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Abstract

Convolutional neural networks trained with satellite image time series have demonstrated their potential in land cover
classification in recent years. Nevertheless, the rationale leading to their decisions remains obscure by nature. Methods
for providing relevant and simplified explanations of their decisions as well as methods for understanding their inner
functioning have thus emerged. However, both kinds of methods generally work separately and no explicit connection
between their findings is made available. This paper presents an innovative method for refining the explanations provided
by channel-based attention mechanisms. It consists in identifying correspondence rules between neuronal activation levels
and the presence of spatiotemporal patterns in the input data for each channel and target class. These rules provide
both class-level and instance-level explanations, as well as an explicit understanding of the network operations. They are
extracted using a state-of-the-art redescription mining algorithm. Experiments on the Reunion Island Sentinel-2 dataset
show that both correct and incorrect decisions can be explained using convenient spatiotemporal visualisations.

Keywords: Explainable AI, Convolutional Neural Networks, Land Cover Classification, Satellite Image Time Series,
Attention, Redescription Mining, Grouped Frequent Sequential Patterns.

1. Introduction

Satellite Image Time Series (SITS) are spatiotemporal
data acquired by satellite missions such as the Landsat
and Sentinel ones, which even provide free access to their
archives. This context favours the use of SITS for change5

detection and Land Cover Classification (LCC), with ap-
plications ranging from disaster management to agricul-
tural monitoring or urban growth assessment. These tasks
have also benefited from the rise of deep learning tech-
niques in recent years. In particular, Convolutional Neural10

Networks (CNNs) have been shown to reach high classifi-
cation performances (e.g., [1]).

Like any deep learning architecture, CNNs consist of
thousands, if not millions, of parameters. As a result, the
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reasoning behind their decisions is often opaque. Explain-15

able Artificial Intelligence (XAI) [2] has therefore emerged
with the aim of providing prediction explanations that are
simple enough to be understood by end users. They gen-
erally point out the main data components taken into ac-
count in generating the decisions. One can distinguish20

post-hoc methods such as GradCam [3] that provide pre-
diction explanations of complex black box models and in-
trinsic methods that aims to create understandable mod-
els by design [4]. The latter can be achieved, for example,
by using attention operators [5]. In addition to providing25

low-level explanations of the predictions, these operators
can also improve task performance through regularization.
The precise description of the way in which the main data
components are processed within the networks is beyond
the scope of the explanatory methods and is left to inter-30

pretation methods. [6]. The latter can, for example, iden-
tify the parts of the network that perform wavelet filtering
and characterize the wavelet bases that are learned.

However, these two types of methods typically oper-
ate separately, with no direct link between their results.35

Going further, this paper proposes to combine both types
of methods in order to improve model understanding, and
not model performance which is left to other contribu-
tions. Revising the dataset or the network according to
interpretations and explanations in order to improve its40

Preprint submitted to ISPRS Journal of Photogrammetry and Remote Sensing July 16, 2024



performance is also not addressed in this paper. Never-
theless, some methodological directions are identified and
presented. The proposed method was originally sketched
in [7]. It consists in refining the channel attention-based
explanations of a CNN model with interpretations that are45

explicitly associated with explanations. These associations
are expressed as correspondence rules between neuronal
activation levels and the presence of spatiotemporal pat-
terns in input data. They are extracted for each channel
and each class using a state-of-the-art redescription min-50

ing method, namely the ReRemi algorithm [8]. Valida-
tion experiments address an LCC task using a Sentinel-2
SITS acquired over the Réunion island. In such a task,
experienced end users typically use their knowledge of tar-
get classes and input data channels. Following a similar55

approach, our proposal allows explaining predictions by
providing global information about the channels most in-
volved in the decision by using an attention module, while
extracted correspondence rules give access to the details of
the detected activation patterns. The contributions of this60

paper thus concern a channel attention-based CNN per-
forming LCC and are to 1) refine attention-based explana-
tions by providing complementary interpretations and ex-
planations using a single concept, namely redescriptions,
2) propose human-readable interpretations and explana-65

tions under the form of neuronal activation levels and spa-
tiotemporal pixel evolutions, and 3) demonstrate the in-
terest of the approach on a real SITS.

This paper is structured as follows: CNN-based LCCs
learnt from SITS as well as explanation and interpretation70

methods are reviewed in Section 2. A background on pat-
tern mining is then made available in Section 3: (1) the
spatiotemporal patterns employed to describe the input
data in an unsupervised way are presented in Section 3.1,
and (2) the concept of redescriptions used to extract corre-75

spondence rules between these patterns and neuron activa-
tion levels is detailed in Section 3.2. Section 4 introduces
the proposed approach in terms of general workflow and
network architecture. After having presented the Sentinel-
2 dataset exploited in this paper in Section 5.1 and the ex-80

perimental settings in Section 5.2, quantitative and quali-
tative results are respectively provided in Section 5.3 and
Section 5.4. Section 6 discusses the proposed method in
terms of design and usage. Finally, Section 7 concludes
this paper by outlining the potential and the limitations85

of the proposed method that ground our future work di-
rections.

2. State of the art

2.1. Land cover classification with convolutional neural net-
works learnt from SITS90

The rise of deep learning techniques for land cover clas-
sification is driven by their performances but also by their
ability to automatically learn in an end-to-end fashion the
most suited data features [9]. They thus potentially avoid

relying on hand-crafted descriptors such the Normalized95

Difference Vegetation Index (NDVI) proposed in [10] as
that can lack of generality or specificity. In addition, both
linearity and non-linearity can be learnt [11]. Also, opti-
mizing a classifier from SITS is a challenging task since
SITS present extremely rich information expressed along100

the spatial, temporal and spectral dimensions. Still, vari-
ous architecture types such as Recurrent Neural Networks
(RNNs) (e.g., [12] or [13]) or Convolutional Neural Net-
works (CNNs) (e.g., [1]) have been proven to perform well
on such data. In this paper, as explainability and inter-105

pretability are seeken, CNNs are focused on. Convolutions
are indeed interpreted directly as filters, while the field of
view (FOV), i.e. the extent of influence of the input neigh-
bourhood, can be controlled by design. In this paper, the
FOV is set to match the spatio-temporal extent of the pat-110

terns used for explanations. It takes into account both the
number of acquisitions and the spatial autocorrelation.
Regarding the neural network model architecture, convolu-
tions performed at the pixel level along the temporal axis
have been shown to produce good results such as those115

obtained in [14], [1] or [15]. The difference between these
works lies in the fact that a single vegetation index built
using different channels is used in [14], while convolutions
are applied to all available channels in [1] and [15] without
any a priori. Simple 2D convolutions performed along the120

spatial dimension is far from being sufficient, the tempo-
ral dimension being of primary interest as evidenced in [14]
or [1]. Approaches incorporating, in a same network, both
a temporal analysis performed through RNN layers and a
spatial processing achieved with 2D convolutional layers125

have thus been proposed in [16] or [17]. In that case, each
channel is separately processed before aggregating features
and predicting classes. Another approach proposed in [18]
or [19] consists in feeding each recurrent cell of a RNN with
the spectrospatial data observed at the different acquisi-130

tion dates. In [19], spectrospatial patches are simply flat-
tened as 1D vectors that are then supplied to standard re-
current cells while the latter are modified in [18] to perform
spectrospatial convolutions on input data directly. The
spatial dimension can also be handled at the object/region135

level by extracting them through clustering, establishing
a representative sequence of each object for each channel,
and finally convolutioning all of the sequences temporally
before the final classification stage [20]. Finally, if the time
and space dimensions are regularly sampled, performing140

3D convolutions is appropriate if one expects to identify
relevant local spatiotemporal patterns in each data chan-
nel separately. For instance, this approach was adopted to
build up feature extractors in the first model layers before
the channel features fusion step and classification heads145

in [21] or [7].
In general, most of the previously cited work remains black
box models with no or limited explanatory or interpreta-
tive behaviour. Some models, such as [7], involve atten-
tional processes to provide model regularization and pre-150

diction explanation with respect to input data channels,
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but performance improvement is generally preferred over
prediction justification. As will be shown in the next sec-
tions, the latter direction can nevertheless be explored,
taking advantage of recent advances in the explanability155

and interpretability of deep neural networks.

2.2. Explainability
Along the continuous progress of deep neural networks,

their integration into safety-critical applications is gaining
attention. However challenging case studies such as au-160

tonomous driving, robotics and medical diagnosis usually
involve complex models that regulatory authorities now
gradually impose to be explainable. In recent years, many
research directions have been developed on this topic as de-
scribed in [2]. As a brief summary, two main families of ap-165

proaches can be distinguished and are applicable to CNN
models as well as other model structures. First, the "post-
hoc" methods allow for the extraction of explanations from
already trained models. Such methods thus require addi-
tional processing after each model prediction. Among the170

most commonly used methods, one can cite the GradCam
approach [3], dedicated to CNN models, that produces a
heatmap in the input space showing the most contribut-
ing areas that led to a given prediction. The Layer-Wise
Relevance Propagation (LRP) method [22] goes further by175

propagating prediction backward relying on refined rules
and justified as a deep Taylor decomposition. This re-
sults in very detailed explanation maps that highlight the
contribution of each input pixel. However, such family of
methods generally requires access to internal operations180

within the models and often only report positive (excita-
tory) contributions to the prediction. Other model agnos-
tic methods such as Local Interpretable Model-Agnostic
Explanations (LIME) [23] and SHapley Additive exPlana-
tions (SHAP) [24] can provide more details and highlight185

excitatory or inhibitory patterns. In [24], it is shown that
SHAP improves over LIME by relying on Shapley values
that enable local accuracy, missingness and consistency.
However, such method makes the hypothesis of features in-
dependence and requires significant computations, which190

may limit its application.
Another explainability approach consists in directly in-

tegrating intrinsic constraints from the design of the model.
This is also referred to as self-explaining or interpretable-
by-design models [4]. One advantage is that explanation195

extraction does not need additional processing and is pro-
vided simultaneously with the prediction. Different direc-
tions are possible. If the problem is well identified, one
can impose the model to detect specific attributes that
make up the target concepts prototypes such that predic-200

tion can be explained with respect to some expected refer-
ences. Usually models produce intermediate latent repre-
sentations to be matched with prototypes. ProtoPNet [25]
and ProtoTree [26] are typical examples of image recogni-
tion tasks. Such methods are relevant but may highlight205

some bias such as the "Clever Hans" [27] phenomenon that

relates to favouring patterns highly correlated to the tar-
get but not expected in the design step. Typically, back-
ground patterns may systematically appear with a spe-
cific foreground target class and thus generate such bias.210

There is also a debate on the use of attention processes
to build up self-explaining models [28]. At a given stage
along a deep neural network, attention operators learn to
automatically focus on some specific inputs to improve the
target task. Intuitively, it identifies a regularity in the ac-215

tivation patterns associated to a given prediction and tries
to mask other potential disturbing activation. Attention
operators then highlight the contributing features associ-
ated to a prediction thus providing a rough explanation.
Then, at the model design step, attention processes can220

be carefully placed within the model in order to provide
end-users meaningful explanations. However, similarly to
GradCam, provided explanation only report the fact that
a given feature is involved but does not report on its in-
fluence (excitatory or inhibitory) nor its strength with re-225

spect to the final decision. Finally, introducing constraints
related to the underlying physical models can also con-
tribute to model explanation. Typically, the use of addi-
tional losses that qualify the relevance of a prediction or an
intermediate feature with respect to a physical dimension230

has been reviewed in [29].

2.3. Interpretability
In interpretability, knowledge associated with upstream

to downstream neuronal information exchanges are seeken.
They are related to the transmission/blocking properties235

or the penalization form that can apply to any specific
information carried by the input data or by some given
features. The interpretability knowledge can be deduced
by analysing the statistical properties learned by convo-
lutional filters. In the same layer, the statistical charac-240

terization generally involves either studying the correla-
tions between the convolutional filters (high correlations
results in general in redundant information computation),
or analysing the type of information on which the convo-
lution kernels focus. A distinction is thus made in [30] be-245

tween kernels which will operate weighted moving averages
(meanlets, low-pass filters), kernels which will rather oper-
ate weighted moving differencials (differencelets, high pass
filters) and other kernels which will distort (distortlets) dif-
ferent parts of the information contained in the data. In250

addition to this intra-layer based inter+intra-kernel char-
acterizations, an inter-layer consideration can also be used
to evaluate the decrease of randomness or the increase of
entropy from upstream to downstream layers.

Alternatively, Physically Inspired Neural Networks255

(PINNs) introduce inner model design constraints to com-
ply with knowledge on the considered physical phenomenon,
which thus provide interpretability by design. Often con-
sidered in application domains relying on partial differen-
tial equations (PDEs) such as fluid dynamics, these meth-260

ods, however, suffer from learning bias both related to the
partial knowledge of the physical problem and spectral
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bias that relate to the difficulty of models to learn high
frequency functions [31].

3. Background on pattern mining265

The proposed approach consists in refining the expla-
nations conveyed by channel attention weights with sup-
plementary interpretations and explanations that are pro-
vided by pattern mining techniques. The latter are en-
visaged to make as few assumptions as possible. They270

are indeed designed to support Knowledge Discovery In
Databases (KDD) processes, which requires providing data
descriptions that are not biased towards end users’ ex-
pectations [32]. The proposed pattern-based interpreta-
tions and explanations are expressed as correspondence275

rules between neuronal activation and spatiotemporal pat-
terns present in input data. These patterns, namely GFS-
patterns, as well as the correspondence rules, namely re-
descriptions, are presented in Section 3.1 and Section 3.2
respectively.280

3.1. GFS-patterns
The Grouped Frequent Sequential patterns (GFS-patterns)

originally proposed in [33] are mined in a fully unsuper-
vised way to identify which spatiotemporal regularities are
present in input data. This is performed for each data285

channel separately by a) symbolizing original radiometric
values, b) mining pixel-based symbolic evolution patterns
and c) selecting the most interesting ones. Each one of
these steps is described hereafter.

Symbolization. Symbols are obtained by quantizing radio-290

metric values. For instance, utilizing an equal frequency
bucketing based on the 33rd and the 66th percentiles, origi-
nal pixel values can be quantized over three intervals. As a
result, for each channel, pixel values are denoted with sym-
bols ‘1’, ‘2’, and ‘3’ to respectively represent low, medium295

and high radiometric values. The original SITS is thus
transformed into a symbolic one.

Mining. Pixel evolution patterns and sub-patterns expressed
as symbolic sequences such as 2 → 3 → 1 are then mined.
If the latter occurs in a symbolic pixel evolution sequence,300

then it indicates that, some time in the sequence, the sym-
bol of the pixel it describes is ‘2’, then, sometime later ‘3’,
and, finally, sometime later ‘1’. No timing constraint is
imposed. A pattern is retained if 1) it affects a sufficient
number of pixels, i.e., it covers a minimum surface denoted305

σ, and 2) these pixels are sufficiently connected to each
other in their immediate 3 × 3 neighbourhoods, i.e., they
form homogeneous regions whatever their shapes. Pattern
occurrences are thus frequent and grouped, hence the name
of Grouped Frequent Sequential Patterns or GFS-patterns.310

The reader is referred to [33] for a more formal definition
of GFS-patterns and details regarding the corresponding
extraction algorithm.

Selection. Only maximal GFS-patterns are filtered out to
focus on the most specific ones, i.e. those that are not con-315

tained in any other pattern of the output collection. Fi-
nally, the maximal GFS-patterns that are the less or the
more likely to occur in randomized versions of the sym-
bolic datasets, i.e., the most interesting GFS-patterns, are
retained. More details about this ranking method can be320

found in [34]. In the following, the most interesting maxi-
mal GFS-patterns are simply referred to as patterns when
clear from the context.

3.2. Redescriptions
The pattern-based explanations and interpretations pro-325

posed in this paper relate neural activation levels observed
at inference time to the presence of patterns in the input
dataset. This is achieved for each class and each channel
by describing classified pixels with the different activation
levels of the neurons and GFS-patterns, and by unveiling330

correspondence rules between these two different types of
descriptions. Let ai denote the activation level of neuron
i, ∧ the logical AND and ∼ the correspondence between
the left-hand side description and the right-hand side one.
Expressions such as 0.2 < a1 < 0.3 ∧ 0.7 < a17 < 0.9 ∼335

2 → 3 → 1 are thus targeted. The latter means that the
pixels for which the activation levels of neurons a1 and
a17 respectively belong to ]0.2; 0.3[ and ]0.7; 0.9[ at infer-
ence time tend to be affected by pattern 2 → 3 → 1, and
vice versa. Such an expression is termed redescription by340

the data mining community. More generally, redescription
mining is ‘a data analysis task that aims at finding distinct
common characterizations of the same objects’ [35].

Back to the explanation example, it is built upon two
distinct classified pixel descriptions, p = 0.2 < a1 < 0.3 ∧345

0.7 < a17 < 0.9 and q = 2 → 3 → 1. Description p
originates from the table denoting the neural activation
levels while q is produced according to the table reporting
the presence of patterns. The set of objects for which a
description is valid is termed support. A redescription is350

a pair of descriptions such as (p, q), also denoted p ∼ q,
each description being produced from a different table. In
order to evaluate the accuracy of a redescription p ∼ q, its
Jaccard index is computed as |supp(p)∩supp(q)|

|supp(p)∪supp(q)| .
In this paper, the ReReMi algorithm proposed in [8]355

is considered. It can indeed automatically determine the
optimal numerical intervals that are considered when es-
tablishing a description from numerical values such as the
neural activation levels. These intervals are built on the
fly to favour redescription accuracy. They can thus dif-360

fer from one redescription to another. Among all possi-
ble redescriptions, algorithm ReReMi retains those whose
Jaccard index exceeds a user-defined threshold and whose
descriptions are statistically dependent. This dependence
is checked using a p-value expressing the probability that365

the supports of descriptions overlap as much as observed.
Such a significance test tends to favour redescriptions with
low support and can be counterbalanced by rejecting those
whose support is below a user-defined threshold.
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4. The PM4X method370

4.1. General workflow
The Pattern Mining 4 eXplanations (PM4X) method

proposed in this paper is aimed at refining attention weights
explanations with pattern-based ones. It chains three dif-
ferent steps that are depicted in Figure 1. The first two,375

steps 1a and 1b, are respectively dedicated to the learning
of a pixel-based LCC to be explained and the extraction of
GFS-patterns. Both operations are independent and can
be fully parallelized. More specifically, it is assumed that
the chosen LCC captures features that are meant to be380

similar to GFS-patterns. The latter are extracted seper-
ately for each channel, considering all training partitions
to induce patterns that are as general as possible. It is
recalled that this extraction is fully unsupervised and per-
formed after transforming the input SITS into a symbolic385

one (see section 3.1).

Figure 1: The PM4X data flow: input/output
data/models are denoted by arrows, rounded boxes

represent processes.

In Step 2, the pixels of each training partition are de-
scribed with the neuron activation levels observed when
inference is performed on original values, only for the neu-
rons that are assumed to express features resembling GFS-390

patterns. Such features are obtained after having cas-
caded spatiotemporal and temporal convolutions. The ex-
act layer gathering these features is described hereafter in
Section 4.2. The same pixels are also described by checking
whether or not patterns affect them in the symbolic version395

of the SITS. These descriptions are then mined to extract
redescriptions, i.e. correspondance rules between neuron
actication levels and patterns (see Section 3.2). Since all
training partitions are considered, extracted redescriptions
are as general as possible. This extraction is performed400

for each channel and each class, so extracted redescrip-
tions can be considered as class-level explanations. They

can also be used at the instance level, i.e. the pixel level,
to explain each one of the decisions by checking whether
they hold or not. Redescriptions can be visualized by rely-405

ing on a variant of the SpatioTemporal Localizations Maps
(STL-maps) [34] that were originally designed to visualize
patterns both in space and in time. As shown in Section 5,
these maps are convenient when it comes to understand-
ing both right and wrong decisions. Finally, redescriptions410

can also be considered as interpretations of the inner func-
tioning of the LCC, since they identify both the neurons
mobilized when capturing input data patterns and their
activation levels.

4.2. Network architecture415

The eXplainable Deep Spatiotemporal Land Cover Clas-
sifier (X-DSLCC ) architecture used in this paper is mainly
inspired by those proposed in [1, 15, 7]. It is designed
so as 1) to be interpretable as possible, and 2) compute
features that match GFS-patterns as much as possible.420

Model performance is left to other contributions. As ex-
plained in Section 2.1, CNNs are to be favoured since their
spatiotemporal FOV can be controlled by design and their
convolutions can be simply interpreted as filtering. A CNN
is thus considered. Its architecture is presented in Table425

1. In more detail, layer 1○ separates each channel allowing
for specific neural paths to specialize feature extraction for
each of them. Each channel is then filtered in a spatiotem-
poral manner using layer 2○ to apply N1 = 256 different
convolution matrices at the pixel level. Their dimension is430

k1×3×3 without applying padding. This FOV is chosen so
as to match the one used to extract GFS-patterns. More
precisely, the spatial footprint 3 × 3 corresponds to the
spatial extent considered to check whether GFS-pattern
occurrences are grouped or not. Once applied, since no435

padding is used, the 3x3 spatial input features are reduced
to 1D signals along the temporal axis thus reducing local
features and simplifying the next processing steps. Re-
garding the temporal FOV k1, it is experimentally set to a
third of the series length T to avoid compressing the tem-440

poral information in a too harsh manner. Pattern lengths
can indeed range between 1 and T symbols. The latter pre-
caution also holds regarding the following temporal convo-
lutions. Instead of relying on the proposal available in [7]
that chains two temporal convolution layers after the spa-445

tiotemporal one, a single convolution layer composed of
N2 = 64 temporal filters of size k2 = k1 = T/3 is consid-
ered with layer 3○. Interestingly, for the datasets used in
this paper, no performance degradation is to be reported
when doing so. Model relevance is thus maintained while450

being more frugal. Obtained features are 1D vectors con-
taining T2 temporal values. They are assumed to match
GFS-patterns and are stacked using layer 4○. The neuron
activation levels to be associated with patterns are there-
fore those observed at inference time at the output of layer455

4○. These features are then weighted thanks to a channel
attention module referred to as layer 5○ before reaching
the decision layers that stacks 6○, a hidden dense layer that
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is ReLu activated and connected to the final dense one 7○
that relies on the softmax function. Back to the attention460

operator, it allows dynamic weighting of the importance of
each channel in the final decision of the network. It thus
provides significant explanations, i.e., contribution of each
input channel to a given decision. These weights can be
easily merged for each class using box plots [15]. To this465

aim, we consider a simple attention process proposed in
[36] formalized as αi = sigmoid

(
< u⃗, tanh(Wh⃗i + b⃗) >

)
where αi is the attention weight associated to channel
i obtained from a non-linear transformation with learnt
weights W (2D), u (1D) and bias b (1D) applied to the470

vectorized (flatten) features outing from layer 4○.
To help the training process convergence, inputs are

normalized channel-wise between 0 and 1 using a Min-Max
scaling. The usual unweighted categorical cross-entropy
CE is considered as objective function. To prevent over-475

fitting on all layers, gradients are back-propagated using
an Adam optimizer and a L2-regularization with a weight
decay of 1.10−6.

5. Experiments

5.1. The Réunion satellite image time series480

A Satellite Image Time Series (SITS) covering the Réu-
nion island is used as a baseline in this paper. Its ground
truth is available in [37] and deep land cover classifiers
reaching relevant performance levels on this dataset have
been proposed in [20], [15] and [7]. In more details, this485

SITS consists in 21 Sentinel-2 images acquired between
January and December 2017 and covering a 67 km x 59
km scene with a spatial resolution of 10 metres, i.e. each
image contains 6667 × 5916 = 39441972 pixels. Chan-
nels available at a 10-meter resolution are B2 (blue), B3490

(green), B4 (red) and B8 (near-infrared). In addition, the
Normalized Difference Vegetation Index (NDVI) and the
Normalized Difference Water Index (NDWI) [38] are com-
puted and supplied for the same spatial resolution. These
standard indexes are defined by NDV I = f(B8, B4) and495

NDWI = f(B3, B8) with f(x, y) = x−y
x+y , a homogeneous

function from R∗
+ × R∗

+ to [−1; 1]. Cloud removal is sim-
ply performed for each band by linear interpolation of the
cloudy pixels based on the previous and subsequent cloud-
free acquisitions. For more details, the reader is referred500

to [39]. Finally, the ground truth, which is available as a
set of non-contiguous dispersed polygons, accounts for 2%
(880,828 pixels) of the pixels which are annotated accord-
ing to 11 unbalanced land cover classes. They are listed
in Table 2 along with their class ratios and the colour505

they are associated with when visualized. Figure 2 depicts
the ground truth by overlaying land cover classes with a
Google Earth Engine (GEE) [40] background image. Us-
ing the same technique, Figure 3 and Figure 4 zoom in on
the ground truth of two areas that are studied further.510

Figure 2: Visualisation of the Réunion SITS ground
truth: a set of dispersed and non contiguous polygons

(880,828 pixels).

Figure 3: The Réunion SITS ground truth over the
northern part of la Plaine des Cafres. Large polygons of

class pasture are present.
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Layer Operation Specifications Output Tensor Shape

1○ split C channels (T, 3, 3) (xC)

2○ (xC) conv3d
kernel = (k1 = T/3, 3, 3),
no padding,
nfilter = N1 = 256

(T1, 1, 1, N1)

3○ (xC) conv1d
kernel = (k2 = T/3),
no padding,
nfilter = N2 = 64

(T2, N2)

4○ stack C channels (C, T2, N2)
5○ attention C weights αi

6○ hidden dense + ReLu 256 neurons
7○ final dense + softmax one neuron / class

Table 1: X-DSLCC architecture. Features are extracted by 2 different convolution layers computed for each one of
the C channels (C times layers 2○, 3○). They are stacked with layer 4○ whose neuron activations are further

considered to build redescriptions. Attention layer 5○ is outing C channel attention weights.

Class Ratio (%) Color

Sugar cane 12.4
Pasture 7.3
Market gardening 2.3
Greenhouse crops 0.2
Orchards 3.9
Wooded areas 23.5
Moor 16
Rocks 21.5
Relief shadows 5.1
Water 6.1
Urban area 1.8

Table 2: The Réunion SITS: ground truth classes.

Figure 4: The Réunion SITS ground truth over the
airport of Saint Denis. Polygons of the classes urban,

moor, wooded areas and rocks are visible.

5.2. Experimental settings
5.2.1. Network hyperparameters and training partitions

The hyperparameters of X-DSLCC (see Section 4.2)
are set according to dataset characteristics. Regarding
the Réunion SITS, since it contains C = 6 channels and515

T = 21 acquisitions, the temporal convolution dimension
is set to k1 = k2 = T/3 = 7. As a result, the shape of
the output tensors of layers 1○, 2○, 3○ and 4○ are, respec-
tively, (21, 3, 3), (15, 1, 1, 256), (9, 64), and (6, 9, 64). The
classified pixels being described by the neuron activations520

at layer 4○, 576 activations are made available for each one
of the 6 channels.

TensorFlow2 is used to optimize the model. Annotated
pixels are divided into a training dataset (60%), a valida-
tion (20%) dataset and a test (20%) dataset using a strati-525

fied sampling that maintains class ratios. Pixels belonging
to a same polygon all belong to the same dataset.

5.2.2. GFS-pattern mining parameters
The free prototype DFTS-P2miner [41], whose sources

can be downloaded from https://sites.google.com/v530

iew/dfts-p2miner, is used to run the entire extraction
process for each channel, from pixel values quantization
to pattern selection. Pixel values are converted to sym-
bols ‘1’, ‘2’, and ’3’, that respectively report ’low values’,
’medium values’ and ’high values’. This quantization is535

detailed in Section 3.1 and commonly adopted to mine
GFS-patterns [33]. Greenhouse crops, the class with the
lowest representation, has only 1, 931 pixels. The mini-
mum surface threshold σ is thus set to 881 pixels under the
assumption that about half of these pixels have the same540

kind of evolution. This is a fairly lax constraint because
it only accounts for 0.1% of annotated pixels. Finally, the
120 most interesting maximal GFS-patterns are selected.
Each pixel, for a specific channel, is thus characterized by
stating whether or not each one of these 120 patterns is545

present. This choice is conservative as a set of only 40
patterns is recommended in [34]. By doing so, the chance
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of matching neuron activations with dataset regularities is
increased. All other DFTS-P2miner parameters resort to
default values.550

5.2.3. Resdecription mining parameters
Using the free prototype Siren [42, 43], whose sources

are available at https://gitlab.inria.fr/egalbrun/s
iren, redescription mining is performed for each class of
interest and each channel. The maximum number of neu-555

ron activation variables and pattern variables is respec-
tively set at 4 and 1 to extract expressive yet straight-
forward redescriptions. Beside providing easy-to-read re-
descriptions, these syntactic limitations also ensure a rea-
sonable consumption of resources. To extract as many560

redescriptions as possible, the minimum Jaccard index is
set to the Siren default value, 1%. Following this strategy,
the minimal number of pixels supporting a redescription
is arbitrarily set to 1% and the standard value of 5% is
used as the maximum p-value. All other Siren parameters565

resort to default values.

5.3. Quantitative results

5.3.1. Resource consumption
All experiments were performed on a standard com-570

puting platform (AMD Ryzen ThreadRipper 3990X, 4.3
GHz, 256 GB RAM, GeForce RTX 2060 Super) running
Linux (kernel 5.11.0-40). The PM4X method (see Sec-
tion 4) was assessed by executing a GPU version of Ten-
sorFlow2 (step 1), a single-threaded implementation of575

DFTS-P2miner (step 1), a single-threaded version of Siren
(step 3) and dedicated Python scripts (steps 2, 4 and 5).
The most resource-intensive operations are mining steps 1
and 3. The corresponding execution times and maximum
memory consumptions are therefore made available in Ta-580

ble 3. Note that even when considering a single-threaded
implementation, the GFS-pattern and redescription min-
ing steps can be fully parallelized across channels, i.e., one
execution per channel, with all executions running simul-
taneously.585

5.3.2. Network performances
It is recalled that we are not interested in performance

as such, and that X-DSLCC is primarily designed to test
whether it is possible to correlate neural activation lev-
els with the presence of spatiotemporal patterns in in-590

put data. However, in order to illustrate the performance
penalty of designing a network that extracts features re-
sembling GFS patterns, the performance of X-DSLCC is
compared with that of three land cover classifiers that also
work at the pixel level and mobilize all available chan-595

nels. More precisely, a baseline is provided with the perfor-
mance of a classical random forest (500 trees, 200 splits).
The performances of the two inspiring deep neural net-
works that led to the X-DSLCC architecture (see sec-
tion 4.2), namely TempCNN [1] and Sdeep-B-Multi-ii [15],600

Operation Execution Memory
time (s) usage (MB)

Step 1
LCC (X-DSLCC ) learning 7 320 47 409
GFS-pattern mining - B2 95 647 3 839
GFS-pattern mining - B3 139 234 3 712
GFS-pattern mining - B4 92 974 3 741
GFS-pattern mining - B8 37 867 4 087
GFS-pattern mining - NDVI 153 346 3 840
GFS-pattern mining - NDWI 87 882 3 828

Step 3
redescription mining - B2 1 435 579 23 353
redescription mining - B3 1 314 548 23 205
redescription mining - B4 1 524 379 23 375
redescription mining - B8 1 288 256 23 547
redescription mining - NDVI 1 226 986 23 027
redescription mining - NDWI 1 696 710 24 109

Table 3: Resource consumption: mining steps 1 and 3.

are also reported. These network were chosen because,
to our knowledge, they deliver the best performances for
the Réunion SITS [15] and they work in a similar way
to X-DSLCC. More precisely, both TempCNN and Sdeep-
B-Multi-ii rely on temporal convolutions which are ap-605

plied to each channel separately, before merging obtained
features for the final decision stage. The accuracy rates
for Random Forest, TempCNN, Sdeep-B-Multi-ii, and X-
DSLCC are 90.4%, 91.3%, 92.2%, and 84.9% respectively.
Although not the best network, X-DSLCC reaches a de-610

cent accuracy level. Its precision and recall measures are
given in Table 4. In the field of land cover classification, ac-
cording to [44], X-DSLCC can be considered insufficiently
accurate, as most deep learning-based proposals achieve
overall accuracies above 90%. However, when it comes to615

understanding how a network works, explaining the wrong
decisions is just as important as explaining the right ones,
which justifies the use of X-DSLCC in this paper.

Class Precision Recall Ratio

Sugar cane 87.7 91.2 12.4
Pasture 86.9 85.3 7.30
Market gardening 59.5 63.5 2.30
Greenhouse crops 26.5 20.3 0.20
Orchards 59.0 63.4 3.90
Wooded areas 85.3 85.8 23.5
Moor 85.1 79.2 16.0
Rocks 92.3 94.1 21.4
Relief shadows 81.8 91.3 5.10
Water 95.1 82.5 6.10
Urban area 75.0 81.6 1.80

Table 4: Precision and recall by class for X-DSLCC on
the test set composed of 176,166 pixels samples.
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5.3.3. Channel attention weights statistics
The spread and location of channel attention weights620

over the whole dataset are provided for each class and
each channel with Table 5 using 25th percentiles (denoted
P25), 50th percentiles (i.e. medians), and 75th percentiles
(denoted P75). As it can be observed, channel attention
weights differ from one channel to another according to625

classes. For example, in keeping with median attention
weights, the most important channels are:

• B2 for classes sugar cane, pasture, market gardening,
orchards, wooded areas and moor,

• B3 for reliefs shadows,630

• B4 for water,

• B8 for green house crops, rocks and urban area.

It is important to balance these results with the fact
that all bands are exploited by the network, and sometimes
with weights that are very close to reported maxima. For635

example, for classes pasture, market gardening, orchards,
wooded areas and moor, channel B2 is the most mobilized
one, which is counterintuitive. Indeed, vegetation is gen-
erally detected using B4, B8 or NDVI. If we now have a
closer look at attention weights, it appears that, for all of640

these classes, band B4 is also exploited at very high lev-
els that are very close to B2 ones. In other words, the
network does rely on expected channels such as B4, but it
can also select unexpected bands such as B2. Interestingly,
synthetic channels, i.e., vegetation and water indices, are645

never reported as being the most important channels. Ad-
ditionally, high attention weights can be applied to either
low or high neural output values, i.e., they can amplify
any kind of signals, inhibited or strong ones. This variabil-
ity shows that making conclusions from the sole attention650

weight values is not precise enough. As explained further
in Section 5.5, the B2 features involved in class Pasture re-
descriptions are mostly inhibited: the attention operator
thus exploits this setting, which is an expected behavior
for vegetation. Further, one may expect, for a given class,655

the existence of cohorts, here ground area clusters, with
specific behaviours that may lead to different attention
values. Redescription mining is also expected to detect
and provide insight.

5.3.4. Redescriptions statistics660

As explained in Section 4, redescriptions are extracted
for each class and each channel separately. Table 6 thus
reports, for each class and each channel:

• r, the number of extracted redescriptions ,

• Sall, the surface covered by the r redescriptions, i.e.665

the sum of their supports since they are spatially
complementary (cf. Step 4 in Section 4),

• Smin, the minimum support, i.e. the minimum sur-
face, observed for the r redescriptions,

• Smax, the maximum support, i.e. the maximum sur-670

face, observed for the r redescriptions,

• Jmin, the minimum Jaccard index, i.e. the minimum
accuracy, observed for the r redescriptions,

• Jmax, the maximum Jaccard index, i.e. the maxi-
mum accuracy, observed for the r redescriptions.675

The median and the standard deviation of these mea-
sures are made available at the bottom of the same table.

The reported number of extracted redescriptions is be-
tween 0 and 10, which is a reasonable amount of informa-
tion that can be processed by end users. Their support680

ranges from 1%, i.e. the minimum number of pixels set
to mine them, to 78 %. Their accuracy start from 2.1 %,
i.e. twice the minimum accuracy used to extract them,
and reach 96 % at the most. The surface covered by the
redescriptions for each class and each channel, Sall, is be-685

tween 0% and 90%. Extracted redescriptions thus vary
widely in terms of number, support and accuracy, which
is confirmed by the standard deviations reported for each
measure, especially when compared with their medians.
Taking into account the redescriptions extracted from all690

channels, the Redescription Decision Cover RDC, i.e., the
fraction of right decisions for which one or more redescrip-
tions hold is given for each class by Table 7. Results are
very encouraging with a median value of RDC that reaches
85.5 %. Furthermore, as regards the performance of the X-695

DSLCC network, the worst decision cover is obtained for
greenhouse crops and the best for water. In other words,
as can be expected for a data-driven model, there are few
redescription occurrences associated with the right func-
tioning of the network when the latter struggles to reach700

high performances due to the very low-class ratio (0.2 %).

5.4. Qualitative results

Explanations and interpretations for the X-DSLCC net-
work are provided in the form of attention weights and re-705

descriptions. This section focuses on two classes of inter-
est, namely pasture and urban area. For the sake of clar-
ity, in the following, maps are generated using the ground
truth polygons of a single class, the one that is under con-
sideration.710

5.4.1. Attention weights-based explanations
Figure 5 shows the attention weights obtained for class

pasture and class urban area using box plots computed
for the whole dataset. Such visualizations are useful for
quickly identifying at the class level which channels are715

important in the final decision. In the case of the Réunion
SITS, channel B2 is predominant for pasture class since
that it can show vegetation senescence [45]. Channel B4,
which detects maximum chlorophyll absorption [45], is the
second most used channel used to detect pasture category.720

Again, the X-DSLCC network focuses on appropriate fea-
tures. Channel B8 is reported to be the most important for
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Class Channel P25 Median P75

Sugar
cane

B2 0.91 0.96 0.98
B3 0.32 0.45 0.56
B4 0.86 0.91 0.94
B8 0.73 0.74 0.78
NDVI 0.65 0.70 0.76
NDWI 0.84 0.88 0.91

Pasture

B2 0.94 0.96 0.97
B3 0.34 0.45 0.56
B4 0.92 0.95 0.96
B8 0.75 0.78 0.81
NDVI 0.72 0.75 0.77
NDWI 0.76 0.83 0.88

Market
gardening

B2 0.96 0.98 0.98
B3 0.53 0.69 0.82
B4 0.93 0.95 0.97
B8 0.79 0.83 0.89
NDVI 0.72 0.75 0.78
NDWI 0.84 0.88 0.91

Greenhouse
crops

B2 0.58 0.70 0.81
B3 0.04 0.07 0.16
B4 0.70 0.81 0.88
B8 0.79 0.82 0.85
NDVI 0.70 0.78 0.85
NDWI 0.83 0.86 0.89

Orchards

B2 0.98 0.99 0.99
B3 0.70 0.81 0.88
B4 0.96 0.98 0.98
B8 0.76 0.79 0.83
NDVI 0.75 0.76 0.78
NDWI 0.84 0.87 0.90

Wooded
areas

B2 0.99 0.99 0.99
B3 0.88 0.94 0.98
B4 0.98 0.99 0.99
B8 0.79 0.84 0.89
NDVI 0.75 0.77 0.78
NDWI 0.89 0.90 0.92

Moor

B2 0.96 0.98 0.99
B3 0.55 0.87 0.95
B4 0.94 0.97 0.98
B8 0.81 0.89 0.96
NDVI 0.73 0.76 0.79
NDWI 0.75 0.86 0.90

Rocks

B2 0.88 0.97 0.99
B3 0.39 0.92 0.98
B4 0.89 0.96 0.98
B8 0.93 0.98 0.99
NDVI 0.79 0.88 0.95
NDWI 0.54 0.80 0.92

Relief
shadows

B2 0.98 0.99 0.99
B3 0.98 0.99 1 .00
B4 0.98 0.99 0.99
B8 0.99 0.99 0.99
NDVI 0.75 0.79 0.84
NDWI 0.73 0.85 0.91

Water

B2 0.93 0.96 0.98
B3 0.86 0.93 0.99
B4 0.97 0.98 0.99
B8 0.75 0.84 0.93
NDVI 0.66 0.80 0.89
NDWI 0.29 0.63 0.83

Urban
area

B2 0.68 0.85 0.90
B3 0.13 0.34 0.55
B4 0.78 0.88 0.92
B8 0.87 0.94 0.97
NDVI 0.73 0.89 0.96
NDWI 0.59 0.79 0.90

Table 5: Channel attention weights: spreads and locations for each class and each channel.
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Class Channel r Sall Smin Smax Jmin Jmax

Sugar
cane

B2 4 0.26 0.01 0.20 0.08 0.42
B3 3 0.40 0.01 0.32 0.36 0.60
B4 4 0.29 0.02 0.20 0.41 0.66
B8 3 0.56 0.01 0.45 0.27 0.77
NDVI 7 0.12 0.01 0.05 0.40 0.71
NDWI 10 0.24 0.01 0.06 0.46 0.66

Pasture

B2 1 0.23 0.23 0.23 0.47 0.47
B3 2 0.26 0.07 0.19 0.30 0.43
B4 2 0.21 0.01 0.20 0.26 0.45
B8 4 0.42 0.01 0.34 0.14 0.63
NDVI 2 0.02 0.01 0.01 0.30 0.31
NDWI 3 0.45 0.02 0.29 0.37 0.68

Market
Gardening

B2 3 0.13 0.01 0.10 0.37 0.39
B3 2 0.21 0.03 0.18 0.35 0.42
B4 2 0.20 0.01 0.19 0.22 0.52
B8 5 0.32 0.01 0.18 0.50 0.66
NDVI 6 0.10 0.01 0.03 0.22 0.82
NDWI 3 0.42 0.02 0.24 0.42 0.80

Greenhouse
crops

B2 4 0.06 0.01 0.02 0.38 0.71
B3 5 0.06 0.01 0.02 0.25 0.62
B4 4 0.09 0.01 0.06 0.27 0.69
B8 4 0.31 0.01 0.14 0.24 0.58
NDVI 4 0.33 0.01 0.30 0.29 0.92
NDWI 3 0.36 0.01 0.34 0.53 0.63

Orchads

B2 2 0.21 0.11 0.11 0.34 0.40
B3 3 0.09 0.02 0.06 0.24 0.36
B4 2 0.28 0.12 0.16 0.49 0.51
B8 4 0.51 0.01 0.32 0.40 0.75
NDVI 2 0.18 0.01 0.17 0.23 0.74
NDWI 4 0.50 0.01 0.28 0.50 0.79

Wooded
areas

B2 3 0.14 0.02 0.08 0.30 0.54
B3 4 0.12 0.01 0.07 0.12 0.40
B4 4 0.23 0.01 0.18 0.12 0.42
B8 3 0.37 0.04 0.20 0.66 0.68
NDVI 4 0.25 0.01 0.18 0.29 0.72
NDWI 4 0.60 0.01 0.29 0.63 0.77

Moor

B2 5 0.21 0.01 0.08 0.28 0.40
B3 4 0.19 0.01 0.14 0.24 0.45
B4 2 0.18 0.01 0.17 0.32 0.57
B8 5 0.55 0.05 0.16 0.56 0.82
NDVI 5 0.11 0.01 0.04 0.33 0.77
NDWI 5 0.64 0.02 0.30 0.55 0.88

Rocks

B2 5 0.17 0.01 0.07 0.33 0.73
B3 4 0.15 0.01 0.09 0.07 0.45
B4 2 0.17 0.06 0.11 0.44 0.51
B8 5 0.66 0.01 0.54 0.53 0.90
NDVI 2 0.65 0.06 0.59 0.55 0.79
NDWI 2 0.60 0.11 0.49 0.64 0.78

Relief
shadow

B2 3 0.12 0.01 0.10 0.43 0.87
B3 4 0.25 0.01 0.17 0.42 0.86
B4 3 0.07 0.01 0.03 0.10 0.57
B8 3 0.34 0.01 0.20 0.58 0.68
NDVI 4 0.25 0.01 0.17 0.41 0.78
NDWI 4 0.30 0.02 0.10 0.38 0.50

Water

B2 3 0.18 0.01 0.14 0.54 0.69
B3 8 0.27 0.01 0.17 0.34 0.72
B4 4 0.16 0.03 0.07 0.48 0.66
B8 5 0.90 0.02 0.78 0.76 0.96
NDVI 0 0.00 - - - -
NDWI 2 0.57 0.01 0.56 0.31 0.70

Urban
area

B2 3 0.17 0.01 0.15 0.27 0.66
B3 3 0.04 0.01 0.02 0.02 0.28
B4 1 0.04 0.04 0.04 0.57 0.57
B8 5 0.49 0.03 0.21 0.46 0.74
NDVI 2 0.69 0.07 0.62 0.53 0.89
NDWI 3 0.64 0.04 0.47 0.41 0.79

Median 3.50 0.25 0.01 0.17 0.37 0.66
Standard deviation 1.61 0.20 0.04 0.16 0.15 0.17

Table 6: Redescriptions: supports and accuracy for each class and each channel.
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Class RDC (%)

Sugar cane 89.3
Pasture 82.7
Market gardening 81.1
Greenhouse crops 63.8
Orchards 84.5
Wooded areas 85.5
Moor 90.2
Rocks 94.7
Relief shadows 79.8
Water 95.8
Urban area 92.5

Table 7: Redescription Decision Cover RDC by class.

the detection of urban areas. Since it indicates the pres-
ence of biomass [45], which is minimal in the case of urban
areas, the X-DSLCC network focuses on low B8 values725

to exhibit them, which is further confirmed by redescrip-
tions. Whatever the class that is considered, pasture or
urban area, all channels are exploited at quite high levels,
except channel B3 which is sensitive to the total chloro-
phyll in vegetation [45]. It is thus assumed that similar730

information is obtained through other channels, especially
B4.

These attention-based class-level explanations can be
provided together with pixel-level explanations using at-
tention maps. They are created for the pixels of a given735

class and a given channel by 1) normalising attention weights
between 0 and 255, and 2) depicting them using a colour
scale whose dominant colour matches as closely as pos-
sible the radiometry of the channel under consideration.
Pixels not identified as belonging to the class of interest740

are simply filled with natural colours. This overlay is per-
formed using Google Earth Engine (GEE) [40]. Figure 6
and Figure 7 give an example of such a map for class pas-
ture and class urban area using channel B2 and channel
B8 respectively. These maps show that even though se-745

lected channels are dominant at the class level, they are
not systematically focused on at the pixel level. In addi-
tion, low weights do not necessarily imply wrong decisions,
and high weights do not guarantee right decisions: sev-
eral attention weight settings are learnt by X-DSLCC to750

predict land cover classes. These settings can be conve-
niently rendered for each pixel using a histogram showing
the attention weights across all bands and used to predict
its class. Such a histogram can be for example displayed
when hovering over a pixel of interest in a geographical755

information system.

5.4.2. Redescriptions-based explanations
They are supplied with their metrics (support, Jac-

card index) and visualized thanks to their spatiotempo-
ral maps (see Section 1) to refine explanations conveyed760

by attention weights. Each map illustrates where a re-

Figure 5: Channel attention weights: box plots for
classes pasture and urban area.

Figure 6: Attention map for class pasture and channel
B2 (blue colour scale) over the northern part of la Plaine

des Cafres.
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Figure 7: Attention map for class urban area and
channel B8 (red colour scale) over the airport of

Saint-Denis.

description holds in space and in time. The ending date
of the occurrences of the redescription pattern is denoted
using the temporal colour palette depicted by Figure 8.
Pixels that are no explained by the redescription are col-765

ored as follows: the white colour is used to indicate de-
cisions where the activation-level conditions are not met
and the pattern is absent, i.e. the redescription does not
hold. The brown colour is associated with decisions where
the activation-level conditions are met and the pattern is770

absent. If the pattern is present and the activation-level
conditions are not met, the grey colour is assigned to the
pixels. These settings are listed in Table 8. The black
colour is reserved for false negatives. Other pixels are filled
with the colours of a satellite acquisition, once again us-775

ing GEE [40]. For the sake of clarity, only redescriptions
whose support is greater than or equal to 10% will be dis-
cussed.

Figure 8: Temporal colour palette for covered pixels: 21
acquisitions, from January 2017 (red) to December 2017

(magenta).

Meaning Color

Activation levels not met, pattern absent
Activation levels not met, pattern present
Activation levels met, pattern asbent

Table 8: Uncovered pixels color palette.

Class Pasture: right decisions780

The redescritpions and maps of class pasture are given
with figures 9, 10, 11, 12, 13 and 14 for pastures located in
the northern part of la Plaine des Cafres. As a reminder,
interpretations of how the network works are provided with785

Figure 9: B2: r0 : − 1.665398 < a353 <
−0.259085 ∧ 0.280056 < a538 < 1.904732 ∧ a558 <

0.471004 ∧ −0.981744 < a569 < −0.030657 ∼ 3 ) 3 ) 3 )

3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 2 ) 2 ) 2 (S = 0.22, J = 0.47)
over true positives. False negatives appear in black.

the left-hand sides of the redescriptions. They indicate
the activation levels of the neurons that are assumed to
represent the right-hand sides. The latter, considered as
explanations, are expressed as temporal patterns consist-
ing of the symbols ’1’, ’2’ and ’3’, denoting respectively790

’low’, ’medium’ and ’high’ reflectance values observed for
the channel from which they are extracted. Redescriptions
r0 and r1 (figures 9 and 10), extracted from channels B2
and B3, can be related to vegetation senescence and dry-
ing (rainfall decreases during the summer). Indeed, their795

patterns contain series of high reflectance values (symbols
’3’) followed by series of intermediate values (symbols ’2’).
According to their maps, the occurrences of the r0 and
r1 patterns end in late 2017 (dark blue, violet and ma-
genta colours) and are spatially quite complementary. Re-800

description r2 (Figure 11), extracted from channel B4, ex-
presses a similar phenomenon, but with two differences:
1) it first traces an increase in chlorophyll presence before
showing a clear decrease, and 2) it tends to appear earlier
in the series (green and light blue colours). In addition, a805

continuous presence of biomass at high levels is evidenced
for channel B8 with redescription r3 (Figure 12), while
redescriptions r4 and r5 (Figure 13 and Figure 14) respec-
tively show a continuous plant water content at medium
levels and an increase of the latter. Once again, these maps810

are quite complementary spatially. Finally, it is recalled
that all of these explanations refine attention-based ones.
For example, relying on channels B2 and B4, the two most
used channels according to the channel-based attention op-
erator (see Figure 5), to identify class pasture is consistent815

as long as decreasing reflectance values are present in the
input data, which is evidenced by redescriptions r0 and
r2.
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Figure 10: B3: r1 : − 0.628419 < a139 <
0.463561 ∧ −0.824907 < a267 < −0.343454 ∧ 1.005415 <
a294 < 1.641748 ∧ −0.748222 < a523 < −0.351193 ∼ 3 )

3 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 (S = 0.19, J = 0.43)
over true positives. False negatives appear in black.

Figure 11: B4: r2 : 0.666302 < a53 <
1.775739 ∧ −1.932449 < a59 < −0.963242 ∧ −0.571004 <
a529 < 0.856778 ∧ −1.584851 < a560 < −0.513726 ∼ 2 )

3 ) 3 ) 3 ) 2 ) 2 ) 2 ) 2 ) 2 (S = 0.2, J = 0.45) over true
positives. False negatives appear in black.

Figure 12: B8: r3 : − 7.776212 < a24 <
−3.750202 ∧ −2.905304 < a164 <

−1.271326∧−3.461838 < a522 < −1.903169∧−3.75082 <
a548 < −1.395322 ∼ 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 )

3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 (S = 0.34, J = 0.63) over
true positives. False negatives appear in black.

Figure 13: NDWI: r4 : − 6.364172 < a60 <
−1.538447 ∧ 0.765226 < a77 < 5.49521 ∧ 3.773017 <

a547 < 8.465077 ∧ a553 < −0.301693 ∼ 2 ) 2 ) 2 ) 2 ) 2 )

3 ) 3 ) 3 ) 3 (S = 0.3, J = 0.68) over true positives. False
negatives appear in black.
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Figure 14: NDWI: r5 : 1.030979 < a28 <
2.855336 ∧ 0.381648 < a226 < 3.289396 ∧ 0.469679 <

a481 < 3.046999 ∧ −2.07497 < a553 < 0.569858 ∼ 2 ) 2 )

2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 )

2 (S = 0.14, J = 0.55) over true positives. False
negatives appear in black.

Class Pasture: wrong decisions
820

With regard to the false negatives, i.e. the black pixels
observed in the previous maps, it is possible to visualize
the patterns of redescriptions over the ground truth, rather
than the correct decisions as done previously. The tempo-
ral palette used for the previous maps is used once again,825

and pixels not affected by the patterns are simply set
to white. Such visualizations allow checking whether re-
description patterns are present in the dataset and should
have been captured by the network or not. As for the
pasture in the centre of the image, it appears that the830

patterns of redescriptions r1, r2, r3 and r4 are present for
most of the false negatives. An example of such a map is
given with Figure 15 for r4. The network and/or the learn-
ing dataset should thus be revised to detect these patterns
and classify these false negatives correctly. The nature and835

the number of the features learnt for each channel, and the
fusion between these features, could be for example ques-
tioned. The learning dataset could also be augmented by
generating new samples containing the patterns identified
by redescriptions. Another analysis can be conducted to840

identify which pasture patterns should not be considered
by the network in the case of false positives. For example,
moor can be confused with pasture category, and, among
the patterns that could explain this mistake, the r5 one is
the most present for the area shown in Figure 16. In this845

figure, the map of redecription of r5 is made available for
false positives. In addition, the green-khaki colour mark
areas were moor category was correctly identified by the
network.

850

Figure 15: NDWI: r4 pattern
2 ) 2 ) 2 ) 2 ) 2 ) 3 ) 3 ) 3 ) 3 over the ground truth.

Figure 16: NDWI: r5 : 1.030979 < a28 <
2.855336 ∧ 0.381648 < a226 < 3.289396 ∧ 0.469679 <

a481 < 3.046999 ∧ −2.07497 < a553 < 0.569858 ∼ 2 ) 2 )

2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 )

2 (S = 0.14, J = 0.55) over the false positives. Green
khaki: moor, correctly identified by the network.
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Figure 17: B2: r6 : − 1.923968 < a84 <
−0.942249 ∧ 0.652257 < a366 < 1.600037 ∧ −1.296196 <
a523 < −0.824066 ∧ 0.455249 < a558 < 0.960992 ∼ 3 ) 3 )

3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 2 ) 2 ) 2 (S = 0.15, J = 0.51)
over true positives. False negatives appear in black.

Figure 18:
B8: r7 : − 0.916848 < a24 < 0.030338 ∧ −0.503101 <

a164 < −0.109455∧−0.67026 < a420 < −0.030818∧a486 <
1.474579 ∼ 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 )

1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 (S = 0.2, J = 0.74) over true
positives. False negatives appear in black.

Class Urban Area: right decisions

Four redescriptions and their maps are provided with
figures 17, 18, 19, and 20. For the considered scene, the
ground truth includes the airport, some buildings to the855

east of the airport and a stretch of road to the southwest.
Redescription r6 shows a drop from high levels in channel
B2 to medium levels, which may be related to the pres-
ence of dark asphalt surfaces. Redescriptions r7, r8 and
r9 capture a weak and continuous presence of vegetation,860

biomass and water respectively, consistent with urbanized
areas. These redescriptions confirm for example that fo-
cusing on channels B8, NDVI and NDWI, the three most
used channels according to the channel-based attention op-
erator (see Figure 5), to infer class urban areas makes sense865

if low reflectance values are considered. As r7, r8 and r9
are based on patterns containing many symbols, their end
dates tend to occur in late 2017, which explains a weak
temporal dispersion (most pixels are purple).

Class Urban Area: wrong decisions870

Figure 19: NDVI: r8 : a8 < 1.921249 ∧ −1.166227 <
a534 < 2.407826 ∧ −1.309819 < a541 < 1.668957 ∧ a554 <
1.277908 ∼ 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 )

1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 (S = 0.62, J = 0.9) over true
positives. False negatives appear in black.

Figure 20: NDWI: r9 : a63 < 0.017922 ∧ a539 <
−0.851809 ∧ 0.246729 < a553 < 10.347095 ∧ 0.935444 <
a570 ∼ 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 )

1 ) 1 ) 1 ) 1 ) 1 (S = 0.47, J = 0.79) over true positives.
False negatives appear in black.
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Figure 21: NDVI: r8 pattern 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 )

1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 over the ground
truth.

A large part of false negatives could have been iden-
tified using the redescriptions patterns, especially the one
of r8. This can be observed with its map over the ground
truth, Figure 21. Nevertheless, r8 can lead to false posi-875

tives and should be balanced with additional information,
i.e. other patterns, especially those present in other chan-
nels. Figure 22 show these false positives for an area where
r8 holds and rocks should have been identified. True pos-
itives, i.e. rocks, are denoted in light green. Once again,880

these insights are assumed to guide experts when designing
the network and forming the learning dataset.

Figure 22: NDVI: r8 : a8 < 1.921249 ∧ −1.166227 <
a534 < 2.407826 ∧ −1.309819 < a541 < 1.668957 ∧ a554 <
1.277908 ∼ 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 )

1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 (S = 0.62, J = 0.9) over the false
positives. Light green: rocks, correctly identified by the

network.

5.5. Redescription-based interpretations

Regarding interpretations, each redescription comes with885

the neurons implied in the decisions. In addition, their
activation levels are supplied as well as their numeros.
End-users can thus check whether explanation patterns
are captured using a complex setting or not, i.e., whether
numerous or few neurons are implied. Activation levels890

also indicate whether corresponding features are ampli-
fied or inhibited by the network. These features can be
precisely identified thanks to the numeros of the neurons.
Since the latter are located at layer 4○ and are simply ob-
tained by stacking the 1D vectors extracted by layer 3○,895

we get 9∗64 = 576 neurons for each band, i.e., 9 temporal
components for each one of the 64 filters that are learnt.
Using the numero of a neuron, it is thus possible to identify
the filter it originates from and the temporal component
it represents.900

For classes Pasture and Urban Area, all redescriptions
contains 4 neurons which is the maximum number of neu-
rons set for redescriptions extraction. Their complexity is
thus equivalent. According to the redescriptions presented
previously, B2, B3, and B4-based features are mostly in-905

hibited for class Pasture with activation levels close to 0,
ranging from −1.66 to 1.90. On the contrary, B8 features
are negatively amplified, up to level −7.78, and NDWI
features are mostly positively amplified, up to level 8.46,
which is expected when dealing with vegetation. For class910

Urban Area, all features tend to be inihbited with acti-
vation levels ranging from −1.92 to 2.41, except a NDWI
one that is amplified up to a value of 10.38, the highest ac-
tivation level reported so far. The corresponding pattern
expresses a continuous absence of water. In other words,915

low NDWI levels are amplified to detect urban areas, which
is also coherent when processing such a class.

6. Discussion

6.1. On the type of network that can be considered with
PM4X920

As explained in Section 4.2, X-DSLCC, including its
input variables, is designed to get, for each channel, 1D
tensors that resemble as much as possible GFS-patterns,
the latter being also extracted from each channel sepa-
rately. Redescriptions are thus built from these 1D ten-925

sors, once stacked, for each channel separately. Final clas-
sification layers are not considered for redescription mining
since a single neuron can merge the information of several
tensors originating from a same channel and/or different
channels. If alternative input variables or model structures930

were to be considered, then either some features are de-
signed to match GFS-patterns, as was done for X-DSLCC,
and redescriptions could still be extracted, or no features
are intended to be similar to GFS-patterns and redescrip-
tions should not be considered.935
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Figure 23: Land cover map produced by X-DSLCC.
Color legend in Figure 2.

6.2. On classifying unlabelled data
Like any classifier that is assumed to be general, X-

DSLCC can label undefined areas. Since attention weights
are computed at inference time, they can be provided for
each pixel. As for redescriptions, since they are deter-940

mined for a classifier that is general, they are assumed to
be general as well. They can therefore be mobilised for
interpretations and explanations, which can be done by
simply checking whether or not they hold for each pixel,
i.e., by verifying whether neural activation level conditions945

are met and GFS-patterns are present in the input data.
Examples of such inferences are generally not provided by
LCC papers, since commenting on them without any ex-
ternal, and thus objective reference is questionable. Never-
theless, an outlook is here proposed to show that attention-950

based and redescription-based explanations are also handy
when dealing with unlabelled data. It is based on the Saint
Denis airport area as it is a more diverse scene than the
one of la Plaine des Cafres. This area and the ground truth
polygons it includes are visible in Figure 4. The land cover955

map produced by X-DSLCC is shown by Figure 23. As
can be observed, quite homogeneous and plausible zones
are exhibited though it seems, without certainty, that some
wooded areas are detected as orchards. If class urban area
is to be studied, then one can first look at the attention960

weights observed for band B8, i.e., the band most mo-
bilised by the network to infer this class (see Figure 5).
In terms of redescriptions, for band B8, r7 has been iden-
tified as relevant (see Figure 18). Its map, for all urban
class decisions, is shown by Figure 24. The reader is re-965

ferred to Section 5.4.2 for the interpretation of the colors
used to build such a map. As expected, the visualisation
remains the same for the areas of the learning data set
and is now available for the surrounding unlabelled areas.
Figure 24 clearly shows that r7 is valid for the airport but970

not for surrounding urban areas, which is inline with the
B8 attention map. On the other hand, redescription r8
is valid for both the airport and the surrounding areas,
as evidenced by Figure 25. Redescriptions r7 and r8 all
exhibit low level of vegetation, which is consistent with975

urban areas.

Figure 24:
B8: r7 : − 0.916848 < a24 < 0.030338 ∧ −0.503101 <

a164 < −0.109455∧−0.67026 < a420 < −0.030818∧a486 <
1.474579 ∼ 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 )

1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 (S = 0.2, J = 0.74) for urban area
predictions. See Section 5.4.2 for color interpretation.

Figure 25: NDVI: r8 : a8 < 1.921249 ∧ −1.166227 <
a534 < 2.407826 ∧ −1.309819 < a541 < 1.668957 ∧ a554 <
1.277908 ∼ 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 )

1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 (S = 0.62, J = 0.9) for urban area
predictions. See Section 5.4.2 for color interpretation.
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Since GFS-patterns are extracted in a fully unsuper-
vised manner, extracting them from unlabelled areas is
also possible. Establishing redescriptions for unlabelled ar-980

eas is thus imaginable by relating activation levels obtained
at inference time to the presence of GFS-patterns. In this
case, redescriptions would be valid for inferred classes and
not actual classes, which could lead to erroneous inter-
pretations and explanations. In addition, such an option985

is not recommended, because, 1) as stated previously, re-
descriptions extracted for the ground truth are assumed to
be general, and 2) extracting GFS-patterns and redescrip-
tions from unlabelled data would be resource consuming.

6.3. On revising the dataset and the network architecture990

according to redescriptions
Even tough this proposal is not aimed at revising the

dataset and the network in a first place, it is expected
that explanations-based insights into false positives and
negatives from redescriptions could help to revise achieve995

such tasks. These should be automated and are still open
questions. One direction is to check whether a pattern that
is usually detected for a given class is missed out by the
network for some pixels. If so, and if it generally ends later
than those of the pattern occurrences that are captured by1000

the network for the same class, then this could advocate
for convolutional filters whose temporal dimension should
be larger. In other words, the current filters may be over-
compressing the temporal information.

Going further, knowledge of both the neuron activation1005

levels with respect to the task and the redescription mining
results can provide valuable insights for the improvement
of the model architecture. A potential application exam-
ple is the process of model pruning which is commonly
applied to enhance inference speed, memory consumption1010

and computational costs by removing neurons and connec-
tions for which low activation levels are reported. In such
a context, taking into account the redescription results
can inform pruning by verifying the co-occurrence of low-
activated and non-task-relevant neurons. This also serves1015

as a safety mechanism by signaling the few but relevant
enough task-related neuron activations in order to avoid
their pruning, which would introduce inference bias, gen-
erally affecting under-represented but interesting samples.
Further, ensuring that pruning does not degrade model1020

performance could be assessed using permutation-based
methods directly applied to the layer for which redescrip-
tions are extracted. Another case study concerns the de-
tection of low model capacity, which can be addressed by
adding more neurons and layers. Redescriptions can in-1025

deed assist in identifying potentially conflicting rules in-
volving similar neurons and narrow activation levels thus
encouraging the expert to increase model capacity. Com-
plementarity with task conflict detection performed in the
training step such as done by [46] is therefore worth inves-1030

tigating.
Finally, with regard to the revision of the dataset, a

straightforward direction is to point out classes for which

the redescription cover is low due to a lack of learning
examples or the intraclass variability, thus suggesting to1035

enrich the training dataset appropriately.

6.4. On establishing the temporal preferences of the net-
work

The preference of a network for specific temporal im-
ages or phenological characteristics of crops could be as-1040

sessed by checking all occurrences of all symbols of the
redescription patterns. However, this requires a defini-
tion of which symbol occurrences should be considered.
At present, the pattern occurrence definition only states
that the last symbol is the earliest that can be found. All1045

other symbols, as long as they occur earlier and follow
the order expressed by the pattern, can occur anywhere
in time. Should we look at the earliest ones? The lat-
est ones? The ones in between? Should it depend on the
application? This remains an open question. An alter-1050

native would be to trace back the temporal components
exploited by the network by checking the numero of the
redescription neurons. However, since these neurons are
located after temporal convolutions, the exact most impor-
tant temporal components can not be identified precisely.1055

Following the proposal of [35], an efficient last alternative
would be to incorporate a temporal attention operator in
X-DSLCC, which is a planned evolution of this network.

7. Conclusion

This paper presents an original method for explaining1060

the decisions of a CNN performing LCC based on SITS.
This method generates redescription rules, i.e. correspon-
dence rules between neural activation levels and the pres-
ence of spatiotemporal patterns in the input data. The
activation levels provide interpretations, i.e. information1065

about the functioning of the network, while the spatiotem-
poral patterns are explanations of the decisions that can be
visualized in both time and space. Although redescriptions
are extracted for each class, i.e. they are class-level expla-
nations, they can be exploited at the pixel level by checking1070

whether or not they apply to each pixel. Since they are
extracted for each channel seperately, these redescriptions
can detail the explanations provided by a channel-based
attention operator. Experiments on a Sentinel-2 SITS
show that such explanations and interpretations can be1075

used to refine channel-attention-based explanations and
understand true positives. False positives and negatives
can also be assessed by checking whether redescription pat-
terns should have been captured by the network or not. It
is anticipated that such an assessment should help end1080

users to revise the learning datasets and the network ac-
cordingly. These revision tasks should be automated and
form part of our future work directions.

Although up to 95.2% of class decisions can be ex-
plained with such a method, full decision coverage is not1085

achieved. Cross-channel redescriptions could therefore be
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considered. Furthermore, since the redescriptions are ex-
tracted using state-of-the-art incomplete data mining heuris-
tics, it is impossible to ensure that all redescriptions obey-
ing the extraction parameters are found. Besides the in-1090

completeness, and although the syntax of the redescrip-
tion is limited to very simple expressions (only conjunc-
tions, four activation levels as maximum, one pattern as
maximum), these heuristics tend to consume a lot of re-
sources in terms of CPU time and memory. One direction1095

to take to get all the results with fewer resources would be
to define activation intervals statically to get only Boolean
descriptions and rely on frequent pattern-based redescrip-
tions [35]. However, the definition of such intervals re-
mains an open question. Additionnaly, although atten-1100

tion weights are made available and the spatiotemporal
patterns captured by the network are revealed under a
p-value constraint, the degree to which the patterns are
exploited by the final classification layers is not accessi-
ble directly. Finally, the generality of the proposed ap-1105

proach is not demonstrated. The method should be eval-
uated to see check whether redescriptions provide mean-
ingful explanations regardless of the dataset and the net-
work architecture. Our future work is based on these
limitations and also includes improving the performance1110

of X-DSLCCwhile ensuring that features similar to GFS-
patterns are extracted.
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