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Abstract 

The difficulty in characterizing the complex structures of nanoporous carbon electrodes has led to a 

lack of clear design principles with which to improve supercapacitors. Pore size has long been 15 

considered the main lever to improve capacitance. However, our evaluation of a large series of 

commercial nanoporous carbons finds a lack of correlation between pore size and capacitance. 

Instead, nuclear magnetic resonance spectroscopy measurements and simulations reveal a strong 

correlation between structural disorder in the electrodes and capacitance. More disordered carbons 

with smaller graphene-like domains show higher capacitances due to the more efficient storage of 20 

ions in their nanopores. Our findings suggest ways to understand and exploit disorder to achieve 

highly energy dense supercapacitors.    

One Sentence Summary 

Local structural disorder is the primary factor for enhanced capacitance in nanoporous carbons. 
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Main Text 

Electrochemical double layer capacitors (EDLCs) are a class of supercapacitor energy storage 

devices with superior power performances and longer cycle lives than batteries (1, 2). The most 

commonly studied and cheapest EDLCs contain activated carbon electrodes formed from disordered, 30 

graphene-like sheets that form a porous network with a distribution of pore sizes (3). In order to 

improve the energy densities of these devices closer towards those of batteries, many studies focus 

on varying the structure of the nanoporous carbon electrodes (4) so as to tune the carbon pore size 

(as measured by gas sorption). While early studies of titanium carbide-derived carbons (TiC-CDCs) 

with different pore sizes (3, 5, 6), as well as studies of activated carbons (7), which are the most 35 

commonly used electrode materials in commercial supercapacitors, reported a maximum 

capacitance as the carbon pore sizes were decreased towards the size of desolvated electrolyte ions 

(3, 5-7), more recent studies have generated contradictory results. For example, a lack of correlation 

between capacitance and pore size across a collection of porous carbons with pore sizes ranging 

from 0.7 to 15 nm in a standard NEt4BF4 in acetonitrile (ACN) electrolyte, including 22 microporous 40 

activated carbons from different precursors, TiC-CDCs, and 6 mesoporous carbons was reported (8).  

Further studies also observed a lack of correlation between the pore size and capacitance (9-11), 

with only a modest increase of 17% observed for pores around 0.75 nm from computational 

investigations (12). These contrasting results have led to unclear design principles for improving 

EDLC electrodes and suggest that an additional unknown structural variable impacts the capacitance.  45 

 

Over the past decade, solid-state nuclear magnetic resonance (NMR) spectroscopy has emerged as 

a probe of both the local chemical structure of EDLC electrodes, as well as their charge storage 

mechanisms (13-16). NMR spectra of carbons saturated with electrolyte reveal separate resonances 

for “in-pore” ions (adsorbed in the carbon nanopores) and “ex-pore” ions (located outside the carbon 50 

pore network). The in-pore resonance appears at lower chemical shifts than the corresponding neat 

electrolyte due to the “ring currents” generated by the circulation of delocalized π-electrons in the 

aromatic carbon rings in the applied magnetic field (17). This effect is quantified by the Δδ value, 

which is defined as: 

∆𝛿 (𝑝𝑝𝑚) = 𝛿𝑖𝑛−𝑝𝑜𝑟𝑒 − 𝛿𝑛𝑒𝑎𝑡 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 (1) 55 



where 𝛿𝑛𝑒𝑎𝑡 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 is the chemical shift of free electrolyte and 𝛿𝑖𝑛−𝑝𝑜𝑟𝑒 is the chemical shift 

of “in-pore” resonance. 

 

The magnitude of the Δδ value is a measure of the strength of the ring current effect and is therefore 

a powerful probe of the local structure of the nanoporous carbon, and the “ordered domain size” 60 

(18), i.e., the average size of the graphene-like fragments that form the carbon pore walls (18). Our 

previous study showed that carbons prepared at lower synthesis temperatures have Δδ values of 

smaller magnitude due to their smaller ordered domain sizes and more disordered local structures 

(18). The carbon pore size also impacts the magnitude of Δδ, though to a lesser extent, with carbons 

with smaller pore sizes giving rise to Δδ values of larger magnitude (19). Our lattice simulation 65 

method enables the extraction of ordered domain sizes from Δδ values by accounting for pore size 

effects, as well as effects from preferential adsorption of the probe molecules on the carbon surfaces 

(20, 21). The Δδ value measured by NMR spectroscopy is emerging as a probe of structural disorder 

in nanoporous carbon structures (18, 22).  
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Impact of Porosity on Capacitance 

Ten commercially available nanoporous carbons from a range of suppliers were initially selected 

(see Methods). Analysis of gas sorption data revealed that five had very similar pore size 

distributions (Fig. 1A, fig. S1, fig S2) and similar specific BET define surface areas (1694-1821 

m2/g, table S1), so these were selected to test whether factors beyond porosity impact capacitance. 75 

Despite the similarity in pore size distributions, these five carbons exhibit significantly different 

capacitance values with a standard NEt4BF4 in acetonitrile (1 M) electrolyte, with values ranging 

from 138 F/g to 83 F/g (Fig. 1B, figs. S3-S5). Measurements at different charging rates (fig. S6), as 

well as the measurements with ionic liquid electrolytes (fig. S7), revealed similar results, with ACS-

PC and SC-1800 displaying the highest capacitances and PW-400 displaying the smallest 80 

capacitance. Together, these findings suggest that factors beyond pore size and specific surface area 

impact capacitance.  

 

To explore the impact of porosity further, three commercial activated carbon cloths (ACCs) with 

significantly different pore size distributions and BET surface areas were studied (Fig. 1C, table S1). 85 

These materials demonstrate similar capacitance values, within a range of ~9 F/g (Fig. 1D), 

suggesting a minor impact of porosity on capacitance for these materials. Combining these results 

together with a wider series of nanoporous carbon samples including thermally annealed samples 

(see below, and Methods), no obvious correlation is observed between capacitance and average pore 

size (Fig. 1E), nor BET surface area (Fig. 1F), suggesting that structural features other than pore 90 

size and surface area may govern the capacitance. Finally, oxygen content from X-ray photoelectron 

spectroscopy (XPS) measurements also did not show a clear correlation with capacitance (fig. S8, 

table S2). 



 

Fig. 1: Relationship between porosity and capacitances for the studied carbons. (A) Pore size distributions of 95 

five commercial nanoporous carbons calculated based on quenched solid density functional theory analysis (slit pore 

model) of N2 isotherms at 77 K (fig. S1) (23). (B) Gravimetric capacitance of four activated carbons measured at 

0.05 A/g in 1 M NEt4BF4 (acetonitrile, ACN), error bars represent the standard deviations of repetitive cells (see fig. 

S4 for data with faster charging currents) (See table S3 for a full list of electrode masses). (C) Pore size distributions 

of three activated carbon cloths. (D) Gravimetric capacitance of three activated carbon cloths measured at 0.05 A/g 100 

in 1 M NEt4BF4 (ACN), (E) Relationship between gravimetric capacitance and average pore size of the studied 

carbons, and (F) Relationship between gravimetric capacitance and BET surface area, in addition to the series of 8 

commercial carbons. BET surface areas are for carbon powders, rather than film electrodes which also contain PTFE. 

The latter showed a decrease in BET surface area of ~12% relative to the powder (fig. S2). In (E) and (F), data are 

also shown for thermally annealed ACS-PC and EL-104 samples, see later and Methods.   105 



Impact of Local Structural Disorder on Capacitance 

As the porosity data fails to explain the wide variations in capacitance, we developed an NMR 

spectroscopy assay to probe local structural order and its impact on capacitance (Fig. 2). MAS 

(magic angle spinning) NMR spectra of the studied electrolyte-saturated carbons contain at least 

two resonances as expected (Fig. 2A). The left-hand resonances, with a similar chemical shift to 110 

neat electrolyte are assigned to “ex-pore” anions, including sharp components (free electrolyte) and 

broad components undergoing exchange with the in-pore environments (16, 24). Importantly, the 

right-hand resonances are assigned to “in-pore” anions, as in previous work (13-15, 18). The NMR 

spectra of the electrolyte-saturated carbons show significant differences, particularly in terms of the 

Δδ values (table S4, see fig. S9 and S10 for discussion of linewidth and intensity effects). We 115 

initially hypothesized that the ion adsorption capacities measured by NMR might correlate with 

capacitance, but a clear correlation was not found (fig. S10). 

 

However, a correlation is observed between the capacitances and the Δδ values (Fig. 2B, and figs. 

S9, S11-S15), with carbons possessing Δδ values of smaller magnitude showing higher capacitances. 120 

The measured Δδ values are consistent irrespective of the choice of the nucleus probed (fig. S16); 

i.e., they represent nucleus independent chemical shifts. The Δδ values are therefore indicative of 

the different structures of the carbons, rather than any specific interactions between the carbons and 

the studied ions. The correlation of capacitance with Δδ was also observed for ionic liquid 

electrolytes (fig. S17). The observed correlations are striking given that the carbons were selected 125 

from six different independent suppliers and are thus very likely synthesized by a range of different 

processes/conditions. Since previous studies showed that Δδ values are dominated by domain size 

effects (rather than pore size effects) for predominantly microporous carbons (18, 19), our results 

further suggest that carbons with smaller ordered domains give rise to higher capacitances. 



 130 
Fig. 2: Characterization of local structural disorder and its correlation with capacitance. (A) 19F MAS NMR 

spectra (9.4 T, 5 kHz MAS) of the studied carbons soaked with 1 M NEt4BF4 (ACN). (B) Correlation between 

gravimetric capacitance and 19F Δδ values derived from a), with the in-pore chemical shifts taken as the weighted 

average for carbons showing multiple in-pore environments. (C) Correlation between gravimetric capacitance and 

19F Δδ values of thermally annealed ACS-PC and EL-104 samples. (D) Correlation between gravimetric capacitance 135 

and 19F Δδ values for commercial carbons and thermally annealed carbons, with CDC data also added from previous 

literature (3, 18). (E) Correlation between gravimetric capacitance and calculated ordered domain size of the studied 

carbons. (F) Comparison of X-ray PDF plots between two selected carbons: SC-1800 and PW-400. Capacitance 

values are from constant current charge-discharge measurements at 0.05 A/g in 1 M NEt4BF4 (ACN). 



To test this hypothesis ACS-PC, the most disordered nanoporous carbons in our series, was 140 

thermally annealed at a range of temperatures in argon (see Methods). We hypothesized that thermal 

annealing would increase structural order in the carbon (25), leading to carbons with larger 

magnitude  values and smaller capacitances. Importantly, gas sorption results were first 

performed and confirmed that there were minimal changes in the carbon pore structure upon thermal 

annealing (fig. S18), while XPS measurements revealed a decrease in oxygen content upon 145 

annealing (fig. S8). For higher thermal annealing temperatures,  values increase in magnitude as 

hypothesized, consistent with the formation of carbons with larger ordered domains (Fig. 2C). 

Furthermore, this increase in structural order was accompanied by a clear decrease in capacitance 

as hypothesized (Fig. 2C, figs. S3-S6). In addition, EL-104, one of the more ordered carbons in our 

series, was thermally annealed to explore even more strongly ordered carbon structures (Fig. 2C). 150 

Increases in structural order observed by NMR again led to decreases in the capacitance, although 

less significantly than for ACS-PC, suggesting a limit of lowering the capacitance by increasing the 

ordered domain sizes for this connected pore system. The consistent observations on annealed 

carbons further support the hypothesis that it is the local structural disorder that governs the 

capacitance, rather than pore size (Fig. 2D vs. Fig. 1E), with more disordered carbons with smaller 155 

ordered domains having higher capacitance. Similar correlations were observed for both gravimetric 

and volumetric capacitances (fig. S15). 

 

To further test whether the structural disorder correlates with capacitance, a reported NMR 

simulation approach was applied to predict the correlation length associated with the size of the 160 

ordered aromatic carbon domains (Fig. 2E, see Methods) (18, 20). This simulation approach 

accounts for the experimental pore size distribution and the strength of the ion-carbon interactions; 

the NMR chemical shifts are then modelled using model polyaromatic hydrocarbon fragments 

separated by distances governed by the pore size distribution (see Methods). These simulations 

support the idea that carbons with smaller calculated ordered domain sizes generally have higher 165 

capacitances (Fig. 2E). X-ray pair distribution function (PDF) patterns of the studied carbons 

supported the findings from NMR spectroscopy (Fig. 2F). Comparing the X-ray PDF patterns of 

SC-1800 (small Δδ value, high capacitance) and PW-400 (large Δδ value, low capacitance), we find 

that the SC-1800 has a more rapid decay of the pairwise C-C correlations (18), consistent with the 



smaller domain sizes and/or more the disordered local structure of SC-1800. X-ray PDF results for 170 

the other carbons yielded similar results (fig. S19), with a quantitative analysis of the decay rates 

lending additional support that structural disorder is correlated with capacitance. (fig. S20-S24, table 

S5). 

 

These findings may help to resolve the previous contradictory reports on the impact of carbon pore 175 

size on capacitance (3, 6-12). A master plot of our measured  values including literature values 

for TiC-CDC materials is shown in Fig. 2D. TiC-CDC-600 (i.e., a sample prepared at 600ºC) 

exhibits a large capacitance and a small  value, while TiC-CDC-1000 has a low capacitance and 

large  value. This is consistent with a more disordered structure for TiC-CDC-600, as is well 

known from molecular simulation work (26, 27) and conductivity measurements (3, 28) that showed 180 

an increase in structural order as the synthesis temperature was increased. We therefore hypothesize 

that carbon disorder was the main factor giving rise to previously reported “anomalous” increase in 

capacitance for samples prepared at low temperature, although we cannot completely rule out a 

contribution from porosity, given the narrow pore size distribution of CDCs (3). More generally it 

is possible that the impact of structural disorder has been overlooked in a range of studies on 185 

capacitance, and structural disorder should be controlled as far as possible in any study of pore size 

effects. 

 

Summarizing, our results evidence the idea that disorder in the carbon electrode leads to higher 

capacitance. While the capacitance data in Fig. 2 is for a slow charging rate of 0.05 A/g, very similar 190 

results were obtained at a faster charging rate of 1 A/g (fig. S6). ACS-PC (a highly disordered carbon) 

was recorded to have a higher capacitance than the more ordered carbon, EL-104, at the very high 

charging rate of 10 A/g, despite the slightly poorer capacitance retention as a function of current for 

ACS-PC (fig. S6D). Finally, we note that increased disorder may lead to poorer cell cycling stability, 

depending on the nature of the defects (fig. S6E). The impact of structural disorder on charging rates 195 

and cell stability should be explored further in the future. 

 

  



Impact of Disorder on the Charge Compensation Mechanism 

To explore the impact of disorder on the charge storage mechanism, charged supercapacitor 200 

electrodes were studied with ex-situ MAS NMR experiments on two selected carbons with 

contrasting levels of disorder, namely PW-400 (ordered) and SC-1800 (disordered). Magic angle 

spinning was required to resolve the in-pore peaks due to the small  value for SC-1800, which 

precluded in-situ measurements. To avoid solvent evaporation during cell disassembly and rotor 

packing, we employed a 0.5 M PEt4BF4 in propylene carbonate (PC) electrolyte, and then used 19F 205 

and 31P NMR to study the anions and cations, respectively. Importantly, ex-situ NMR experiments 

demonstrated excellent reproducibility between independent electrochemical cells (fig. S25, fig. 

S26). 

 

Fig. 3: Charge compensation mechanism of two selected carbons with different local structural disorder. (A) 210 

Ion uptake of an ordered carbon (PW-400) and a disordered carbon (SC-1800) from ex-situ NMR experiments at 

different cell voltages (dashed lines were added to guide the eye). See fig. S27 for the NMR spectra and figs. S29, 

S30 for the spectral deconvolutions. (B) Ionic charge of the ordered carbon (PW-400) and disordered carbon (SC-

1800) under different cell voltages determined from the in-pore ion population differences, as well electronic charges 

measured from electrochemistry (see Methods).  215 

 

The ex-situ NMR measurements report on the number of in-pore cations and anions at different 

charging voltages (Fig. 3A, fig. S27), as well as the excess ionic charge (Fig. 3B). For both carbons, 

the anion uptake increases while the cation uptake decreases with increasing applied cell voltage for 

the positively charged electrodes, and vice versa for the negative electrodes (Fig. 3A). This suggests 220 

that both carbons store charge through an ion exchange mechanism, wherein counter ions are 

adsorbed and co-ions are expelled from the pores for both positive and negative charging (14). 



Importantly, the more disordered carbon (SC-1800) shows a greater capacity to store ions at a given 

voltage than the more ordered carbon (PW-400) (Fig. 3B). 

 225 

We propose that for carbons with smaller domains, the charges are more localized, giving rise to 

stronger interactions between ions and carbon atoms, thus leading to more efficient storage of ions 

(fig. S28) (29, 30). This capacity to store ions more efficiently leads to higher capacitance for 

carbons with smaller domains, similar to computational studies on the correlation between 

capacitance and charge compensation per carbon (29). We further hypothesize that the smaller 230 

domains may be connected with a higher concentration of topological defects (edge sites, pentagonal 

and heptagonal rings, curvature), which were previously suggested to increase capacitive 

performance (31, 32). Previous studies of hard carbons for sodium ion batteries found a more 

favorable interaction of sodium ions with edge sites and defects compared to basal planes of 

graphene-like fragments (33, 34), with the latter paper ascribing the sloping voltage seen in these 235 

systems to a pinning of the inserted electrons by the carbon defects (35). Finally, while previous 

studies suggested that carbon-ion distances decrease due to desolvation (36), we hypothesize that 

defects may drive the denser packing of ions in the carbon pores (37). 

Conclusion and Outlook 

In this study we aimed to resolve the debate on how the structure of nanoporous carbons electrodes 240 

impacts their capacitive energy storage. Electrochemistry measurements on a large series of 

commercial activated carbons showed no clear correlation between capacitance and pore size, nor 

between capacitance and specific surface area. In contrast, NMR spectroscopy experiments and 

modelling revealed a strong correlation between capacitance and electrode structural disorder for 

both the commercial porous carbons as well as their thermally annealed counterparts. Carbons with 245 

smaller ordered domains have higher capacitances, which we attribute to their more efficient storage 

of ions in the carbon nanopores. Overall, this work reveals a previously overlooked structural factor 

that determines the capacitance of nanoporous carbons. may guide the design and synthesis of 

improved electrode materials for EDLCs. 

 250 
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