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Time- and Event-triggered Communication for
Multi-agent Systems — Part Il:
Digital Implementation and Resilience

K.J.A. Scheres, Student Member, IEEE, V.S. Dolk, M.S. Chong, R. Postoyan, Senior Member, IEEE, and
W.P.M.H. Heemels, Fellow, IEEE

Abstraci—We consider the design of event-triggered
distributed controllers for multi-agent systems that are
digitally implemented on local computation platforms and
communicate over a packet-based network. Each agent is
equipped with a local triggering mechanism that is only
evaluated at the local sampling instants, thereby taking a
periodic event-triggered approach in which the sampling
intervals are allowed to vary (jitter). Moreover, the locally
triggered transmissions are subject to unknown, bounded
delays, and a destination protocol is locally implemented
to only send the packet to a selection of the neighboring
agents at each triggering instant. Building upon the frame-
work of Part I, we present an emulation-based design of
the local periodic event-triggering rules, including the max-
imum allowable sampling period (MASP), so that, under ap-
propriate conditions, a general dissipativity property holds
for the overall system. Interestingly, the presented digital
implementation requires only minor modifications to the
conditions presented in Part . Additionally, we show how
to exploit the destination protocols to ensure resilience to
information loss issues such as packet losses and denial-
of-service. We conclude this paper with case studies on
the consensus of single integrator agents and a nonlinear
stabilization problem.

|. INTRODUCTION

The distributed control of multi-agent systems (MAS) that
communicate over a packet-based network is a challenging
pursuit due to the intermittent and asynchronous availability of
information. In Part I [1], a unifying framework was developed
to guarantee stability, robustness and performance of the MAS
with both time- and event-triggered communication in the
presence of network-induced artifacts such as time-varying
non-uniform transmission delays as well as asynchronous
transmission instants. Importantly, the designed local trigger-
ing conditions in Part I [1] are continuously evaluated. The
objective of this Part II is to address the questions of both the
digital implementation of the triggering laws developed in [1]
and of their resilience to information loss, such as packet loss
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and denial-of-service, which may arise when communicating
over a packet-based network.

We thus study the distributed control of MAS, where each
agent’s triggering mechanism is implemented on a local digital
platform. Consequently, the sampling behavior of the digital
device needs to be taken into account, primarily when fast
sampling cannot be achieved, such as in low-power electronics
or when evaluating the local triggering conditions at high
frequency is too costly. In this case, we talk of periodic event-
triggered control (PETC) [2], [3]. The challenge is then, next
to the design of the control laws, to provide conditions on (i)
the triggering rule, and (ii) the sequence of (local) sampling
instants at which the designed triggering rule has to be
evaluated, while guaranteeing the desired closed-loop system
property. We concentrate on event-triggered mechanisms only
in this paper, as we saw in Part I that we recover the time-
triggered mechanism when no information about the other
agents is exploited in the triggering rules.

Extending the framework presented in Part I [1] to PETC is
far from trivial, as there exists an intricate interplay between
the sequence of sampling instants of the local devices and the
triggering conditions. In particular, when the triggering rule is
formulated based on a triggering function becoming negative,
and the triggering function is positive at the current sampling
instance, it is unknown a priori if it will stay positive until the
next sampling instant. Indeed, if information is received from
other agents, the behavior (control input) of the local system
can “instantly” change. As the times at which information
is received are a priori unknown, estimating the “remaining”
time until the triggering condition is violated is not trivial.
Guaranteeing that the triggering condition will not be violated
before the next sampling instant is therefore often impossible.
This becomes even more involved when (a priori) unknown
disturbances are present.

In literature, many works on PETC of MAS only consider
linear systems, see, e.g., [4]-[7]. A notable exception is [8],
where a PETC algorithm for the exponential synchronization
of agents with nonlinear dynamics is presented. In [8], how-
ever, the presented PETC scheme requires a specific structure
in the dynamics, whereby each individual state of each agent
can be controlled separately. In many practical setups this may
not be feasible, i.e., due to inertia when controlling the position
of a mass. The recent work [9] provides important advance-



ments on the nonlinear case with (large) unknown transmission
delays while taking sampling into account, however, only the
point stabilization of a single system is considered.

On the other hand, the use of (public) packet-based networks
makes the MAS susceptible to information loss due to, e.g.,
packet loss and denial-of-service. In this two-part paper, we
are able to consider packet loss and denial-of-service lever-
aging on the generality of the frameworks of both Part I [1]
and this part. These aspects are captured by the destination
protocols that determine which other agents receive the local
output measurement of each agent at each transmission instant,
meaning that resilience to packet loss and denial-of-service can
be considered “separately” from the design of the (periodic)
triggering mechanism.

In summary, with respect to the results presented in Part I
[1], we address in this work specifically the following aspects:

1) implementation on individual digital platforms, each

with time-varying and asynchronous sampling intervals,

2) the exploitation of the destination protocols for resilience

of the communication channel to packet loss and denial-

of-service.
We do so on top of the network-induced imperfections consid-
ered in Part I [1] such as time-varying and unknown transmis-
sion delays, asynchronous transmission instants and limited
communication bandwidth in the sense of communication
only occurring at discrete time instances. Advantageously,
the resulting periodic event-triggering mechanisms have non-
zero minimal inter-event times by design and do not require
clock synchronization nor acknowledgment protocols. This
work generalizes the results of our preliminary conference
version [10]. Compared to [10], where only sampled-data
protocols where considered, we include general destination
protocols, and show that these can be exploited to ensure
that the MAS is resilient to packet loss and denial-of-service.
Finally, we also demonstrate the generality of the framework
presented in this two-part paper with two case studies on: (i)
the consensus of single integrator MAS (with accompanying
numerical simulations) and (ii) the stability of a coupled
nonlinear system.

Details on the notation can be found in the companion paper
[1, Section II-A], with the addendum that the cardinality of a
finite set S is denoted |S]|.

[I. SYSTEM SETUP WITH DIGITAL IMPLEMENTATION
A. Multi-agent systems

The details regarding the exact model can be found in
[1]. For the sake of convenience, we shortly recap the main
variables in Table I.

B. Digital platform

The triggering mechanism of each agent is implemented
on the local digital platform, which has its own sampling
times. The sequence of sampling times of agent 4; is denoted
{s! }nen, where st denotes the n™ local sampling instant of
agent A;. Transmissions generated by .4; occur on a subset
of the sampling instants, i.e.,

{ti Yren C {55 Inen. )]

TABLE |
RECAP OF VARIABLES AND FUNCTIONS USED IN THE MODEL.

Variable  Description

z; State of agent A;

Yi Output of agent A;

tfc k-th transmission of agent .A;

A;’C’"‘ Delay of k-th transmission from agent A4; to agent A,
Ti Time elapsed since last transmission

Ki Transmission counter

T Memory variable that stores y; at times 1‘,}'C

o Indicates whether A,, has received the last update from .A;
i Auxiliary variable for dynamic triggering

ym Estimate of output y; at agent Ay,

e Network induced error; /™ — y;

e (72" Collection of all nontrivial ef* (resp. y/™*) with m € V™
e (y,")  Collection of all nontrivial e}, (resp. 3;.,) with m € VI

We consider the general setting where the inter-sampling times
satisfy, as in [3], i.e.,
0<d; <slyq—s, <7l )

n masp?

where d; is an arbitrarily small but positive constant and Trinasp
denotes the maximum allowable sampling period (MASP) for
agent A;, i € V. The sampling times {s!,},en and {s™},en
of agents A; and A,,, respectively, are a priori not related for
i # m. In other words, all agents operate independently and
asynchronously.

Due to the agents operating asynchronously, the arrival
times ¢, + Ay™, k € N, of new information at agent A,,
from agent A; may not coincide with the sampling times
{s™},en of agent A,,, hence information may be received in
between consecutive sampling times of agent .4,,. However,
the sampling-induced delay (the time between the arrival of
information from agent A; and the next sampling instant of
agent A,,) can be included in the total delay denoted Zz’m.
Therefore, the total delay sz is equal to the combined
communication delay Ay™, which was introduced already in
Part I [1], and sampling-induced delay. Through this setup, we
obtain )

{ti + A" Fren € {57 bnen 3)

forall m € V and i € V.

We adopt the following assumption on the total delays ngm,
kEeN.

Assumption 1-II. For each agent i € V, there is a maximum
allowable delay Téﬂad > 0 such that the delays are bounded
according to 0 < Z:m < Télad < t?c+1 — t}; Sfor all m € V™
and all k € N.

Assumption 1-II is a “small delay” condition, which also
implies that packets sent from A; to A,,, m € VM, are
received in the same order that they are transmitted. Note
that this condition, which also includes the delays caused
by sampling, essentially replaces [1, Assumption 1]. As the
time instants ti determine the transmission instants, the above
condition does not rule out packet loss or denial-of-service, as
the transmission instants do not necessarily coincide with the
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Fig. 1. Visualizatign of the MAD, networked delays captured by Afc’m
and total delays A;’™" (including the sampling-induced delays).

receival instants. Since the sampling-induced delays are never
larger than the local MASP at agent m (and can be
equal to it), we have that

m
7—ma»sp

i m
Tmad = 7-mabsp

+ A foralli € V,me VM keN. (4)

Through this particular setup, the solutions to the hybrid
system that satisfy (3) become a particular subset of all
solutions of the hybrid model presented in [1]. Hence, we
can consider the same (hybrid) model. Essentially, the fotal
delay ZZ’m “replaces” the delay AZ’m of [1]. By ensuring
that the sampling times of each local platform are sufficiently
small, the above inequalities can always be guaranteed, see
also Fig. 1. Essentially, the maximum delay that the network
is allowed to have will always be lower-bounded by

A :=min{ min 77, — 7 .
= N\ peyin mad masp
i

As long as it is ensured that A > 0 (which is always possible
by ensuring that Téﬂasp is sufficiently small) and the delays
in the network are less than A, this particular setup fits the
framework presented in [1] in terms of the (total) delays Tfnad.

C. Triggering rule

Our goal is to employ dynamic event triggering rules,
which rely on locally available information, namely output
measurements. Due to this information only being available at
the sampling instants {s’ },,cn, the design of, e.g., [11] cannot
be directly used. Instead, we consider an event-triggering
mechanism (ETM) where the triggering times satisfy

t;lﬁtl = lnf{t 2 t;c + 7-cilmiet ‘
mi(t) +viyi(t), 57" (), 7i(t)) < 0, € {5}, }nent,

fori € V, k € N, with ) = 0 and where 75 ., > 0 denotes
the (enforced lower bound on the) digital minimum inter-event
time (DMIET) of agent A;, 1; € R0 is the auxiliary variable
mentioned earlier, 7™ := (7}, 72,...,4") is the vector of
estimates of the output y; at the agents A,,, m € VM.
The function v; : R x RVN™.i x Ryq = Rgg is to be
designed. Since v; will be a set-valued map, the inequality
in (5) can be interpreted as “should hold for all elements in
vi(yi (1), " (1), (1))

The ETM (5) satisfies the constraints that arise from the
usage of a digital platform, as the trigger condition in (5) only
has to be evaluated at the local sampling times s’ , n € N. The

no

triggering variable 7n; generated locally by agent A;, i € V,

&)

evolves according to

0 = W(B") — i), (6a)
N {ni + 0i(yi, ™)}, for all t € {t} }ren,

ni(t7) € S i +vilys, U )} , (6b)
for all t € {S;}neN \ {tZ}kGNv

where the functions U; : R" — R, g; : R"vi x RN™.i —
R0, i € K and the constant 7_; . € Ry are designed in
Section III-B.

Remark 1. It might seem unnatural that agent A; has to
know the estimates Y due to the presence of the unknown
and time-varying delays. However, as also explained in [I,
Section V-C], there are important cases where this information
is naturally available, e.g., when a zero-order-hold (ZOH) is
used as a holding device, or when the (total) delays are known.
In other cases, a robust set-valued estimate can be constructed
in line with [1, Assumption 2], which can be used in (1) and
(6) mutatis mutandis.

Remark 2. In (6a), a continuous-time differential equation
is used. When an (analytic) closed-form expression is avail-
able for the solutions of the pairs (4",n;), the solutions
can be a posteriori computed at the sampling times. An
(important) setting, where this is possible, is when a ZOH
is used as a holding device, i.e., when the ‘external’ vari-
able @”’ is constant in between consecutive sampling times.
In that case, exact discretization or numerical integration
can be used to compute m;. For instance, if i(n;) =
a;n; with a; # 0 a constant, we obtain the exact dis-
cretization 1i(s},4,) = €= (1)) + g 11 -
e~ =)W, (G (%) T)). Hence, exact solutions to the
differential equation can be obtained on a digital platform.
When it is not possible to find an analytic solution to the
differential equations, numerical integration techniques can
be used to obtain an accurate value for n;. We consider the
dynamics of n; as presented in (6) to facilitate the modeling
and stability analysis later on.

D. Objective

Given the descriptions above, the problem considered in
this paper can now be stated informally as follows. Consider
a collection of maximum allowable delays 7i. ., i € V,
satisfying Assumption 1-II. Our objective is to propose design
conditions for the time constants 75 ... (> 7¢ . 4), the functions
zi, Wi, @i, 0; and v;, © € V, as in (5) and (6), such that
the resulting system has the desired (and to be specified)
closed-loop stability, performance and robustness properties
formalized in terms of suitable dissipativity properties.

[1l. MODIFIED DESIGN CONDITIONS AND MAIN RESULT
A. Modified Design Conditions

To ensure desirable performance and stability properties,
several conditions are needed, which are very similar to the
conditions presented in [1]. Therefore, we only highlight the
key differences in the following. In particular, [1, Conditions
1-3 and 5] can be used without modifications. As the local



output y; is not available at all times, but only at the sampling
times {s¢,},en, the functions ¢; and H; in [1, Conditions 4
and 6] are only allowed to depend on 7:". Thereto, we replace
[1, (35)] by

Ve(x; f(x,e,v)) < s(z,e U)—l—Z(—Q )

eV
— N HE (2, € 0,6) + 72, ) Wi e ;")) (35-11)

and, similarly, we replace [1, (44)] by

H, (™) < Hy(z, €™, v, 6;). (44-11)

71a

Lastly, in order to obtain the DMIET, we introduce the
following condition.

Condition 5-II. Select Thiw > 0and 78 ., >0, i €YV, with
Th ot = T 4T masp Such that [1, Condltzon 5] holds. Define

m
Timiet > 0 as

Tdmiet *— Tmiet — 7—mausp’ (7) U

Condition 5-II can always be ensured, as long as sufficiently
fast sampling is available (i.e., 7y, sufficiently small). In
practice, based on the constants ~;, intuitive (77, T2 .q)"
curves can be generated by selecting appropriate values for
Ais $0,:(0) and ¢1:(0).

Condition 5-II is similar to [1, Condition 5] when the effect
of sampling is not considered. Indeed, in the continuous-time
case in [1], i.e., when desp approaches zero, 74 ... = Ti.
Hence, if faster sampling is used, the continuous-time ETC

behavior is recovered by the proposed “sampled” setup.

B. Event-triggering mechanism design
For all £ € X, the function ¥; in (6a) is given by

(G =g + (1 — &) NJHZ (G, (8)

where ¢; and H; come from [I, Condition 4 and 6], respec-
tively, where [1, (35) and (44)] are substituted by (35-I)
and (44-1), respectively. The function p; is given by, for any
y; € R™:i and 5™ € RNy,

0i (y“ youl) —¢ |eout|2 (9)
with g, = afy; (3:(0)00,i(Tmier + i) — Fi(1)d1,:(0)A7),
¢, 1 € {0,1}, as in [1, 40)], % : {0,1} — R is as in
[1, (42)] and aw,; from [1, Condition 1]. Recall that o; is

the time elapsed since the last sampling instant of agent .A;.
Finally, the function v; : R™ x R3¢ = Ry is defined as

Vi(yi7 y1 Tz) = (1 — Wi (Tz))Vz(O)EV|€Om| (10)
where ¢, := 7QW,2' (¢0;i(T(§nliet) - (bo,i(’rglmiet + Ul)) and
{1}, for 7 € [0, T pier)
wi(ri) € 4 10,1], for 7 = T4 e (11)
{0}7 for Ti > 7-Zimiet'

Note that v; is single-valued for all 7; # 7% . ., and set-valued
for 7; = 7] niet- Since the proof holds for all points in the set-
valued map, in essence we can use the discontinuous version

(wi(r;) = 1if 1, < 78, and O otherwise) to verify the
condition in (5).

In the proposed setup, each agent needs to know (and
compute) constants €, and €, on-line due to the dependence
on ;. If, from a computational standpoint, this is infeasible,
a conservative upper-bound can be used by taking e, :=

3i(0)$0,i (Tmier) — ¥i(1)P1,i(0)A7 and e, = do,i(Tiier) —
gzbo i (T8 iet)» Which can be computed a priori.

We stress that the local ETMs given by (5), (6), (8), (9)
and (10), can operate fully asynchronously and no clock
synchronization or acknowledgment signals are required.

C. Main result

Given the ETM design and the corresponding hybrid model
of the MAS presented above, we can now state the following
result. Its proof follows in a similar manner as the proof of
[1, Theorem 1], and is therefore omitted.

Theorem 1. Consider the system H(C,F,D,G) with ¥, o;
and v; given by (8), (9) and (10), respectively. Moreover,
suppose that [1, Conditions 1-6] with modifications (35-11)
and (44-11) and, additionally, Condition 5-1I holds. Then the
digital MAS described by H is (8, S1, S2)-flow-dissipative with
the supply rate § : XxR™ — R as givenin [1, (27)] and S =
{{eX|zeX, e=0,n=0} Se={€S |r—y=0}
In addition, if there are no finite escape times during the flow',
then the system H is persistently flowing.

Theorem 1 implies that the desired stability and/or per-
formance properties, guaranteed by the local controllers in
absence of the network, are ensured by the triggering rules
when the network is taken into account.

IV. DESTINATION PROTOCOLS FOR LOSSY NETWORKS

In this section, we will show how the destination protocols
z; can be exploited to capture different aspects of networked
communication such as, e.g., packet losses and denial-of-
service. We will show that under reasonable assumptions,
the resulting protocols are still UGES in the sense of [1,
Condition 1] and, consequently, the results in both [1, Theorem
1] and Theorem 1 still hold even in the presence of lossy
communication networks. Hence, this implies that the MAS
setting with packet loss and denial-of-service can be handled
also for TTC, ETC and PETC (digital implementations) by
using our framework.

A. Packet losses

To model the presence of packet losses, we take the function
z; as follows, for all i € V, m € V™, k € N,

0, when packet sent at ti is lost,
zi(k,m,t},) =
1, when packet sent at ¢} is not lost.
(12)
Observe from [1, (4)] that with this protocol function, the
estimate §™, ¢ € V, m € VM, is only updated if the

I The absence of finite escape times during flow is meant here in the sense
that case (b) in Prop. 2.10 in [12] cannot occur.



transmission attempt of agent A; at time ti, k € N, has been
successful.

Assumption 1. The number of successive packet dropouts of
transmissions from agent A;, i € V, to agent A,,, m € V",
that might occur since the last successful transmission is upper
bounded by &¢.,., where & .. € N represents the maximum
allowable number of successive dropouts (MANSD).

Assumption 1 has been used frequently [13]-[20].

Proposition 1. Suppose Assumption 1 holds, then the protocol
z; given by (12) is UGES and there is a Lyapunov function
W satisfying [1, Conditions 1 and 2].

Proof. Recall the discrete-time system as given in [1, (29)],
which is given by q(k+1) = z;(k, q(k)), k € N, with function
z;i as (12). Let ¢(m, k,eS™) be the solution to g at discrete
time instant m € N>j with initial condition e € E; and
initial time £ € N. We define the Lyapunov function W; as

n [1, GO, i.e., Wi(k,e2) = \/Zm - |w(m, k, e94)[2. The
solution 1 satisfies ¥ (k, k, ") = |e™| < W;(k,e™), and
thus that ay,; = 1. Moreover, observe that for all k¥ € N
and all m > &% .+ 1, we have that ¢¥(m + k, k,e") =

0. By combining the latter fact with the definition of W;,
we obtain that W(k,e"“‘ < V0l + 1|ed"], and thus that

Qw,; = \/0% .5 + 1. From the definitions of ¢ and W; and by
recalling the facts that ¢ (k, k, ™) = |e?™|, we obtain that

Wik + 1,5 (e) @m f [00m. k. e[ e

max

0l t1

max

with z;(k, ) := (Inn,, — Zi(k))es™ for all e € RN™,
i€ V,m e V™ and all £ € N, where we recall that

W (k Out)7

Zi(kq) := diag(zi(ki, 1), 2i(Ki,2), . .., 2i(ki, N)). Hence, [,
(28b)] holds for \; = L‘_"H which implies that [1,

Condition 1] holds. Lastly, followmg similar arguments as
[13, Lemma V.4], we find that [1, Condition 2] holds with

ci = /0! .« + 1, which completes the proof. O]

Remark 3. Note that under packet losses, the ETM described
in Part I by [1, (7), (8), (45) and (46)] or in Part Il by
(5), (6), (8), (9) and (10), requires acknowledgments in order
to obtain y", i € V, m € V. Observe, however, that
this acknowledgment is allowed to be delayed with 7'( d)miet
time units. However, the requirement for acknowledgement
mechanisms can be relaxed. Indeed, inspired by [20], to
construct an ETM without acknowledgements, i.e., an ETM
that does not depend on the number of successive packet losses
0 or the transmission error e, we need to keep track of all
possible values that the variable Y can possibly attain. For
this reason, we introduce the variable

8t a1 )
To = (YHYE i) € ROt

where the i-th element of this sequence corresponds to the
hypothesis that i — 1 successive dropouts have occurred since
the most recent successful transmission attempt. The flow
dynamics of Y! for all i € V and all ¢ € b, where

= {1,2,...,0max + 1}, must be chosen equal to the
ﬂow dynamlcs of g, ie., Tq fz(Tf) Moreover, at each
transmission instant t}c, ke N i €V, the local estimates
Y, q € {2,3,... (5max + 1}, is wupdated according to
Tq( J+1) = Tq Y(ti,4), and Y} is updated according
to Tq( G+ 1) = pilth. ).

With these variables, it is possible to construct a set-valued
estimate Y™ that contains Y™, i € V, m € V, for all
(t,7) € dom &, namely, by choosing Y™ as

Rny7 when Ti (t7.7) [Ov Tnuet]
{y € R™ | y= Tg(t_ 7.7 - L) TE [0’ mad]

ged,LeN, (t—r1,j—1)€dom &}, otherw.,

Yit(t,j) =

Observe that under Assumption 1-1I and Assumption 1, Y]
as defined above is constructed such that, for all i € V and
m e Vo, gm(t,j) € YI"(t, 4) for all (¢,j) € dom¢, i.e, Y™
satisfies [1, Assumption 2]. Hence, Y] can be used in (9) and
(10) mutatis mutandis.

Remark 4. From a theoretical standpoint, the number of
packets that may be lost consecutively can be arbitrarily large.
However, in that case, \; will be close to 1, resulting in the
maximum allowable delay and minimum inter-event time being
close to zero. This implies that when a very large number of
packets may be lost, it “should” be possible to transmit a lot of
packets in a very short time. Under Assumption 1, if sufficiently
many packets are transmitted, it can be ensure that at least one
of them will be received. Of course, this is not desirable from
a practical standpoint. Indeed, often, the sampling times, the
maximum allowable delays and/or the transmission delays are
lower bounded by practical constraints, which will, together
with the specific system dynamics, naturally limit the number
of packets that may be lost consecutively while still being able
to guarantee the dissipative properties.

B. Denial-of-service

In this section, we study MAS under denial-of-service
(DoS). A DoS is defined as a period in time at which the
communication is blocked due to an overloaded network.
In case an agent A, 1€V, attempts to transmit a new
measurement to agent A,,, m € V", at transmission time t;;
and a DoS is active, the attempt will fail and agent ¢ cannot
update y;". Obviously, the latter might endanger the stability
and performance of the closed-loop system. In this section
we will show that DoS can be appropriately captured with the
framework of destination protocols, see [1, Section V-A], after
which we will show that these protocols can still be proven to
be UGES in the sense of [1, Condition 1]. This ensures that
the main results in Part I and II can still be directly applied.

In general, DoS can be described by a sequence of time
intervals { i, },, .y, Where the n-th time interval H,,, given by
H,, := {hp}U[hy, hy,+d,), represents the n-th DoS (period).
Hence, h,, € R denotes the time instant at which the n-th
DoS interval commences and d,, € R denotes the length
of the n-th DoS interval. The intervals in {H,}, do not
overlap, e, 0<hg<ho+do<hy <h +d <hy<...
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Fig. 2. Schematic representation of a sequence of DoS. The solid

arrows indicate successful transmissions and the dashed arrows trans-
missions that are blocked due to the network not being available. The
gray areas indicate the presence of a DoS.

For a given sequence {H,}, .. the set of time instants at
which a DoS is active (see Fig. 2) is defined as

T = U H,.

neN

(13)

To capture the presence of these DoS, we consider the fol-
lowing protocol function, for all i € V, m € V', k € N,
T C R>O and all t}c S R>0

1, whent, ¢ T

; (14)
0, whent, €7.

zi(k,m, T, t}c) = {
Observe from [1, (4)] that indeed, g™, i € V, m € V' is
not updated in case a DoS is active at time instant tjc k e N.

Moreover, observe that in contrast to the destination proto-
cols as discussed in [1, Section V-A], the protocol presented in
(14) explicitly depends on 7 and the sequence of transmission
instants {¢} }ren, @ € V.

In the context of DoS, it is reasonable to assume that the
DoS cannot occur indefinitely, see also [21]-[23]. Therefore,
we characterize the DoS in terms of the DoS frequency and
the DoS duration. To do so, let us define the collection of
times within the interval [T7, T5], with T» > T} > 0, at which
DoS is active as

E.(Tl,TQ) = [Tl,TQ] n T (15)

with 7 as in (13) and the number of DoS off/on transitions
occurring in the interval [T7, T»] as

n(Tl,TQ) = ‘{TL c N | hn S [TI,TQ}}L (16)

where we recall that |- | denotes the cardinality of a finite set.
Moreover, we use |Z(77,7%)| to denote the total length of the
DoS within the interval [T}, T3].

Definition 1. [21], [24] (DoS frequency). A given sequence of
DoS {Hy}, oy is said to satisfy the DoS frequency constraint
fora given Tp € Ry, and a given v € Ry, if forall'Ty,T> €
Ro with Ty > Ty it holds that n(Ty, T) < v+ L=,

Definition 2. [21] (DoS duration). A given sequence of DoS
{Hy}, cn is said to satisfy the DoS duration constraint for a
given T' € Ry and a given ¢ € Ry, if for all T1,T> € Ry
with Ty > Ty it holds that |=Z(T1,Ty)| < ¢ + L2215,

Note that no assumptions regarding any underlying “strat-
egy” (in case of malicious attackers) are made in Definitions
1 and 2.

To deal with the presence of DoS, we modify the ETM for

ETC described by [1, (7)] to

i = {mf{t >t + Thger | (1) <0},
t}c + Téliet’
with ¢ = 0, and the ETM for PETC described by (5) to
1nf{f > t}c + Témiet | te {S;}HEN A
() + vilyi(t), 5" (8), 7s(t)) < 0},
when t ¢ T,
inf{t >t + 74 . |t €{s)nent,
when t} € T.
Observe that in case no DoS is present at a transmission
instant, i.e., when t}'C ¢ T, the next transmission instant is
determined in an event-based fashion, similar as in [1, (7)]
for ETC and (5) for PETC. However, in case a DoS attack
is present, i.e., when t?C € 7T, which, for example, can be
detected by using communication with acknowledgments, the
next-time instant is scheduled after 7., @ € V), time units.
The latter is necessary to probe when the network is available
again. In that sense, dealing with packet losses as described
in Section IV-A is different from dealing with DoS.

when ti ¢ T
when ti € T

i
tht1 i=

Proposition 2. The protocol function z; given by (14) is UGES
under the DoS frequency and duration constraints with ay, ; =

Law:;=vVx+1 X\ = A/ x?(jrl’ c; =/ Xi + 1 and where
i

Xi == [(Hlyiﬁ“‘“) (1 1 @)71 + 1]. (17)

Tiniet T ™D

Proof. We show that x; is equal to the maximum number
of consecutive transmission attempts that are blocked by the
DoS. As shown in [25], the maximum time in between two
successful transmissions is given by

i 1 Tier) i
e = (4 i) (1= = 724) 7l (18)

Given that the minimum time between two consecutive trans-
missions is equal to 77 ;.,, we indeed find that x; given by (17)
is equal to the maximum number of consecutive transmission
attempts that are blocked by the DoS. The proof can now
be completed using similar arguments as in the proof of
Proposition 1. O

Remark 5. There is an intricate interplay between Tmiet, Xi
and \;, and therefore it is not possible to ensure resilience
for arbitrary (constrained) DoS signals. Moreover, as these
results are based on the maximum number of packets that can
be lost consecutively, they are subject to some conservatism.
We envision that reverse average dwell-time conditions may
be used, by e.g., drawing inspiration from [26], to reduce
conservatism by considering the “average” nature of the
behavior captured by Definitions 1 and 2, but this is outside
the scope of the present paper.

C. Quantization

As the current modeling setup is very similar to scheduling
protocols, the presented framework can be adapted to include
quantization in a similar manner as [27]. However, due to the
added notational complications and space limitations, we omit
the treatment of quantization in this framework.



V. CASE STUDIES
A. Consensus of single integrator systems

Consider N agents with NV € N, where each agent has a
state z; € R, ¢ € V, whose dynamics evolve according to &; =
u; with u; € R the control input. The output of the system is
the state x;, i.e., y; = ;. We assume that the graph G(V, )
with Laplacian matrix £ is connected and undirected, i.e.,
LT = L. The control objective is for the states of all agents to
asymptotically converge, i.e., lim;_, o |z;(t) — 2., (t)| = 0 for
all 4,m € V and any initial condition. To achieve consensus,
we implement the control law

u; = — Z (2 + el — 1, —el).

meyin

19)

We consider the Lyapunov candidate V(z) = 2" Lz where
x := (z1,22,...,2N). According to [28], the derivative of
this Lyapunov function can be upper-bounded as

(VV(z),—Lx — Le) < Z (— diz? — ciu? + (72 — @;)|el] )
=
) (20)
with d; := §(1 — alV;), ¢; := (1 = 6)(1 — alV;) and ; =

Va~TN; + @;, and where § € (0,1), a € (0, &) and @; > 0
are tuning parameters. The proposition below shows the exact
expressions for all the required conditions.

Proposition 3. The system with local dynamics ; = u; and
local controller (19) satisfies [1, Conditions 3, 4 and 6] with
Hi(x,e) = Li =0, s(z,e) = > o (—diz? — pie?),
=29=...=an}, 6 =0, u; :c,-N%,

vi =Va 'N; + w;, and H;(G") = |u;].

Sketch of Proof. Observe that &; = u,, i.e., [1, Condition 3]
is satisfied by taking H;(z,e) = |u;|. Next, we obtain by
substitution that the expression in [1, (35)] reduces to (20),
which implies that [1, Condition 4] holds. Lastly, observe that
u; is locally available as it is based on @l‘“ hence we can
select H,(yi") = H;(x,e) = |u;|, which completes the sketch
of proof. 0

Constants 75 ... and 7} _, can be generated via an intuitive
procedure, as described in [28]. Proposition 3 implies that
asymptotic consensus is achieved with the proposed control
configurations in this paper.

We simulate the results of Proposition 3 with non-uniform
and time-varying transmission delays in the periodic event-
triggered control framework. We consider the system presented
n [28], with N = 8 agents which are connected as described
by a graph G with undirected edges (1,2), (1,8), (2,3),
(2,7), (3,4), (3,6), (4,5), (5,6), (5,8) and (7,8). We use
the parameters § = w; = 0.05, @ = 0.1 and ¢, = 0.5
for all ¢ € N. Given these tuning parameters, we obtain
~vi = 4.478 and ¢; = 0.76 for agents i € N with two
neighbors (i.e., N; = 2, thus agents P, P;, Ps and Py)
and v; = 5.482 and ¢; = 0.665 for agents i € N with
three neighbors (i.e., N; = 3, thus agents P», P3, P5 and
Ps). The function ¢;(1;) is designed as ;(1;) = —ey(n;)
with €, = 0.05. We select A\; = 0.2 for all agents, and
pick ¢0,;(0) = 5 and ¢1; = 2. For these values, we obtain

3.»41 OAZAA3HA4 — Tm“,f
2 X.A)O.A(;A.A7D.A8

72
Tmiet

Inter-event times

Time [s]

Fig. 3. States and inter-event times for the single integrator systems in
Section V-A.

yl/' \yz

u > U
C1 . > 'Pl 5 732 < 2 CQ

Fig. 4. Networked control setup of nonlinear example.

(T8 ot Toaq) = (0.12,0.016) for agents i € V for which
N; = 2 and (7'(’1mlet7 Thad) = (0.09,0.012) for agents i € V
for which N; = 3. We select 72, = 0.07 (i, = 0.05)
for all agents for which N; = 2 (N; = 3), respectively,
Tasp = 1072 and d; = 107 for all 4 € V. At each sampling
moment s,,, the next sampling moment is scheduled randomly
such that s!, € [si, + d;i,sl, + Th,,) for each i € V,
hence the sampling of each agent is aperiodic, asynchronous
and independent of the other agents. The state evolution and
inter-event times are depicted in Fig. 3, confirming our main

theorem.

B. Nonlinear example

We now consider the nonlinear system given by

Pyt iy = a7 — 2 + Ty + wi, § € {1,2} (1)

with m(i) = 3 — i, with the controllers C; : u; = —27,,
i € {1,2}, see Fig. 4. In [11], it was already shown that this
system satisfies [1, Conditions 1-6] with H, = 0 when a zero-
order-hold is applied and by using a sampled-data protocol.
We demonstrate here the benefit of applying a nonzero holding
function. We therefore assume that 7 = —27. Thus, the closed-
loop system can be described by

(22a)
(22b)

By =a] — T 4 Ty — 2w + €;)
& =~} + ] — T

where ¢ € {1,2} and m(i) = 3 —1 as before. Inspired by [11],
we consider the candidate Lyapunov function

V(z) =0?(Sa? + Bat + a2 + L)), (23)



where «, 5,5 € Rs(. Following the same steps, we arrive at
V< (Shi[- (e (P —e)ed — HE ] +%5(x) ) @4

with v = ov/a? + 32 +¢=2 and p(x) := Badwy + Brias +
S [P (—a+ 146210+ e+ q) + am; + (—a — 28 +
272 x2+(B—4c )t + (= B+1+2c2)z})], where we used
that HZ; < 2(—af +«)® + 227 ). We numerically verified
(using SOSTOOLS) that the parameter choices [, 8, ¢, ¢, ¢]
as [3.01,1.47,0.01,2.48,0.5] verify that p(x) < 0. Observe
that these choices are the same as [11], therefore, both p(x)
in [11, (80)] and p(x) are negative definite for this selection of
parameters, which implies that, indeed [1, Condition 4] holds
with [1, (36)]. Due to the parameter choice holding for both
p(x) and p(x), we can relax [1, (40)] by taking L;(l) = 0
for | = 0. Solving [(40)] with A\; = 0.18, ¢ ,;(0) = )\i_l and
#1:(0) = 2.3, we find that (7,4, 7i.,) = (0.01,0.1203),
i € {1,2}, which is a significant improvement vis-a-vis [11],

where they obtained (77,4, Tiiet) = (0.01,0.0995), thereby
clearly illustrating the benefits of using nonzero holding func-

tions.

VI. CONCLUSION

In this work, we presented a systematic and general design
framework for digitally implemented event-triggered control
strategies, in the sense of the event-triggering functions only
having to be verified at discrete sampling times, with even
varying sampling periods, for a class of nonlinear MAS subject
to disturbances. By ensuring that the conditions of the local
triggering mechanisms only have to be verified at the local
(asynchronous) sampling times, the proposed framework is
suitable for implementation on digital platforms. We show
how appropriate modifications to the results presented in
Part T lead to event-triggering schemes that are dissipative
with respect to a desired supply rate. With this dissipativity
property, the framework can handle several relevant stability
and performance properties such as asymptotic (set) stability,
input-to-state stability, L£,-stability with p € [1,00) and
consensus and deal with both control and estimation, from a
unified point of view. Robustness with respect to non-uniform,
possibly unknown and time-varying delays is guaranteed by
design. Moreover, we show that the destination protocols, that
can be used to determine which agents get access to the
network, can be used to cope with packet loss and denial-of-
service, thereby enabling the study of the resilience within the
proposed framework. Several case studies illustrate the general
applicability of the presented framework.
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