EWVF, Aout = 0.05d and Ain = 0.1d for WVF
(Table 3). For El = 0.008 the amplitudes are more than double these
values (Aout = 0.15d and Ain = 0.22d for EWVF, Aout = 0.11d and Ain =

0.22d for WVF (Table 3). The opposite effect is reported in [14] for
low-elasticity fluids, where increased elasticity leads to a decrease in the
amplitude of oscillations. This can be attributed either to the significant
shear-thinning of the fluids used in their study or the larger radius ratio
(η = 0.88).

This increase in the amplitude of oscillations might be connected to
the emergence of RSW in the case of more elastic fluids, El > 0.01 as
reported by [4], even at much lower Re [31]. This flow state, illustrated
in Fig. 7a for the high-molecular-weight fluid (El = 0.06) at Re = 105,
has been previously stated to be inertia driven but modified by elasticity
[39] without however making any direct connection to the Newtonian

instabilities. RSW has a characteristic frequency equal to fel/3, where
fel = 2ce/λ is the elastic wave frequency and ce =

̅̅̅̅̅̅̅̅̅
η/ρte

√
is the wave

celerity, in agreement with previously reported values in the literature
[31,33]. This frequency is significantly lower than the inelastic and
slightly elastic wave frequencies (Fig. 7b). The similarity of the inflows
and outflows in the spatiotemporal map in Fig. 7a, implies a radial
inflow/outflow symmetry as suggested by [25,26].

Fitting the generalized sinusoidal function used previously to the
RSW boundaries (Fig. 7a) also reveals an inflow/outflow boundary
oscillatory behavior similar to that of the wavy instabilities. However,
the amplitudes of inflow and outflow oscillations are equal (Aout = Ain =

0.22d, Ar= 1) and the phase lag increases to Δφ = π (Table 3).
On close inspection, one can observe that the waves are not perfectly

sinusoidal; they are distorted every half period (Fig. 7a). At these points,
momentum is transferred between adjacent vortices, allowing the
propagation of the axial, elastic wave described in [31,33]. A similar
mechanism is not possible at lower elasticities as (i) Ar is not equal to
unity and (ii) the phase lag is significantly lower; hence the two
boundaries do not approach each other.

In light of these observations, we can consider RSW an extension of
the aforementioned elastically modulated wavy instabilities at the limit
of high amplitude, large phase lag boundary oscillations. Since wavy
instabilities are attributed to an azimuthally propagating wave [2,28,
47], we postulate that RSW and its characteristic frequency should not
be considered solely the result of an axial elastic wave but rather as a
highly three-dimensional flow state, emerging as a combination of both
an azimuthal inertial and an axial, elastic wave. Further work is however
needed to fully comprehend its exact mechanism.

4. Summary

In this study, two solutions of lowmolecular weight PAAM have been
used to elucidate the effect of very small elasticities and increasing
polymer entanglement on the Newtonian transitions in Taylor Couette
Flow.

It has been found that increasing polymer concentration from the
dilute (1500 ppm, c/c∗= 0.38) to a semi-dilute
(5000 ppm, c/c∗= 1.26) regime is not a sufficient condition for the
appearance of highly elastic instabilities like RSW or FP; the extensi-
bility of the polymer chains rather appears to be the key factor. How-
ever, a low elasticity signature, termed Elastic Wavy Vortex Flow
(EWVF) has been observed for both solutions, which has not been re-
ported in the literature hitherto. This instability was observed prior to
the appearance of WVF and has similar time-dependent, single-fre-
quency, non-axisymmetric characteristics. The characteristic feature of
this new mode is the lower frequency compared to the typical WVF
frequency in the Taylor-Couette system used.

Using steady-state experiments with both inelastic and elastic fluids,

Fig. 6. Spatiotemporal maps during steady-state experiments for the inelastic case (El = 0) and the two elastic cases (El = 0.003 and El = 0.008) for Re = 180 and Re
= 250. The sinusoidal fitting to the oscillatory inflow (black lines) and outflow regions (magenta lines) is shown in all cases. The steady-state maps capture 5 and 9
(El = 0), 8 and 15 (El = 0.003), 15 and 21 (El = 0.008) revolutions of the inner cylinder at Re = 180 and Re = 250 respectively.

T. Boulafentis et al.
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we concluded that (i) the value of El (and thus here the entanglement
state) modifies the frequency of the additional EWVF state, but (ii) the
frequency of WVF is not altered, only its structure.

The waviness appears on both outflow and inflow boundaries as
described by ([9,10]) and can thus, be attributed to elasticity and not the
shear-thinning nature of the fluids used in their study.

For increasing elasticity, the Re range at which TVF is observed de-
creases while for EWVF increases during ramp-up. At the same time,
WVF is delayed (appears at higher Reynolds number). For ramp-down, a
slightly hysteretic behaviour is observed as all flow states are sustained
to lower Re.

By fitting a sinusoidal function to the wavy oscillations, we conclude
that increased elasticity leads to an increase in the amplitude of oscil-
lations of both inflow and outflow boundaries. This effect along with the
increase in the phase lag of the two oscillating boundaries, potentially
links the elastic RSW flow state to the Newtonian-like instabilities.

The present study highlights the importance of elastic phenomena on
flow transitions and provides evidence that the additions of even small
amounts of polymers may enhance the intercellular mixing, as both
inflow and outflow boundaries oscillate, even at Re lower than the in-
elastic Newtonian case. However, caution may be exercised on the use of
low molecular weight polymers to increase the viscosity of fluids, which
is a common technique [15,34,35], as they can potentially induce un-
desirable elastic instabilities. In addition, considering RSW as an
extension of the wavy instabilities may bear significant changes to our
understanding of the phenomenon as both an axial and an azimuthal

wave may contribute to its mechanism.
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