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Time- and Event-triggered Communication for
Multi-agent Systems — Part |:
General Framework

V. S. Dolk, K. J. A. Scheres, R. Postoyan, Senior Member, IEEE, and W. P. M. H. Heemels, Fellow, IEEE

Abstracti— We present a framework for the design of
time- and event-triggered communication schemes for a
broad class of multi-agent systems (MAS). The framework
is general in the sense that we consider a class of heteroge-
neous nonlinear MAS with directed communication graphs
subject to disturbances and the inevitable imperfections
induced by packet-based networked communication, such
as time-varying transmission delays and intervals. Under
suitable conditions, the designed distributed time- or event-
triggered communication schemes lead to a MAS that is
dissipative with respect to a desired supply rate, and thus
can be used to study various properties such as L,-gain
stability, input-to-state stability and passivity. Strictly posi-
tive lower bounds on the inter-event times are ensured and
robustness to non-uniform time-varying delays in terms
of maximum allowable delays is guaranteed. In addition,
the framework allows for the consideration of destination
protocols which determine, at each transmission instant,
to which (groups of) agent(s) a local output measurement
is being transmitted. These destination protocols can be
used to include packet loss and denial-of-service, as will
be shown in the companion paper [1].

|. INTRODUCTION

Recently, the interest in multi-agent systems (MAS) has
grown significantly due to the wide range of applications.
Examples include the distributed control of platoons and
formations of vehicles [2], [3] and distributed state estimation
in large-scale processes such as power grids and building au-
tomation [4]-[7], see also [8] for an overview. In many of the
aforementioned applications, the sensor and the actuator data
are sent over shared (packet-based) communication networks,
which, in contrast to dedicated point-to-point links, offer
many benefits in terms of flexibility, maintenance and ease
of installation. In fact, in some applications, such as vehicle
platooning, the use of (wireless) communication networks is
unavoidable, see, e.g., [9]. However, these shared commu-
nication networks also come with inevitable imperfections.
For example, the internal clocks of the agents may not be
synchronized. Moreover, the transmission delays in MAS are
in general time-varying and unknown. Additionally, since
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broadcast data is typically not simultaneously received and
processed by each connected agent, the delays are often non-
uniform in the sense that the time between the transmission
and receipt of a data package might vary per connected
agent. Moreover, it is impossible to continuously transmit
data through a (packet-based) communication medium, i.e.,
the communication bandwidth is limited, in the sense that
communication can only occur at some discrete points in time.
Communication network artifacts include:

(i) time-varying non-uniform transmission delays;
(i1) asynchronous sampling/transmission instants;
(iii) limited communication bandwidth;
(iv) packet losses and/or denial-of-service attacks.

Given the above mentioned artifacts inherent to MAS
operating over digital communication networks, there is a
strong need for novel analysis tools and control algorithms
for MAS that take all these imperfections into account. The
majority of the available literature only considers a subset
of the aforementioned network-induced artifacts [10] and
does not allow a straightforward generalization to include
all of them. Moreover, a framework that connects results on
centralized, decentralized and distributed networked control
systems (NCS) is currently missing in the literature. Below,
we provide a brief overview of some of the numerous existing
works on MAS that focus on one or a subset of the four above
mentioned artifacts.

In, e.g., [3], [11]-[14], the presence of delays in MAS is
studied, however, the communication between the agents is
assumed to be continuous and thus (ii)-(iv) have not been
addressed. Although [14] addresses item (ii) for the specific
case of distributed control of nonholonomic systems, (iii)-
(iv) are not taken care of. In, e.g., [15]-[19], MAS with
sampled-data communication are examined in which the sam-
pling/transmission intervals are purely based on time. To be
more specific, [15] considers MAS with single-integrator dy-
namics subject to constant communication delays. The works
[16]-[18] study MAS with double-integrator dynamics, where
[17] proposes a nonlinear control law, [18] includes the pres-
ence of time-varying communication delays and [16] examines
MAS with non-periodic bounded transmission intervals under
uncertain communication topologies. An advantage of commu-
nication schemes in which the transmission intervals are purely
based on time is the ease of implementation. These time-
based communications schemes, however, typically also lead



to redundant transmissions, which might not be desirable in
shared networks in which communication resources are scarce.

In order to deal with the presence of limited communication
resources, e.g., [19]-[32] proposed the use of event-triggered
control (ETC) strategies for MAS to cope with these limited
communication resources, see [10] for a recent survey. These
ETC strategies aim to reduce the utilization of communication
resources by letting the transmission instants depend on state
or output measurements of the system. If well-designed, these
schemes can guarantee desired closed-loop behavior in terms
of stability and performance, see, e.g., [4], [33]-[39] for more
details on ETC. However, the ETC approaches presented in
[19]-[25], [28] do not consider delays and the approaches in
[26], [27] assume that the delays are uniform and constant.
Notable exceptions that study event-triggered MAS under non-
uniform time-varying delays include [29]-[31], [40]. In [30],
a periodic ETC approach is presented that can deal with non-
uniform delays. However, it is assumed that the duration of
these delays are known. Hence, this approach requires that
the internal clocks of all agents are perfectly synchronized.
In [29], [31], it was proposed to use transmission protocols
that rely on acknowledgment and permission signals in order
to make sure that the information available at each individual
agent is updated simultaneously. However, the latter approach
might put a burden on the communication channel due to
the presence of additional acknowledgment and permission
signals. In addition, practically it might not be feasible in some
applications to realize acknowledgment and permission signals
that can be sent and received instantaneously. For this reason,
[29] also proposed an ETC scheme that does not require
permission signals under the assumption that disturbances
are absent. In [40], a periodic ETC scheme is proposed for
tracking control of nonlinear MAS. It is shown that the closed
loop tracking error satisfies an input-to-state stability property.

In the current work, we present a systematic and general
design framework for a class of possibly heterogeneous non-
linear MAS with directed communication graphs subject to
disturbances and the aforementioned network-induced imper-
fections (i)-(iv). Hereto, we consider both time-triggered and
event-triggered communication schemes that support the use
of general holding devices with zero-order hold as a special
case. The design procedure of the closed-loop system relies
on an emulation-based approach, which consists of two steps.
In the first step, the control system is designed such that
the closed-loop system, ignoring the presence of the digital
communication network, satisfies appropriate (robust versions
of) dissipativity properties that express the desirable closed-
loop specifications. In the second step, the event-triggering
mechanisms (ETMs) — or the time-triggering mechanisms
(TTMs) as a special case — are designed, exploiting the
robustness of the dissipative properties, such that the desired
dissipativity properties are ensured in the presence of the
network-induced imperfections. If well-designed according to
our novel design conditions, the proposed framework leads to
MAS that are dissipative with respect to a well-chosen supply
rate and thereby can be used to guarantee various properties in-
cluding asymptotic stability of sets, covering properties such as
asymptotic consensus, £,-gain stability, input-to-state stability

(ISS) and passivity. In fact, the framework captures situations
that have not been studied in literature before even for basic
centralized networked control schemes such as guarantees
for general dissipativity properties and the use of generalized
holding devices in ETC systems subject to delays, while our
results also apply to distributed NCS and MAS. The MAS
are guaranteed to have strictly positive lower bounds on the
inter-transmission times despite the presence of disturbances.
In the companion paper [1], we will show by means of relevant
examples how to systematically design the ETMs (and TTMs)
such that the proposed conditions are fulfilled.

Let us emphasize that the proposed schemes do not require
clock synchronization, acknowledgment signals that need to be
transmitted and received instantaneously, or exact knowledge
of the sizes of the transmission delays (only an upper-bound
needs to be known). In addition, we show that the concept
of network scheduling protocols, which are typically used
in the context of NCS (see, e.g., [41]), can be used for the
design of so-called destination protocols. These destination
protocols determine, at each transmission instant, to which
(groups of) agent(s) a local output measurement is being
transmitted. Interestingly, as we will discuss in the companion
paper [1], the proposed concept of destination protocols also
allows to capture packet losses, see, e.g., [29], [42]-[44], and
even (malicious) denial-of-service attacks, which are intended
to interfere with the communication channel, see, e.g., [45].
In other words, item (iv) above is addressed in the second part
of this paper, in which we also provide a full design of digital
implementations of the proposed ETC schemes for MAS,
leading to periodic event-triggered control schemes [46], [47]
with appropriate guarantees on stability, performance and
minimal-inter event-times. Two numerical case studies are
included in the companion paper [1].

II. DEFINITIONS AND PRELIMINARIES
A. Notation

The set N denotes the set of non-negative integers, N- o the
set of all positive integers, R the field of all real numbers
and R, the set of all non-negative reals. For N vectors
x; € R 4 € {1,2,...,N}, we denote the vector obtained
by stacking all vectors in one (column) vector z € R"
with n = Zivzl n; by (z1,2z2,...,2N), Le., (T1,2a,...,
y) = [z wxg - x}]T The vectors in RY whose
elements are all ones or all zeros are denoted by 1y and
Oy, respectively. Given matrices Ay, ..., A,, we denote by
diag(A4,..., A,) the block-diagonal matrix where the main
diagonal blocks consist of the matrices A; to A,, and all other
blocks are zero matrices. By | - | and {(-,-) we denote the
Euclidean norm and the usual inner product of real vectors,
respectively. Moreover, for x € R™ and a given non-empty set
A CR?, |z|4 = infyec 4 |x —y|. For two matrices A € R™*"
and B € RP*4, the Kronecker product of A with B is denoted
A ® B € R™PX"4 The interior of a set A C R"™ is denoted
by int . A. We consider Ko, and KL functions as defined
in [48, Def. 3.4, 3.38]. Given a function z : Ry — R"
with n € Ny, ||2|lec = esssup{|z(t)| : t >0}, and =
is said to be of class L% if ||zl < oo. The notation




F : X =Y, indicates that F' is a set-valued mapping from
X to Y with F(z) CY for all z € X. We use U°(x;v)
to denote the generalized directional derivative of Clarke of
a locally Lipschitz function U at z in the direction v, i.e.,
U®(x;v) = limsupy, o+, (U(y + hv) — U(y))/h, which
reduces to the standard directional derivative (VU (z), v) when
U is continuously differentiable; see [49] for more details.
We denote the logical and and or operators as A and V,
respectively.

B. Graph Theory Notions [50]

A graph is a pair G = (V, ) composed of a vertex set V
and a set of edges £ C V x V. The cardinality of V), denoted
by N € Ny, is the number of vertices in V. An ordered pair
(i,j) € € with 4,5 € V is said to be an edge directed from
i to j. A graph is called undirected if it holds that (i,5) € €
if and only if (j,7) € £. Otherwise, the graph is a directed
graph, also referred to as a digraph. A vertex j is said to be
a neighbor of i if (j,i) € £. The set of neighbors of a vertex
i is denoted by VI" and defined as V" := {j € V| (j,i) € £}
and the set of vertices for which vertex ¢ is a neighbor is
denoted by V" and defined as V" :={j € V| (4,)) € &}.
The cardinality of V", ¢ € V is denoted by N;. An edge
(i,7) € & is called a self-loop. A directed path from i to j
is a (finite) sequence of edges starting in ¢ and ending at j.
A digraph G is connected if there exists a path between all
vertices %, j € V, and it is called weakly connected if, ignoring
all orientations on its edges, the resulting graph is connected.

[1l. PROBLEM STATEMENT
A. Distributed Control Configuration

We consider a collection of agents A, As, ..., Ay that are
possibly physically coupled and that communicate according
to a weakly connected digraph G(V, E).

The dynamics of the m-th agent A, for m € V are given

by

)

-Am . im = fm(xv @izyvm)
Ym = hm(mm)a

where x,, € R™™ represents the local state vector, x =
(r1,29,...,2n) € R" with n, := > ..\, n,; the global
state vector, v € R™»m the disturbance or external input,
Ym € R™-m the output measurement available at agent
Ap. Moreover, 4t = (g™, g3, ..., yw) € R"™, where
Y € R™i, m,i € V, denotes the local estimate at agent
A, of the output y; of agent 4;, see also Fig. 1, and where
Ny =Y ;cy Ny,i- Let us remark that the variable y", i € Vi1
and m € V, corresponds to the edge (i,m) € & of graph
G. The variables 7™ for which i ¢ V' with m € V, ie.,
(i,m) ¢ &, are non-existent in practice and thus in principle
redundant due to the communication topology. However, for
ease of notation, we still use these variables and assume that
g™ =0 for all i ¢ VI with m € V. Moreover, the dynamics
of the local state vector x,,, m € )V, may depend on the
entire state x due to possible physical couplings between
agents. System (1) may represent a local plant and its local
controller in closed loop, which has been designed to ensure

z;(k, m): destination protocol AN

VA = Am

. . \
£7": event-type indicator N ’

.

~_ - ~_ -

information available at A4; information available at Ay,

y;: local output

1
1
. 7™ local estimate of y;
1

unknown information

e;' = y;"" — y;: estimation error
Fig. 1. Schematic representation of the control setup.

the desired control properties for the overall system with
perfect, continuous communication between the agents (i.e.,
ignoring the imperfections induced by the digital network). We
assume throughout the paper that the map f,, is continuous
and the map h,, is continuously differentiable for m € V.
Due to the presence of network-induced imperfections such
as time-varying transmission delays, time-varying transmission
intervals and destination protocols, we typically have that
yr # y;, forall i € V and m € Vf“‘. In other words, the
presence of a network introduces estimation errors given by

VieV, me VM. ()

m . om .
€ =Y —Yi

Hence, ", 1 € V, m € Vf“‘, denotes the error present in the
information /™ available at agent A,, regarding the output
y; of agent A;. For all i € V and m € V \ V™, i.e., for all
redundant variables, we set e]* =0

B. Networked Communication

As already mentioned, (packet-based) networked commu-
nication induces inherent imperfections such as the fact that
data can only be transmitted at discrete instants in time
(sampled-data communication) and the presence of unknown
non-uniform time-varying delays. More precisely, the output
Yi,» © € V, is only sampled and transmitted over the network
at discrete time instants ti, k € N, that satisfy 0 = t} <
ti < ..., for all i € V. At a transmission instant ¢, i € V,
k € N, agent A; broadcasts its current output information
y; to a selection of the connected agents that is determined
by a destination protocol. In case an agent A,,, m € V™,
1 € V, belongs to this selection at this transmission instant, the
corresponding estimate ;" is updated after a communication
delay of Ay™ > 0 time units, ie.,

56+ AT = wilt)- 3)
In this paper, we focus on small-delay scenarios meaning
that an agent only transmits after the previous broadcast
information of that agent has been received by all targeted
agents. In addition, we assume that the delays are bounded

from above by a time-constant called the maximum allowable
delay (MAD), as formalized next.

Assumption 1. For each i € V, there is a time-constant T, _,
such that the transmission delays are bounded according to
0 <A < 7log < thyp1 —tp, m € VP for all k € N, where

7! .q denotes the maximum allowable delay.



The destination protocol determines at each transmission
instant t};, i € V, k € N, the selection of the connected agents
to which agent A; broadcasts its current output information
y;. The protocol determines this selection on the basis of the
transmission counter k. To be more precise, the destination
protocol associated with agent A; is described by the function
zi : NxV — {0,1}, i € V, which, at transmission time ti,,
k € N, is such that z;(k, m) = 1 when the output measurement
y; is transmitted to agent A,,, m € V™, and z;(k,m) = 0
otherwise. When no destination protocols are implemented,
i.e., when y; is sent to all neighbors of agent i, z;(k,m) =1
for any m € V)™, i € V.

Given the description above, the update of the estimate 3™
can be expressed as

B+ A = s m)uit) |
(1= 5 )T+ AL, @)

foralli € YV and m € Vf“t. The values of the delays A};’m,
i,m € V, k € N, for which m € V\ {p € V" | z(k,p) =
1} have no physical meaning since for these cases, agent 4;
does not transmit any information to agent .A,,, at transmission
time ¢! due to the communication topology specified by the
communication graph G and/or the destination protocol given
by z;. Therefore, we simply take Ay™ = 0 for i,m € V,
k € N for which m € V\ {p € V" | z;(k,p) = 1}.

Interestingly, as we will show in detail in the second part [1],
the function z; can also be exploited to capture packet losses
and denial-of-service attacks, which are results of independent
interest.

Remark 1. Destination protocols are modeled in a similar
fashion as network scheduling protocols as described in [41].
As such, we can take inspiration from [41] for the design of
destination protocols. For example, the destination protocols
could be the well-known Sampled-Data (SD) and the Round-
Robin (RR) protocol. Our framework also allows to generate
new protocols that are meaningful in the context of MAS such
as destination protocols that capture switching communication
topologies. In fact, in Part Il [1] they are used to describe
Denial-of-Service attacks and packet losses.

Remark 2. In specific situations, the destination protocol z;
might also depend on other variables such as the network-
induced estimation error €, i € V, m € V' (if available),

provided that Condition 1 in the following is satisfied. For
these cases, the results below apply mutatis mutandis.

In time periods in which agent A4, does not receive new

information of agent A;, the estimate 7™ evolves as

() =[G (),

for all t € (t, + A", ¢, + AP, with i € V, m € V¥,
k € N, where fl : R™ — R™ describes the holding device.
Observe that each agent A,,, m € V™ and ¢ € V, employs
the same holding device to obtain the estimate y;”. By taking
fi = 0, zero-order hold (ZOH) devices are obtained.

®)

C. Time-triggered and Event-Triggered Communication

In conventional (digital) control schemes, data is typically
transmitted over dedicated (wired) communication channels,
often according to a fixed sampling rate. Since in NCS,
the communication resources are in general shared and thus
scarce, fixed sampling rates often cannot be realized. In-
stead, the time-intervals in between data transmissions are
typically varying over time. In this paper, we consider two
types of communication protocols for NCS, namely, time-
triggered communication (TTC) schemes and event-triggered
communication (ETC) schemes.

In TTC schemes, the transmissions instants are determined
purely based on time. To make sure that the NCS satisfies
the desired closed-loop stability and performance criteria, the
transmission intervals per agent are assumed to be bounded
by a pre-defined upper-bound referred to as the maximum
allowable transmission interval (MATI). To be more concrete,
the transmission intervals satisfy

7 % %
di g tk+1 - tk g Tmati»

(6)
where 0 < d; < 7)., ¢ € V, is an arbitrary small positive
constant and 7 .. is a time-constant representing the MATI,
see, e.g., also [41], [51], [52]. In practice, it is useful to select
d; > 7t , to ensure that the small delay assumption is not
violated when no acknowledgment signals are available.

In ETC schemes, the transmission instants are determined
based on state- or output measurements, see, e.g., [4], [33]-
[39], [53], [54] and the references therein. In this paper, we
consider dynamic event-generators of the form as proposed in

[34] that schedule transmission instants according to

th =0, thyy =inf {t >t} + 1l | (1) <O}, (D)

for i € V and £ € N and where n; € R is the triggering
variable of agent A; that evolves according to

ni(t) = Vi(0i(t)) — @i(ni(t)),
ni(th) =0y (1)),

where the functions ¥; : O; — R, ¢; : Ryg = Ry( and
nY : R™ — R and the time constant 7. . € R~ are to be
designed as we will discuss in Section V. The variable o; €
0y, ¢ € V, represents information locally available at agent
Aj;, such as the output y;, the local estimates 7, m € Vi,
and the most recently transmitted output measurement of y;.
Note that the time constant 7' ;., € R~ is an enforced lower
bound on the inter-transmission times for agent A; referred to
as the minimum inter-event time (MIET). Clearly, we have that
ti 1 —t} > Thie and thus that Zeno-behavior is excluded in
the event-triggering mechanisms (ETMs) and therefore also in
the overall system. The latter property is obviously important
to enable implementation of the ETC scheme in practice. In
accordance with Assumption 1, we select 7., > 7¢ ..

The ETM described by (7) and (8) is referred to as a
dynamic ETM because the transmission instants are deter-
mined based on dynamic variables such as 7; in contrast to
the commonly adopted static ETMs, which rely on a static
expression dependent on the locally available information o;,
see [19], [34], [39], [55]. Employing dynamic ETMs instead of

when 7;(t) > 0,
when n;(t) = 0,

(8a)
(8b)



static versions has several advantages including significantly
larger average inter-event times in many cases, see [34], [39],
[55] for more details. However, our results apply to both static
and dynamic ETMs, as explained in Remark 3, where this case
is described explicitly.

Let us emphasize that the ETM of agent .4; described by (7)
and (8) will not rely on the continuous availability of output
measurements of other agents, i.e., ¥y, m € Vg“, and will
not require clock synchronization, acknowledgment signals
that need to be transmitted and received instantaneously or
knowledge about the sizes of the transmission delays (only
the upper-bounds 772 _,, i € V, need to be known).

D. Problem Formulation

Given the descriptions above, the problem considered in this
paper can now be stated informally as follows:

Consider a collection of agents Ay, Ao, ..., An described
by (1) and a collection of maximum allowable delays Tt 4, i €
V. Propose design conditions for the time constants 7. (>
7! q) as in (6) in the context of TTC schemes, and for 7' ., (>
Tfnad) and the functions z;, V;, @; and 77?, i€V, asin (7)
and (8), in the context of ETC schemes, such that the resulting
MAS has the desired (and to be specified) closed-loop stability,
performance and robustness properties.

As we will discuss in the next section, we will consider
general dissipativity properties that can reflect a broad range
of control (stability, performance and robustness) objectives.

V. MATHEMATICAL FORMULATION OF THE MAS

In this section, we formulate the MAS with non-uniform
communication delays in terms of a hybrid model [48] to
facilitate the stability analysis in Section V and to formalize
the problem stated at the end of Section III. The hybrid model
will capture both TTC as the ETC cases in the sense that
all (hybrid) trajectories resulting from the two communication
schemes are solutions to the model, see also Section IV-B.

A. Hybrid mode!

A hybrid model H(C, F, D, ) with state £ and a distur-
bance v describes the system in terms of flow and jump
equations _

e F(&v),
£ eG(e),

where F' and G denote the flow and the jump map, respec-
tively, C and D the flow and the jump set, respectively, and
where £T denotes the updated value of £ right after a jump,
see [48] and its extension to continuous-time inputs [56] for
profound definitions regarding this modeling framework.

We now explain how to write the overall system in the form
of (9). To model the updates of e;” in (2) at update times
ti + Ay™ in terms of (9), we first obtain from (2) and (4),
that forall¢ € V, m € V" and k € N for which z;(k,m) = 1,

e ((th + AY™T) = 5 (5 + AY™)T) — wa(t + AL™)T)
=y (t,) — ity + A™). (10)

when £ € C,

when £ € D, ®

As in [52] and [34], to capture the updates of e* in terms of
jump equations, we need to distinguish between two types
of jumps, namely, jumps corresponding to time instants at
which an agent A;, ¢ € V), transmits a new measurement to
(a selection of) the agent(s) A,,, m € V" (referred to as
transmission events/jumps), and jumps corresponding to time
instants at which an agent A,,, m € V", receives a new
measurement from agent A;, i € Vi}‘L (referred to as update
events/jumps). To keep track of these two jump types, we
introduce auxiliary variables ¢!" € {0, 1}, that indicate that the
last transmitted value of agent 4; has already been received
by agent A, (/" = 0) or still has to be received (¢]" = 1).
Hence, the next jump corresponds to the transmission of an
output measurement by agent A;, ¢ € V (¢ = 0 for all
m € V), or to the reception of an output measurement by agent
A, from agent A; (/" = 1), see also Figure 1. Moreover,
we introduce the memory variable r; € R™, i € V, to store
the value of y; at times ti, k € N, i.e., at each transmission
instant ¢, we have that

ri(ty ) = yi(ty)- (11)
Between two successive transmissions, the variable r; remains
constant, i.e., 7;(t) = 0 for all t € (t},t} ), i € V and

k € N. Given the description above, the update of e}, i € V,
m € VM, as described in (10), can be rewritten as

e (( + AP™) = vyt + ALY — yilty + AT™). (12)

To secure that Assumption 1 holds and to keep track of the
time elapsed since the most recent transmission, we adopt the
timer variable 7; € R>0, ¢ € V. Variable 7;, ¢ € V, represents
the time elapsed since the most recent transmission instant
of agent A;, ie, 7;(t) = t —sup{ti | k € N,ti < t}h
Moreover, we let xk; € N denote the transmission counter
of agent A;, which is constant on flows and increased by 1
at each transmission jump. Observe that the state variables
e and 0", i € V, m ¢ V™, are in principle redundant
due to the communication topology. However, for consistency
of notation and simplicity, we keep these variables in the
hybrid model presented next and assume that they are zero. For
this purpose, we define the concatenation of network induced
errors corresponding to agent A;, i € V, as

e;-’m = ((51(1)6;}, (52(2)6127 e 751(N)€£V) € Ez g RNny’i,
where EIL = Ei(l) X ]El(2) X ... X El(N) with

By o { R Whenm € VP,
(m) =
' {0,,.}, otherwise,

1, when m € V™
5z(m) = {0

Hence, the function ¢; sets the redundant elements of the
vector e to zero.

In addition, let us introduce the following notation: eﬁ“ =
(51(1')611,62(2')612, ... 761\/(2)63\]) e E;, E; := El(l) X EQ(Z) X
o xEn(i), e:= (el el ... el) € E with E:=E; x Ep x

X En, 7= (T1,72,...,7N) € Rgo, k= (K1,Ka,...,
ky) € NV r = (ri,r9,...,75) € R, £ := (01, 03,...,

13
otherwise. (13)



05,030, .. 08 € {0, 1}N2, n:=(N,n2,...,MN) € Rgo
and v := (v1,v2,...,vN5) € R™ with ny, =37,y 1y .

Now that we have introduced all the necessary variables
to describe the overall system, we can cast the entire MAS
in the form (9). In particular, we will use a single hybrid
model that captures both the time-triggered and event-triggered
schemes. Indeed, as we will see, the trajectories corresponding
to MAS with transmissions triggered by time, i.e., that satisfy
(6), and the trajectories corresponding to MAS with event-
triggered transmissions, i.e., that satisfy (7), will both be
solutions to this “container” model. Hence, any (stability or
performance) property derived for this model will apply to
both schemes. However, some care has to be taken regarding
the existence of (non-trivial) trajectories for both individual
cases as showing existence for the container model does not
guarantee the existence properties for the (individual) TTC and
ETC schemes themselves. We discuss this in more detail in
Section I'V-B.

To capture both ETC and TTC-based trajectories in one
hybrid model, we consider the state vector £ := (x €, Ty K, T,
¢,n) € X with X —{meanﬁn)ER’“ x E x RE, x
NV x RN™y ><{0 1}N XRJQ[O | Vi,m eV, (" =0)Vv (" =
1AT €[0,78,4]))}. The flow map F : X x R"™ = Y with
Y =R x E x {1}V x {0}V x {0} x {0}¥° x RY, i
given by

F(fv ) ( (xev) g(xve?v)alN7ON7

Ony 5 0N27 \Il(ya :7/\7 €, T)

Based on (1), we define f(z,e,v) =
fo(z, hiM(x) + eiQ‘"‘,vg),...,fN(:p,hij'\‘,(ac) + €, vy)), where
W (@) = (61(0)h(21),02()h2(@2), . .., on ()hn (2n)) with
hi(z;) and 6;(m) as in (1) and (13) respectively. Ac-
cording to (2), we have that €& = yZ - Y-
By combining the Ilatter with (1) and (5), we obtain
that g(z,e,v) (g1 (z,€,v)), g3 (x,e,0)),...,gh(x, €,v),

v),.

(

—@(n). (14)
(fl(‘T?hlln(‘T) +ei1nvvl)v

gf(:v,ewhgg(:v,e ;- g (@, e,v)), where

m

gz(mev)' 0;(m

hz(

(filyi +e) —
i)

fyz( , 177)))7 15)
fyi(@ el v) = filz, Wi (z) + €, vy). (16)

Observe that g™ is such that gm(ac,em) = 4;(m)é™ and
that f,; is such that f,;(z,el’,v) = ¢;. The functions
\Il(yvy7€ T) - ( ( ) \IIQ(OQ) a\I/N(ON)) with \Ili: (NS
V, as in (8), are defined in Section V together with the local
variables o; € O; (collecting the information available at
agent A; to base the triggering on). Furthermore, p(n) =
(P1(m)s p2(n2), - -, (nn)) for any 1 € RY, with ¢; €
K, are to be designed.
The flow set is given by

)

C:=X a7

in correspondence with the triggering condition in (7) in the
sense that flow is only possible when 7; > 0 for all ¢+ € V.
To describe the jump map G : X =2 X, we define I'; as a
N x N matrix of which the ii-th (diagonal) entry is equal to
one and all other entries are zero, f‘,-(m-) = Z;i(k;) @ T; with

Z’L(K/’L) = dlag(zl(nla 1)7 Zi(’ii72)> ey Zi(’iiv N))7 (18)

Lim =Tn Ty andA = diag(0y, ,,0n, 5,500, 1,

L P | O | S B Note that I'; ,,e = (0,0,...,¢e™,0,
..,0) and Ay = (0 0 .,9i,0,...,0). Given these defini-
tions, we obtain the jump map G(§) = U, ey Umey Gim(§)s

where

{G?(f)}, if e D AL =0VYme VM
Gim(§) = q{G; (&)}, fEeD Al =
0, if ¢ ¢ D;
with

G?(f) = (.’E, €, (IN - Fi)7_7 K+ FllNa Azy + (Iny - Ai)ﬁ
0+ Ty(ki)1n2, Tind (i) + (I —To)n), (19)

Glm(ﬁ) = (.’L‘, (F'L,m & Iny)(lN ® (T - y) - 6) + €,

7, 6,70 — T Inz2,m).  (20)

The function GY, i € V, describes the jump of the state £ at
transmission events of agent A;. Observe that for this case,
r; is set to y; for all ¢ € V and all m € V™ for which
2;(ki,m) = 1, as described in (11). Moreover, ¢7** = 1, for
all m € VP for which z;(r;,m) = 1. The function G,
i €V, m e VM describes the jump of the state £ at update
events at agent A, due to the reception of a packet from
agent A;. Indeed, e]* is set to ; — y; as described in (12).
In addition, we have that /" is set back to 0. Note that to
complete the description of the jump map we have to define
also the sets D;, which we will do next.
The jump set D C X is given by D := | J,.,, D;, where

s :{§€X| (67" =1 for some m € V') or

(r; > d; and £7" = 0 for all m € V™) } 1)
By construction, a jump is enforced when 7; = 7/ . and
£ =1, in line with Assumption 1. By means of (14)-(21),
we define the hybrid model # = (C, F, D, G) of the form (9).
It is important to note that the hybrid system 7 is defined
such that an agent A;, @ € V, can only schedule a next
broadcast if the information of the previous broadcast of agent
A, is received by all targeted agents (which requires ;" = 0
for all m € V'), which is in accordance with Assumption
1. Also observe that the hybrid system cannot exhibit Zeno

behavior as d; is strictly positive (albeit arbitrarily small).

B. TTC and ETC as special cases

As already remarked, for analysis purposes the hybrid
system H admits both TTC and ETC-based trajectories of the
MAS. To obtain a hybrid model containing either only the
TTC trajectories or only the ETC trajectories, one can restrict
the flow set C and the jump set D, respectively.

For the TTC case, we specify

CMC={¢eX|VieVne0,mel} (22)
with the value 7!, taken equal to 7. .. in (6). Note that

C™™C C C. We claim now that the hybrid model H™™ given
by the quadruple (C™™C, F,D,G) admits all possible TTC



trajectories (and no other ones). Instrumental in this claim
is that the functions ¥; : O; — R, ¢; : Ryg = R0 and
nd : R™ — Ry, and 7, in (7)-(8) will be designed (see
(45) below) such that 7; > 0 as long as 7; € [0,7.;.]. In
words, after a transmission of A;, the triggering variable 7,
remains nonnegative for at least 7 ,., time units. Hence, before
7 .o« time units have elapsed 7; does not trigger events!.
Given this observation, it is clear that indeed the hybrid
model H'TC admits all possible TTC trajectories (and no other
ones). Obviously, solutions to HTTC are also solutions to H
as CT¢ c C.

For the ETC case, we define
DETC .— {5 € X | (¢* =1 for some m € V") or
(r; > 7i e and €7 = 0 for all m € V) } 23)

By taking d; < 7., (which is always possible as d; is an
arbitrarily small positive constant), we see that DFTC C D;.
By taking the jump set DT := | J, ., DFTC, we have that
the hybrid model HZT¢ given by (C, F, DFTC @) admits all
possible ETC trajectories (and no other ones). As for the ETC,
solutions to HETC are also solutions to H as DETC ¢ D.

We would like to emphasize that the restrictions above do
not depend on the destination protocols, hence the destination
protocols are present in both setups.

Remark 3. The event-triggering condition presented in (7)
can be modified to a static event-triggered condition by taking

th =0, tj,qy =inf {t >t} + 7l | ¥i(0;) <0}

This modification does not affect the stability and/or perfor-
mance guarantees as given in Theorem 1 below.

C. Mathematical problem formulation

To specify the various and general stability and performance
properties that can be studied using our framework, we adopt
the following definitions that use the concepts of hybrid
arc and hybrid time domains, see [48] and its extension to
continuous-time inputs [56] for more details.

Definition 1. A hybrid arc £ is a solution to ‘H for a given

locally essentially bounded and Lebesgue measurable signal

v R)O — Rn”, lf

(i) for all j € N such that I’ := {t € Rsq | (t,j) €
dom &} has nonempty interior, it holds that £(t,j) €
F(&(t, 5),v(t)) for almost all t € int I7 and £(t,j) € C
for all t € int I,

(ii) for all (t,j) € dom¢ such that (t,j + 1) € domé,
&(t,j) € D and §(t,j + 1) € G(E(L, ).

Remark 4. Although there are two notions of solutions pre-
sented in [56], namely everywhere (e) and almost everywhere
(ae) solutions, in our case these solutions coincide, as the
maps C and D only depend on the state &, which is absolutely
continuous between jumps.

! Alternatively, for the TTC one could also remove the 7 variables and their
dynamics from the model HTTC.

Definition 2. The hybrid system H is said to be persistently
flowing if all maximal solutions & have unbounded domains
in the t-direction, i.e., sup, dom§ = oo.

The following definition of dissipativity is close in nature
to the one used in [57].

Definition 3. The system H is said to be (Si1,S2)-flow-
dissipative with respect to a supply rate § : X x R™ — R
and non-empty closed sets S1,Sy C X, for short (5,51, S2)-
Sflow-dissipative, if there exists a locally Lipschitz function
U : X = Ry, referred to as the storage function, such that

1) there exist Koo-functions o, @ such that for all £ € X,

g(|§|51) < U(f) < a(‘ﬂsz)? (24a)
2) for all £ € C and for all v € R™ and [ € F(&,v)

U°(& f) < 38(8v), (24b)
3) for all £ € D and all g € G(§)
Ulg) —U(¢) <0. (24¢)

In essence, the sandwich bounds in (24a) are not required
for general dissipativity notions, as these only depend on
the supply rate and storage function, however, the sandwich
bounds are often useful for stability analysis. Indeed, using
(24b) and (24c) we find that

U(E(t. 7)) < U(€(0.0)) + / S(6(r, (), v(r))dr,  (25)

where ¢(7) := max{j € N | (7,7) € dom¢}, which can be
used to establish, e.g., passivity. Using (24a) and (25) we find

t
a([§(t, 9)]s,) < a(]€(0,0)]s,) + / 5(&(7,¢(7)), v(7))dr.
’ (26)
As we will discuss after Theorem 1, in general it is useful to be
able to work with such a two-measure dissipativity notion (like
in [58]), where S1 D Ss. Of course, in some cases §; = Ss
can be taken.
Our problem can now be formalized as follows.

Problem 1. Given the MAS represented by H(C,F,D,G)
with data F, G, C and D as described in (14)-(21), and the
functions z;, © € V, as in (4). Provide design conditions for
the time-constants T¢ _,, 7i. € Rog with T8, > 7 . and
the functions V;, p; and 172-0 as in (7) and (8), for i € V, such
that, under Assumption 1, the system H (which captures the
behavior of both HTTC and HFTC) is persistently flowing and
(5,81, Sa)-flow-dissipative for sets S1,S2 C X with S 2 S,
and a given supply rate 5 : X x R" — R of the form

5(&v) = s(z,e,v) —a(n), 27

where s : R™ x RV xR™ - R, £ € X, v € R™ and ¢ as
in (14). The supply rate § and the set A capture the desired
stability, performance and robustness requirements.

As shown in, for example, [59]-[61], the dissipation in-
equalities in (24) allow to consider various important system
properties such as asymptotic stability, input-to-state stability,
L,-stability with p € [1,00) and passivity, from a unified



point of view. Hence, Problem 1 captures a wide range of
relevant multi-agent (but also centralized) control problems ad-
dressed in the literature including output-regulation problems
(of which the consensus-seeking problem is a particular case)
and vehicle-platooning problems (in which L,-contractivity,
p € [1,00), is of interest as a string stability guarantee). In
the companion paper [1], we demonstrate the generality of this
framework through various case studies.

V. DESIGN CONDITIONS AND MAIN RESULT

In this section, we present design conditions for the time
constants 7. .., 7.4 and the functions ¥;, ¢; and Y, i € V.

miet>

The desired dissipativity property is then established.

A. Design of the destination protocols

As already mentioned in Remark 1, the destination protocols
considered in this paper have a strong connection to the
network scheduling protocols as described in [41], [S1]. As
such, we are inspired by the conditions on network protocols
as introduced in [41], [51] for the design of suitable destination
protocols. Thereto, let z;(k,e™) := ((1 — z(k,1))ef, (1 —
zi(k,2))e?, ..., (1—z(k,N))el) forall e* € E; and k € N.
Consider the following condition.

Condition 1. ([41], [51]) The destination protocol z; : N X
V — {0,1}, ¢ € V, is uniformly globally exponentially stable
(UGES) in the sense that there exists a Lyapunov function
Wi :NxRN? R that is locally Lipschitz in its second
argument such that for all k € N and all e € E;

out |

(28a)
(28b)

ayy e < Wik, e") < aw,le"]
Wik + 1, z;(k, e?")) < Wi (k, e

Jor constants 0 < ay,, < aw,; and 0 < A< L

As shown in [41], the condition above is equivalent to the
UGES property of the time-varying discrete-time system

q(k+1) = zi(k,q(k)), k €N, (29)

where ¢ € E;. Hence, Condition 1 is only related to the
destination protocol and not to the other dynamics of the
system. In fact, in case the system described by (29) is UGES
for a given protocol z;, the corresponding Lyapunov function
W; satisfying (28a) and (28b) can be specified as

VI em, ke 2,

where (m, k, e?™) denotes the solution of (29) at discrete
time instant m € N>j with initial condition e € E; and
initial time k£ € N, see also [41, Proposition 3].

The well-known Round-Robin (RR) protocol but also many
other protocols are known to be UGES protocols as well, see
also [41], [52]. For the RR protocol, the function W; rr in
(30) that satisfies (28a) with QwiRR = 1 and aw; rr =
V/N;, and (28b) with A\; gr = /(N; —1)/N;, where we
recall that NV; is equal to the cardinality of V™, see [41] for
more details. For the sampled-data (SD) protocol, correspond-
ing to the case that at each transmission instant an agent A;,
¢ € V), broadcasts its output measurement to all connected

Wi (k, e") = (30)

agents A,,, m € V™, we can take W;(k,e?™) = |V,
ay,; = aw,; = 1 and any A; € (0,1).
We also consider the following condition.

Condition 2. ([34], [52]) For almost all " € E; and all
i€V, meV™and k € N

oW, (k, e

e
K3

for some constant c; > 0.

(3D

Condition 2 is also only related to the destination protocol
z;. For the RR and SD protocol, we can take ¢; rr = V' N;
and ¢; sp = 1, respectively.

Remark 5. As the conditions on the destination protocols are
independent of the system dynamics, the resilient protocols
that can cope with packet loss or Denial-of-Service, which
are presented in Part Il [1], can be designed and implemented
without any modifications to the framework as presented here.

Condition 3. For each i € V, there exist functions H, ; :
R™ x R"™ x R™ — Ryq and Hy; : R"* x R" x R™ —
R>¢ and constants L1 ;, Lo ; > 0 such that for all m € V",
z € R™, e € RN™ and v € R™, it holds that

Cz|gzn(957€,’0)\ gH (:1,‘,6;"7 )+L11|6m‘+L21|61|7 (32)
cil fyi(a, el )] < Hy (@ el 0) + Loglei]  (33)

with the functions g;* and f,; as in (15) and (16), and the
constant ¢; > 0 as in (31), respectively.

Inequality (32) is related to €]" and inequality (33) is related
to y;. Constant Ly ; can be taken equal to zero for all ¢ € V),
if £ does not contain self-loops.

B. Lower-bounds on the minimum inter-event times and
maximum allowable delays

To obtain the lower-bounds on the minimum inter-event
times 7. ;.. and the maximum allowable delay 7, for each
agent A;, i € V), we first characterize the influence of
the transmission errors e*, m € V' on the state z and
the desired stablhty/performance property by means of the
following condition.

Condition 4. There exist a locally Lipschitz function V :
R" — Ry and a non-empty closed set X C R"*, K-
functions oy, < @y, continuous functions g; : R™v¢ x R"v —
Rxo, constants p;,7v,; > 0, 1 € {0,1}, ¢ € V, such that for
all x € R"=

ay(lz]x) < V() <av(|z]x), (34)
andf0r2all z €R™ ec RV, v e R™, k€ NV, ¢ ¢
{0,137,

Ve(z; fz,e,v)) < S(l“ e.v) + Yy (=i B")

,WNH (z,e",v,4;) +7€(£ )sz(ﬁ“ ;’ut))

with €; = (0}, 02,...¢N) and s(x,e,v) from (27), and the
function H; : R x R™ x R™ x {0 1}V — Ry given by
Hi(z, el v, €;) := max{H, ;(x, e, v), oe; VH, i(z, el v)},

(36)

(35)



with the functions He; and Hy; as in (32) and (33), and
where the function ¢ : {0,1} — {0,1} is given by

i) = {O, when Y, 07 =0

1, when 3 ., 07" > 0.

(37

In essence, (35) constitutes a condition guaranteeing an Lo-
gain property from (W1, Ws,... , Wx) to (Hy, Hs,...,Hy)
for the system & = f(z,e,v). The constants v, ;, [ € {0,1},
resulting from this inequality indicate the influence of the
transmission errors ef*, m € V™, on the state x and the
desired stablllty/performance property (captured by s and X).
When ((¢;) = 0, £; € {0,1}N, i € V, the most recent
broadcast information by agent A; has been received by all
targeted agents. Otherwise, i.e., when Z(&) = 1, some (or
all) of the targeted agents still need to receive the most
recent broadcast information of agent 4;. Condition 4 may
be ensured at the first step of emulation when designing a
local controller for each agent m € V.

Remark 6. In the TTC case, the function s; is redundant, and,
in that case, it may be taken as ¢; = 0 for all i € V.

The constants ~;;, | € {0,1}, as in Condition 4, are used to
determine 7, and T, 1 €V, via the following condition.

mad’
Condition 5. There exist positive real constants T, i or and
i © €V, with 7'mlet > T .4 satisfying
( >¢0 l( mlet) = ( )¢1 l( ) (38)

Z( )¢1,i(Ti) =7 ( )¢0 'L(TZ) fOi‘ all T; € [07 mad] (39

where ¢y, | € {0,1}, evolves according to

d = - 1 5
Tﬁ@,i = - (zLi(l)¢l,i + i (1) (?Miébz,i + 1))7 (40)
Sfor some fixed initial conditions ¢ ;(0), | € {0, 1}, that satisfy

7i(1)$1.:(0) = 3:(0)do,:(0) > A27,(1 )¢1,i(0) > 0, where, for
each i € V and | € {0,1}, the functions L; : {0,1} — Rxg

and 7; : {0,1} — Ry are given by
Li(l) == ay} ¢/ Nimax {Ly 4, La i}, 41)
Fil) = Ci M (42)
ith
wi Mt
i= = (43)
aw,q

(note that (; < 1) and where v, ; satisfies Condition 4 and
with X\; as in (28b). The constant ¢; € (0,1], i € V, is a
tuning parameter.

Conditions 4 and 5 can be obtained systematically for many
systems. In a similar fashion as in [52] the result above leads
to intuitive trade-off curves between 7, ; and 7.1 ;.;, which can
be used to find appropriate values for A;, ¢o,;(0) and ¢1,;(0),
1€V, see, [52, Section VI].

Remark 7. Observe from (40) that d%gz)l,i(n) <0,1€{0,1},
for i € [0, T 00)s (since ¢y (i) > 0 for 7 € [0, 7} 00]), and
that a larger vy, ; leads to faster decay of ¢;;. By combining
(38) and (39) with the latter fact, we can see that larger vy, ;

leads to less favorable (1t ., Ti. )-combinations.

As the constants vy, ; depend on the system dynamics and
the robustness properties of the controller, there is an inherent
upper bound on the MIET/MAD, which essentially depends on
how fast the network-induced error e]* can grow. Of course,
a well-designed holding function may counteract this phe-
nomenon, i.e., the holding function may reduce the maximum
growth rate of e, which results in more favorable (larger)
(T2 s Tt ) combznations, which will be illustrated in the
second part [1].

Remark 8. Obtaining suitable constants such that Condi-
tions 3-5 are satisfied is problem and system-dependent, and
there may exist settings for which global information is neces-
sary to obtain them. However, in some cases, these constants
can be obtained systematically and in a decentralized manner,
as illustrated in the examples in Part Il [1].

C. Event-triggering mechanism design

To facilitate ETM design, consider the following condition.

Condition 6. There exist continuous functions H,; : R™ X
R™ — Ry, i € V, that satlsfy for all x € R, e € RN™,
veR™, ke NV, re {01},

H (yﬂyl ) H($7€;’1,’U,£i)
for functions H; as in (36).

(44)

Condition 6 is trivially satisfied by taking H,(y;, yi") = 0
for all i € V, y; € R and yi" € R™ as the function H;
is non-negative. However, the introduction of the function H,
is an important feature that allows to capture ETM designs
for relevant systems such as MAS with single-integrator
dynamics, as we will show in the case study in Part IT [1].

The dynamics of the triggering variables 7;, ¢ € 1, which,
according to (7), are used to determine the transmission
instants, are defined by the functions ¥; : O; = R and
77? : O = Ryp, © € V. The local variables o; at agent
A; are given by o; = (y;, 5", i, ™) € O; with O; :=
R™ x RV"s x R x RN, For all £ € X, the functions ¥;
and n?, i € V, as in (8), are given by

Wi(0i) = <i(yi, 4, n) +(1 - GZ)ﬂlNiﬂ?(yiv @\;n)
— (1 —wi(m:))7i Zmevgm em?, (45
n(yi) == 62 Zmevgm e |? (46)

with €0 := afy; (5i(0)¢0,i(Thier) — 7i(1)61,:(0)A7), where

{1}7 for7; € [07 Triliet)
Wi (T’L) = [07 1]? for 7; = Tmlet7 “7)
{0}, for 7 > Tl

¥i i= aw,i¥:i(0) x
(2L:(0) 604 (i) + 5 (0)(1 3i(rhied)) - (49)
Constants \;, ¢; and the function g;, i € V), are part of the ETM
described by (7), (8), (45) and (46). Hence, the design of \;

and g; have a significant influence on the average inter-event
times generated by this ETM.




The triggering rules presented above are essentially com-
pensating the destabilizing (increasing) part of the supply rate
corresponding to the network-induced errors by exploiting the
stabilizing (decreasing) parts in the supply rate. To be specific,
the destabilizing parts are characterized by the functions W;
and the stabilizing parts are characterized by the functions ;.
These two parts are filtered through the auxiliary variables
i, to ensure that, “on average,” the system is dissipative. To
prevent Zeno behavior, we employ time-regularization, which
is achieved through the maps w;. The inclusion of the maps

w; ensures that we do not trigger for at least 7° ., time-units.

Remark 9. Note that the conditions above can always be
satisfied in case of stabilizable and detectable LTI systems,
in which case an LMI can be constructed to systematically
guarantee that the main conditions regarding the system dy-
namics are satisfied and to find the corresponding parameters.
Additionally, the results also hold for a large class of nonlinear
systems. One such nonlinear example is presented in Part Il
[1]. Moreover, the application of the presented framework
can be extended further, if, instead of global non-practical
properties, semi-global practical properties are of interest.
Such derivations can be obtained by taking inspiration from,
e.g., [62], thereby applying to a large class of locally Lipschitz
systems. In any case, we focus here on a general representation
and framework, and, therefore, the results may require some
tailoring to incorporate specific problem settings.

A crucial comment has to be made on the availability of the
information e" = (e}, e2,...,eN) at agent A;. As mentioned
before, due to the presence of unknown time-varying delays,
the estimate y™ of output y;, i € V, m € V" (available at
agent A,,) is not available at agent A;. So, agent A; does
not always precisely know which estimate agent A, is using
for its output y; and, consequently, the network-induced error
em =g —y, 1t €V, m € V" see (2), is sometimes
not precisely known for agent A;. However, note that due to
(1 —w;(7;)) being zero for 7; € [0,7¢,.,), the information 5"
is not always needed in the trigger dynamics. In particular,
for the first 7 ;.. time units after a transmission by agent A;,
agent A; does not require this information. Only when 7.,
time units have elapsed after a transmission by agent A;, e]”,
(and thus /™) has to be known. This condition can be satisfied
in various relevant cases. Let us shortly elaborate on this.
_In case zero-order hold (ZOH) devices are used in (5), i.e.,
fi=0,i €V, g is known at agent A; when 7., time units
have elapsed after a transmission. Indeed, due to Assumption
1, after 7%, time units all transmissions of y; have arrived at
the respective agents due to the small-delay assumption, and
since 7!, < 7i.., and the use of ZOH, agent A; knows
that y™ = r;, the last transmitted value of y;. Note that the
exact values of the delays need not be known in this case, and,
hence, can be unknown.

In case of known delays (and thus with absence of delays as
a special case), agent A;, knows exactly when its transmitted
value yl(t}C) (stored in r;) arrives at agent 4,, (namely, at
time ¢} +A;™), after which A; can run a copy of the holding
device (5) to exactly determine y;™ as being used .A,,,. Hence,
in this case e]* can be determined exactly too.

Of course, by including synchronized clocks in the system,
it is possible to enforce that the delays are known, even if
the network-induced delay is a priori unknown. By time-
stamping the information, and “updating” y;™ only when 7/ _,
time-units have elapsed, each agent incorporates the received
information at exactly the same time, making the total delay
known (and constant), in which case agent A; also knows the
value of 3/, even when general holding devices are deployed.
Such techniques have already been employed in the literature,
see, e.g., [63] and the references therein.

The decisive factor in the above cases is that agent .A; knows
the value of §/™ exactly (after 7, time units have elapsed
after transmission). This is an assumption implicitly used
in many existing works on packet-based multi-agent control.
In fact, existing works often consider absence of delays or
ZOH devices. The general framework here encompasses these
cases as special results, unifies them by revealing the intrinsic
underlying properties and can tackle much more general cases.

Interestingly, our framework can be extended further to
encompass also the case where the values of g™ and thus e
are not exactly known, which is the case when there are non-
zero communication delays which are not known and when
general holding devices are used. In this case, it is not possible
to perform exact reconstruction of 7™ by agent .A;. However,
in this case it is possible that .A; approximately knows /" in
the sense of being able to generate a robust set-valued estimate

™. om € VM, i € V} that satisfies the following property.

Assumption 2. For each solution pair (§,v) to H with v €
L, it holds for all (t,j) € dom¢& and for all i € V and
m € VM, that y"(t,7) € YI(t, 7).

For instance, in the case of generalized holding functions
and unknown delays, it is known that the communication
delays Ay™, i € V, m € V", k € N, are bounded by ¢ .
By exploiting this fact, it is possible to construct a set-valued
estimate )/ that contains %", by considering at agent .4;
all possible transmission delays of y;(¢}) (let us parameterize
them by d € [0,7%,,]) arriving at agent .4; and making
forward predictions §"(t — ti) using g;”d = fl(gj;”d) and
g™(d) = y;(ti) as a corresponding initial condition. The set

,de[o’q—xi)ad] 7i7y(t) contains then ;. Of course, this induces
extra computations at .A4;, but conceptually it is possible. Using
these set-valued estimates )}, we can adapt (45) and (46) to

Vi(0:) = ilyi, ") + (1 — )i N H (s, 51"
—(1 = wi(m))vi Zme\;gm SUPgeym |7 — Z/z‘|2a

U?(yi) = 59; Zmevg'" infﬂey;" 7 — yil?,
and still have the same stability and performance properties.
Indeed, as the estimate 3™ of output y;, i € V, m € VU,
is contained in V" due to Assumption 2, they are used to
capture the actual transmission error e, i € V, m € V", as
in (2). For instance, note that |ef"|* < supjeym [§ — yi[*. In
this way, the ETMs at agent A; are indirectly based on the
network-induced errors e* = §™ — y;, m € V. Let us add
to this, that indeed, the proposed triggering mechanism does
not rely on clock synchronization or acknowledgment signals
as the functions ¥; and 7Y, i € V do not depend on 3",
m e VU



Note that one can always satisfy Assumption 2 by taking
the (trivial) choice Y/™(t,j) = R™, however, in this case,
the triggering will become time-triggered. Recall that this
indeed complies with the observation that, for the case of
TTC, no conditions on knowing 7™ at agent .A; are required
due to the time-triggered communication. If, however, better
estimates can be designed, which is possible in most cases,
event-triggered implementations are obtained that may result
in significant savings in communication compared to this time-
triggered solution.

Remark 10. Assumption 2 reveals an important general
principle for successful deployment of ETCs, namely that
agent A; needs to have some idea about what estimates y."
other agents are using regarding its outputs y;. The more
accurate the information, the less transmissions are needed.
If no information is available, then the ETC scheme based on
Assumption 2 reduces to TTC.

Interestingly, even in the TTC case our framework solves
many multi-agent problems that were not even tackled before
for time-triggered communication (in which the only restric-
tion is an upper bound on the inter-transmission times).

D. Main result

Given the conditions and the ETM design presented above,
we can now state the following result.

Theorem 1. Consider the system H(C, F,D,G) with data C,
F, D and G as described in (14)-(21) that satisfies Conditions
1-6 and suppose Assumption 1 holds. Then the MAS described
by H is (8,81, 82)-flow-dissipative with the supply rate 5 :
X xR™ — R as given in 27) and S; = {{ e X |z € X,

e=0,n=0} S ={£ €S8 |r—y =0} In addition,
if there are no finite escape times during the flow?, then the
system H is persistently flowing.

The proof is provided in the Appendix. A few comments
are in order. It is clear that the absence of finite escape times
during flow does not directly guarantee persistence of flow.
In fact, obtaining that H is persistently flowing requires the
exclusion of jumps outside of C U D along solutions and the
satisfaction of viability conditions to guarantee that if a jump
is not possible, flow is possible, see [48, Prop. 6.10] for details.
In fact, these three properties would lead to completeness of
all maximal solutions in the terminology of [48]. Then, the
exclusion of Zeno behavior is required in order to obtain
the persistence of flow. This is addressed formally in the
proof of Theorem 1. Let us also remark that, depending on
the problem at hand, different arguments can be invoked to
prove the absence of finite escape times during flow using
results for (constrained) continuous-time dynamical systems.
A few typical arguments are described in the proposition
below, whose proof is given in the appendix.

2 Absence of finite escape times during flow is meant here in the sense that
solutions to #H are well behaved in between jumps, in the sense that maximal
solutions do not grow unbounded in finite time due to the flow dynamics,
similar to case (b) in [48, Prop. 2.10] in the autonomous setting.

Proposition 1. Consider the system H(C, F, D, G) in Theorem
1 with the hypotheses in Theorem 1 holding. If
1) the set X is compact and non-empty and there exist
constants cy,cyw € Rxo and a function o, € Koo such
that s(x,e,v) < cvV(z)+ewle*+o,(|v]), forall € € X
and v € R", or
2) the functions f, g in (14) are globally Lipschitz uniformly
in v, in the sense that there exist constants L, L., L, >
0 such that, for all (x1,e1,v1),(x2,e2,v3) € R" X
E x R™, it holds that |f(z1,e1,v1) — f(x2,e2,v2)| <
L.|w1—x2|+ Leler —ea|+ Ly |v1 —vs| and |g(x1,€1,v1)—
g(w2, e9,v2)| < Ly|w1 — 22| + Leler — ea| + Ly|vr —va
then there are no finite escape times during flow.

s

Lastly, we discuss the implications of S; O Ss. From the
definitions of S; and Ss, we see that a term with |r(0,0) —
y(0,0)| appears in the right-hand side of (26). This term does
not affect the trajectories of the system when ¢*(0,0) = 0 for
all 4,m € V. When ¢*(0,0) = 1 for some ¢, m € V, however,
it means that, shortly after initializing the system, a “packet”
will be received by agent .A,,, with an arbitrary update that may
not reflect the actual output of the system. It is to be expected
that the transient behavior of the system is affected by such
a “disturbance”. In practice, however, this can be avoided by
setting all ¢*(0,0) = 0. Moreover, in some cases, ie., when
stabilizing the origin of the system, the functions W; may be
constructed such that S; = S; = {{ € X |z € X,e =0, =
0,7 —y = 0}, see, e.g., [34]. In general, however, it may not
be the case that r(¢,5) — y(¢,5) — 0 for t + j — oo, as the
current framework allows, e.g., limit cycles. Indeed, due to the
dynamics of r, 7(t,j) —y(t,7) — 0 as ¢t +j — oo if and only
if f(z,0,0) =0 forall z € X.

VI. CONCLUSIONS

In this work, we presented a systematic and general design
framework for both time-triggered and (static and dynamic)
event-triggered control strategies for a class of nonlinear
MAS subject to disturbances. The proposed framework leads,
under appropriate conditions, to MAS that are dissipative with
respect to a desired supply rate, which can capture many
relevant control problems, and that have strictly positive lower
bounds on the inter-event times for each local triggering rule.
Furthermore, robustness with respect to non-uniform, possibly
unknown and time-varying delays is guaranteed by design.
The broad applicability of the framework will be demonstrated
in the companion paper [1] through several case studies and
the modeling of the packet losses and denial-of-service in the
destination protocols.
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APPENDIX

Proof of Theorem I: To verify the dissipativity properties
of the MAS with respect to the supply rate s in (27), we aim
to construct a storage function that satisfies (24).

For clarity of exposition, the proof is composed of six steps.
At first, we present a candidate storage function and prove the
bounds (24a). In the second, third and fourth step, we study
the individual terms of this candidate storage function. Then,
we show that the overall candidate storage function indeed
satisfies (24). We complete the proof by showing that the
system is persistently flowing.

Step 1. Candidate storage function. Consider the following
candidate storage function

UE) =V +Y m
1€V
+ 2wl

)QS[(( )i (TZ)WQ(I{ZW Zlv Yir € out’ Ti): (49)
i€V
for any ¢ € X. Function ¢ : {0,1}" — {0, 1} is asin (37), and
V' comes from Condition 4. The function ¢;; : Ry — Ry,
1€{0,1}, i €V, is given by

~ (b,‘Ti whenn<71i~
ri(ri) =14"" (7 Het - (50)
d)l l( mlet) when 7; > Tmiet

with ¢ ; as in (40), and the function W; : N x {0,1}¥ x
Rmvi x RN%wi x R — Ry is defined as

Wi (Hivguyla T’L) =
max {Wz (’iiv egut + Si(zia Yi, e(i)ul’ TZ)) )

i Imax Wi(ﬁi7egl]t+ YSZ gi’ hegut’ri )}}’ 5]
CSCS,;((Z,;){ ; 15i(liyy ) (51)

where Y, := (It @ I, ,), Si(€;) := {m € V{*" | " = 1},
which is the set of agents that still have to receive the latest
transmitted measurement by agent A;, (; is as below (42), and

si(Li i, €™ > v vi)) (52)
1€S;(4;)
with the variables 4;(1) € Rxo, [ € {0,1}, as in (42).
Sandwich bounds (24a): It follows from (51) that
Wi (/{Zﬁ Zia Yi, 62“ ) CZ (/{27 out) .

We derive from (28a) that W; (Kiy by iy €M 13) =
Giayy,;[e$™|. From (51) we also deduce that

e+ 1y ® (r; —

Wi("iia gia Yi, e?ma Ti) < max {aW,i|€;"m+5i (617 Yi, e(imta ri)|7
e+ Visi(lis i e}

les
<aw, (e + 11y, @ (ri — u3)])

aWz|eout| +aWz\/ Irz yz

We also have required bounds on V' with respect to X and
n with respect to {0} for { € X as then 7 > 0.
Step II. Properties of W;. Consider the following lemma.

Lemma 1. Consider W; as in (51) with W; satisfying Condi-
tions 1 and 2. For each i € V, m € V" and for all k; € N,

e € RN"w, r; € R and 0 < )\; < 1, the function W;
sattsﬁes for update events

Qp; max
' SCSi(Zi)

Wi(/{/h gl - F?TL]-Na Yis e;,')m + Ymsi(ziv Yis e;;)ma Ir') ri)
g Wi(ﬁivglvyh out Ti)a (53)
and transmission events
W("Jz+1 Z(’iz)lNayzv >yz)
< \iWi(ki, O, yi, €9, 13)  (54)

Proof of Lemma 1: Inequality (53). Observe that (53) with
W; as in (51), is equivalent to

,.i as before.

IR (1 T

o))

+Z}/lsz E Iy In, v € e +Yn (Sz(«@»yw

leS
W(K'la +Y Si (6177!1’ a )+S (E =T lNaylanUI+
Vs (b i €07, 70)) }
< maX{Cisglsaé) {W (m, Out+z Yisi(4;, yi, €F 7”7))}

les
Wilki, €2 + il yis 8,73)) | (59)



for each ¢ € V, m € V™. By means of (52) and given the
fact that V;Y,,, = 0 for [ # m, we find that
W(/fu Out+Y Sl(f“yz» ;)ut’

)+S(£*F 1N7yi7€(’)ut+

Ymsi(gi’yiv €; ari)ﬂ"i)):W(K/u SUI+31(€z7y’L7 €; 7'&))
hence,
SCSi(IEZE}IS‘mlN) {W (K’la 2“1 + Kns (gi,yi,egUK7ri)

+ZYl8i(€

T leNa Yi, € ?ut + Ymsi(gia Yi, egma Ti)7 Tl))}

lesS
= max { (Iil, ;)ut+ Z le Z7y17 i 7 ’L))}
SCSi(4i—Tm1nN) 1€SU{m}
out out
<Sé{1sa€;){w ("‘317 €; +l€ZSYSz Zzay'u ) l))}

By combining (55) with the above, we indeed get (53).
Inequality (54). The condition given in (54) is equivalent to

max {Wz (fii + 1, + 5;(Zi(Ki)1n, yi, €3, yi)),

¢ max {WZ (ki +1,e"+
SCSi(Zi(ki)1n)

ZYlSi(Zi(/fi)lNayiaegmayi)>}} AiWi(ki, e§™)  (56)
les

for each i € V as {; = Oy and thus S;(¢;) = 0 in
(51) and (52). By using the fact that, according to (52),
$i(Zi(ki)1n,yi, €' y;) = —Z;(k;)ed™, we find that (56) is
equivalent to

. . out out
max {Q scs, (Z (mlN) {Wz(m—l—l, e = s Vi€l )}},
W, (m + 1, hi(kq, ;’u‘)) ANiWi(kq, ™). (57)
By combining the fact that

(28a),(43)

{Wz ("fi + 1,6?‘“ - Zlesmegm)} <
Y )\ W e out
iscs (Z (~,)1N) [ = CiesViel™| < (i, €)

with (28b), we can obtain (57) and thus (54). ]

Lemma 2. Consider W; as in (51) with W; satisfying Con-
ditions 1 and 2 and the function H; as in (36). Then for all
ki €N, £; € {0,1}N, r; € R, 2 € R%, v € R™ and
almost all e € RN™ | it holds that

G max
SCSi(Z;(ki)lN)

aW’L (Hiv iayiae(‘)marl)
L <
< 3(6;;4”’%) ,(gi(,e,v), fy, i(z, €; 7”))> <
V NiHi(‘r’ei 7'07&) + i’ (g( ))W (/{“ irYi, € ;)mari)a (58)
where g;(x,e,v) == (g}(x,e,v),92(z,e,v),...,g" (v, e,v))

with g7*(z,e,v), i € V, m € V" as in (15).

Proof of Lemma 2: To prove Lemma 2, we consider the
following two cases.

Case 1: W, (Kis b, yiy €M, 15) =
si(4i,yi, €™, 7;)). For this case, we have that

Wi(ki, e" +

K2

aW (K/uzhyw €; a )
( mqu> @“@»>
ow; (K'za Z’m + 8; (%Z/u €; 7 z)) ) ]
< a( ;)ut7yl) 7(gl7fyﬂ)>

(31)=(33),(52)

Ci\/ZWLGV"“‘\R* 9; |2 + ZmG'R* |fy z‘

V/N; max { max{Hm(x,e ,v) + Ly ;lel|

+ Lolel]}, f(f-)( (x,el, )+L2i\ei|)}
<\/7H18.X{Hez(.’[},el V), Z(Z) i(m, e )}
+ ﬁmax{Ll i7L2i}|€9m|
z, e v, b +max{L11,L21}f<zW(m,, )

(32) 33)

(28a) (36)
< VN H,(

(41), (43) (51)

((ﬂ )) i (K i i €% m5) - (59)
where we used the facts in the lat-
ter inequality that Wi (K, e") =
W; (ki On, yi, €™, 7;) and  thus that (W, (m, e <

G maxscs, (4:) {W (szv (;ut + Zles Yisi(li, yi, €f 77'1))}
Moreover, recall that N; is the cardinality of VU

w: W (Hza&.»yu Om z) -
(i maxscs, («,) {W (ki e + Zles Hsi(&,yue;’“‘,ri)) }
(and thus £(¢;) = 1 (otherwise S;(¢;) = @ and thus
si(€;, yi, €™, r;) = 0). For this case, let us first define

§* = argmax Wi (2" + s Yislos i 10

such that
ST {Wi (fﬂ’ e + 2 1esYisi(lis iy €™, Ti)) } =
Wi ("iive(i)m +Zl€8*msi(£17ylv ?mvri)>' (60)

Using the definition above, we have that

OWi (iy i, yis €8 74) —
< a(e™, yi) 2 (95 fy,i) > =X

<8Wi (Ki, " + Y jese Yisi(li i, e, 14))
a(ed" i)
Gery/ Cnes-
rm{
51

+ Loaleil}, 606 (Hy (o, 0, 0) + Laglell) b <
VN H (. €™, v, 6) + Li(0(8)Wi (ki £y yi, €9 73),

where we used (; < 1 and the same arguments as before.
Based on (59) and (61), we can conclude that (58) is true,

which completes the proof of Lemma 2. O
Step IIL. Properties of V. Consider the following lemma.

(93 fy,i) >

g1 + 8% £yl

@hH— (33) (52)

(32) (33)
max {He i

meyo T, z’ )+L1 Z‘ez |

(61)

Lemma 3. Consider the system H with data (C, F,D,G) as
described in (14)-(21), the function V' satisfying (35) and the



function H; as in (36). Then for all x 26 R™, e € RN,

reR™, veR™, ke NV, £€{0,1}V", it holds that
Ve(z; f(x,e,v)) < s(z,e,v) + Zf\il (* iy, o)

_luiNiH (z, e;n7v ¢; )+§/12(g(£1))W12 (ki iy Yi (Zut’rz))

Proof of Lemma 3: To prove Lemma 3, based on (35), we
only need to show that

(L)W,

Recalling (42), we obtain for E(Ei) = 0 (and thus ¢; = Oy)
and for ¢(¢;) = 1 that, respectively,

W2 (ki e™).

(51751::917 €; t’ 2) FYE(E)%

’77,2(0)‘/’1712 (K’UON»yﬂ (z)uta ) - 701W2 ("i?a0N7y1a €; 7r1)

WQ(KZ, ™) (62)

~ 4 42)
77,2(1)W7, (H’Mglvyla ;)mvri) 2 C 2W (’{27£z7y17 z 7T1)

(51

> 7@(@) WQ(H'M (Z)ut) (63)

for all e € RN"w.i, r; € R™vi and all k; € N. O
Step IV. Properties of n As described in (8), the dynamics
of n are governed by the functions ¥; and 7, i € V, which
are given in (45) and (46), respectively. These functions are
specifically designed such that the following lemma holds.

Lemma 4. For all y; € R™i, gi" € R, e € RN,
ki €N, £; € {0,1}N, and all 7; € R20, 1 €V, it holds that

iy, 5 7iumi) < iy, U) + (1 — €)pa N H (yi, G
- (1 - wl(Tl))WZ(Zl)zWZ ("iiagiayhe?mvri)x

(QL(Z(&))&Z(@M(H)+('Yé(zi),i(¢;37(gi)’i(”'i)+1)))- (64)

Moreover, for all yZ € R, gin ¢ RNmy, eout ¢ RNMw,
ki €N, and T, = 7., 1 €V, it holds that

n9 (i, Ui Tiy i) < 'YO,iéO,i(Ti)WE(HhONayi> e ry)
— Fi(1) 1, (VW2 (ki + 1, Zi (ki) 1w, i, €2, i)

Proof of Lemma 4: To prove Lemma 4, let us first recall
the fact that, due to Assumption 1, we have that /; = Oy
when 7; > 7i. . and that (1 — w;(7;)) = 0 when 7; < T ot
Consequently, we have that (1 — w(m)) >

G
;e *W(Tz))aWzWQ(H“ et) = (1-

A |2 =
(2

(1 —w(m)|e* > €
w(Tl))aWZWQ(m,EI,yZ, tr;), for all y; € R, giv
R™, e € RN™.i, g, € N 0; € {0,1}V, and all 7; € Rxo,
¢ € V. By combining the latter with (45), we obtain that

(65)

me Voul

v, (yu @\Zm7 ?u s Tiy 777) Si (yu @\Zm) (1 - Ef)luiN’H (yu :'/J\zm)
- (1 - wi(Ti))aWJ’YiW (517817:’-/1’ ou Ti)' (66)
From (47), (48) and (50), we obtain that for all 7; € R

(1 —wi(r)%i = (1 — wi(m))aw, 3 (0(6:)) %
(2La(86) by o) + 3 LD+ G2, (7)), 6D

for all ; € R (note that we again used the facts that ¢; =
On when 7; > 0 and that (1 — w;(7;)) = 0 for 7; < Tihi00)-

Based on (66) and (67), we can conclude that (64) holds.

(282),(51)
By combining the fact that 37, oy [ef"]? = [e0]?

an?W2(ki, On, yi, e, ;) with (46) and (50), we obtain that

1(05) < (5 (0)P0.4(Thier) = H:(1)d14(0)2) x

Wi2 (K/ia 0N7 Yi, € ;)mv TZ)' (68)

By means of (54), we can conclude that (65) holds. O

Step V. Validate conditions storage function

In this step, we verify that the function U as given in (49)
is indeed a valid storage function for the supply rate s(z, e, v)
as described in Definition 3.

Flow Dynamics of U(§): By combining (8), (40), Lemmas
2 and 3, we obtain for all (§,v) € XxR"™ and all f € F(&,v)

N
U6 1) < s(@ye,0) + Y [ =6 — Nl
=1
A2 W2 + 23 (08 by, Wi (V/NiH, + Li(6(0:)) W)

— w(Ti) 3 (0(L:)) W

(2Li () by, +%(E(€i))(¢~5§(m7i +1)) + ¥ —oi(mi) |,

where we omitted the arguments of W (g, 4, yi, e 1),
§1(yz,yl ), H (z,el" v,4;) and U(o;) with o =
(yl7yz 7%7 i o i, mi). By using 2% (€(¢ ))(bz 1W \/7Hz <
A 0 ))¢2 W2 4 e N;H?, with H, as in (44), and
by substituting (27) and (45), we obtain

U°(& f) < 3(&,v),

for all f € F(&,v). Hence, U satisfies (24b).
Jump Dynamics of U(&): For the jump dynamics, we need
to consider the following two cases:

(69)

e Case 1 [Transmission event]: when & € D; A
Zmevoul £ =0 for some 7 € V and £ jumps according
to £ = GO we have that

UEr)-U(¢)
— 5i(0)¢o,i (Ti) W7 (Ki, On, i, €9, 73) + 17 (05).
By combining (38), (46), (54) and (65), we obtain that
U(ET)—U(&) <O0forall £ € D; with ) -

for some i € V.
e Case 2 [Update event]: when & € D; A Zmewm o >1

for some ¢ € V and m € V™, and £ jumps according to
& =G, (), i€V, and £ =1, we have that

UER) = U(€) = Fi(0(l — Tmdn))bjq, _p, 1,004 (T1) %
W2 (Kiy € — Doy, yis € + Yisi (Giy yiy €% 13),74)
— Fi(0(:)by0,y o () WE (i by yiy €™ 73). - (T1)
-U(¢) <0

= Fi(1)1,: (0)W2(ki+1, Zi (ki) 1, vis €8, i)
(70)

pout g;n = 0

Based on (53), we can conclude that U(£T)
for all £ € D; with £7* =1 for m € V™.

Based on the two cases, we conclude that U satisfies (24c¢).



Step VL. Persistently flowing property. We first prove that
maximal solutions to (9) are complete. In general, when hybrid
systems with continuous-time inputs are considered, e.g., [56,
Prop. 6] should be used to prove that maximal solutions are
complete, as the results of, e.g., [48, Prop. 6.10] are not
applicable when inputs are present. However, in this specific
setting, the external signal v enters F' as in (14) via the
dynamics of x and e only, as evident by the expression given
in (14). Since the flow and jump maps C and D do not involve
v and since they do not restrict x or e to any particular
subset of R™= or E, respectively, tangent cone arguments as
in [48, Prop. 6.10] can still be used in this specific context.
To do so, we start by showing that for any £ € C \ D, there
exists a neighborhood S of £ such that for every = € SNC,
F(Z,v) N Tc(Z) # 0, where T¢(Z) is the tangent cone® to
Cat=Z Let £ € C\D and v € R"™. Since D is closed,
there exists a neighborhood of &, which we denote S, such
that SND = (. Let E = (x,e,7,5,7,4,m) € SNC; note
that SNC # P as & € SNC. Since 2 € S, = ¢ D and
thus ¢7" = 0 for all (i,m) € V in view of (21). We write
2= (i é,7, k7L, 7)) € F(E,v) with some abuse of notation
for the sake of convenience. For = to be in T¢(Z), we need
zeR™, écE, k =0y, 7 € R, {=0p2, which hold in
view of (14), (15) and (16). We also need 7; € R when 7; > 0
and 7; > 0 when 7, = 0, for all ¢ € {1,..., N}, which is
also true in view of (14). The last conditions to verify for =
to be in T¢(Z) is that 7; € R when n; > 0, which holds from
(14) and (45), and that 75; > 0 when n; = 0. To show this
last condition, we notice that necessarily 7; < d;, otherwise
we would have = € D; C D, which is excluded as = € S.
Moreover, d; < 7! .., by design. Consequently, w;(7;) = 1 in
(47), and 17; > 0 when 7; = 0 in view of (14) and (45).
We have proved that = € T¢(Z), from which we deduce
that F(Z,v) C T¢(E). Hence, (VC) in [48, Prop. 6.10] is
satisfied when & € C\ D. As a result, there exists a non-trivial
solution from any initial condition & in C U D. On the other
hand, observe that G(D) C C U D. Indeed, for all £ € D
and £t = (at e, 7T, kT 0t T nT) € G(£), it holds that
kT e NV, it e {0,1}Y, 7F =7 > 0or 7" =0 and
nf =mn >0o0rn” =7 >0, and thus ¢ € X = C.
Hence, case (c) in [48, Prop. 6.10] does not occur. Due to the
hypothesis that there are no finite escape times during flow,
also case (b) in [48, Prop. 6.10] is ruled out. As a consequence,
all maximal solutions are complete. In addition, since d; > 0
and the number of agents that are receiving and transmitting
information is finite, it follows that the system is persistently
flowing, which completes the proof of Theorem 1.

Proof of Proposition 1 We first consider item 1) of Proposi-
tion 1. Forall{ € C,v € R™ and f € F(&,v), in view of (69)
and Step I of the proof of Theorem 1, U°(&; f) < §(&,v) <
vV (@) + ewlel® + ou(lol) — () < coU(€) + au(lo])
for some ¢y > 0. As a consequence, since U is locally
Lipschitz, it holds that (see p.99 in [64]), for any solution
pair (§,v) to H, any i € N5 and almost ¢ € [t;,t;41] where

3The tangent cone Ts(z) to a set S CR™ at a point z € R™ is the set of
all vectors w € R™ for which there exist x; € S, 7; >0, ¢« €N, with z; — =,
7—0 as ¢ — oo such that w = lim;_, o (z; — z)/7; (see [48, Def. 5.12]).

(ti, ’L), (tiJrl,i) S domf and t; < tit1,

t

U&(t,) < e U ek 1)) + / e (u(s)|)ds.
ti

Since X is compact, U is proper (i.e., U bounded implies &

is bounded), hence, we derive from the above expression that

& cannot explode in finite time during flow.

Consider now item 2) of Proposition 1. In this case, finite
escape time cannot occur because of the (x,e,T,k,r,0)-
component of the solutions, as the corresponding part of F'
is single-valued and globally Lipschitz, see [65, Chapter 1.1].
The only possible issue may come from the 7n-component.
However, the n-component cannot explode in finite time
neither during flow in view of (45) as all n; are constrained
to take non-negative values and ¢; also takes non-negative
values, for all ¢ € {1,...,N}. Consequently, there are no
finite escape times during flow.
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