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Abstract. Fetal cerebral brain magnetic resonance imaging (MRI) is
critical for the detection of abnormal brain development before birth. A
key image processing step is the reconstruction of a 3D high resolution
volume from the acquired series of 2D slices. Several types of MR se-
quences are commonly acquired during a scanning session, but current
reconstruction methods consider each sequence (or contrast) separately.
Multi-contrast techniques have been proposed but they do not compen-
sate for potential movement during the acquisition, which occurs almost
systematically in the context of fetal MRI. In this work, we introduce
a new method for the joint reconstruction of multiple 3D volumes from
different contrasts. Our method combines the redundant and complemen-
tary information across several stacks of 2D slices from different acquisi-
tion sequences via an implicit neural representation, and includes a slice
motion correction module. Our results on both simulations and real data
acquired in clinical routine demonstrates the relevance and efficiency of
the proposed method.

Keywords: MRI - Fetal Brain - Reconstruction - Multiscale latent rep-
resentation

1 Introduction

Early detection of abnormal brain development in the fetus is crucial, as fetal
cerebral brain magnetic resonance imaging (MRI) can identify these issues before
birth. Brain malformations, affecting roughly 10% of children, can lead to signif-
icant lifelong neurological disabilities. To achieve this, developing non-invasive
MRI-derived biomarkers and fetal-specific computational tools for predicting po-
tential abnormal development is crucial.

Fetal MRI exams differ from adult scans due to the need for minimal acquisi-
tion time to minimize motion artifacts from the fetus and mother. Unlike adult
scans that acquire a single 3D volume, fetal MRI relies on acquiring multiple
sets of thicker 2D slices —denoted as stacks of 2D slices— where motion can occur
between slices. A crucial post-processing step for each acquisition sequence (e.g.,
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T1-weighted, T2-weighted) is the reconstruction of a high-resolution 3D volume
—denoted as 3DHR volume— from the acquired stacks.

Most reconstruction methods [13,7,2, 1] rely on an iterative framework with
two steps: slice motion estimation, and super-resolution of a discrete recon-
structed 3DHR volume. The NeSVoR method [17], introduced the use of an Im-
plicit Neural Representation (INR) to learn a continuous function. This function
defines the association between any 3D coordinates in R? and the corresponding
intensity in the target 3SDHR volume.

Note that in all these methods, only a single type of acquisition —denoted
below as contrast is considered, while multiple sequences are commonly acquired
during a fetal MRI exam. As a matter of illustration, the protocol used for the
dHCP dataset [3] consisted of stacks of T1w slices but also T2w slices, as well
as diffusion weighted sequences. Multi-contrast reconstruction techniques, which
allow for the combination of inter-contrast information from the same anatomical
object, are therefore particularly relevant in this context.

Several multi-contrast reconstruction techniques have been proposed for brain
MRI.[14] and [10] introduced methods to improve super-resolution of an input
stack of 2D slices by incorporating fine-grained information from a different
3DHR volume of the same subject. [18] proposed the first deep-learning ap-
proach using a two-stage convolutional neural network (CNN). The first CNN
learns the reconstruction from the stacks, and the second injects information
from the other high-resolution volume.[11] introduced an INR-based method for
multi-contrast reconstruction, using the SIREN INR [15]. They reported an im-
provement of 7 dB of PSNR relative to traditional cubic-spline interpolation and
of 2 db compared to single-contrast INR for joint reconstruction of T1w and T2w
contrasts.

Other relevant works include [6,9,4,8]. It is important to note that these
methods typically address reconstruction directly from the raw k-space data
acquired by the MRI scanner. In contrast, our present work focuses on recon-
struction within the image domain (also known as super-resolution).

These techniques are however not appropriate for fetal brain MRI. The move-
ment of the fetus during scans necessitates solutions that address this issue. In
the present work, we introduce a novel method for joint reconstruction of multi-
contrast 3DHR volumes. Our method exploits the redundant and complementary
information across several stacks of 2D slices from different acquisition sequences
and incorporates a slice motion correction module.

2 Methods

Let I € RV*N» denotes the acquired stacks of slices for a given contrast, where
I;; represents the intensity of the j-th pixel in the i-th slice, Ny the number of
slices and N, the number of pixels in each slice. Let 2 C R3 the 3D physical
space in which the 3DHR volume reconstruction is performed. Our approach
is based on the reconstruction framework introduced in [17]. In that work, the
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reconstructed 3DHR volume V' is computed from a stack of slices I for a given
contrast by minimizing the following problem:

Ns
argmin Z L(I;, ;) + Ry (1)
T.V,B,C,0 5=

where the loss function £;; is defined as:

(I —Ii;)* 1 2
L. = | 2 2
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and T,V, B,C and o are the parameters to be estimated. The estimated slice I;
which is compared to the observed one I; in Equation 2 is computed as:

where M;; is a matrix modeling both the estimated rigid motion 7; of the corre-
sponding slice and a downsampling operator (related to the point spread func-
tion for a given MR acquisition), the estimated bias for this slice B;, and C; a
slice-level scaling factor. ¢; is a Gaussian noise with null mean and covariance
Ele;(z)e;(z)] = oZ(x)d(x — y) with & the Dirac function, such that the noise
variance afj can be computed as:

1771
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The second term of Equation 1 is a regularization factor for enforcing image
regularity and reducing noise, defined as:

Ry — /Q r(|[9V (@)l2)dz (5)

with 7 is the Huber (edge-preserving) loss function.

Multi-contrast reconstruction In this work, we expand the approach to
reconstruct two 3DHR volumes simultaneously, each from a different contrast.
Let consider two sets of stacks of 2D slices from two different contrasts I and J
€ RN« *New for k € {I,J} , with N,, the number of slices and N, the number
of pixels in each slice, with k € {I, J}. Our goal is to jointly reconstruct the
corresponding 3DHR, volumes V; and V.

The multi-contrast extension of variational energy for slice motion estimation
and joint reconstruction of 3DHR volumes can be written as follows:

N, N,
argmin Zﬁ(lhli) + Ry, + Z‘C(Ji;t]i) + Ry, (6)
Tr,5,V1,0,B1,5,C1,5,01,0 ;4 i—1

While both sets of 2D slices come from the same anatomical object, they repre-
sent different "perspectives" due to the use of two distinct MRI sequences. This
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can lead to variations in resolution (number of slices and pixels) and potential
movement between slices.

While Equation 6 might imply separate calculations for each parameter, our
goal is a joint reconstruction approach. To achieve this, we introduce a common
latent representation. This essentially means a single underlying description of
the anatomy (the fetal brain) to be reconstructed. This shared INR-based rep-
resentation serves as the basis for estimating all the different parameters within
a generative modeling framework, leading to a joint reconstruction of V7 ;.

Model Architecture The architecture of the proposed joint implicit net-
work is shown in Figure 1. The network is divided into two parts: a shared
multiscale latent representation and a generative modeling network. The latent
representation is computed using a hash grid encoding [12] at multiple scales for
feature extraction. To achieve this, for each position x within the 3D space, the
network first identifies eight vertices surrounding that position. It then performs
a linear combination of the feature vectors associated with these eight vertices to
obtain a representative feature vector for position z. Notably, this feature vector
simultaneously incorporates information from both contrasts and can be inter-
preted as a disentanglement module. The generative modeling network relies
on a multi-layer perceptron (MLP) that decodes the shared multiscale features
(represented by ¢(x) in Equation 7) to predict the intensities for both contrasts
at position x:

z(x) = MLPy(¢(x)) (7)
where Vi (x) and Va(z) are two distinct components of z(z). The noise for each
slice of each contrast (denoted as oy,; and oy, for the j-th voxel at the i-th slice)
is estimated using a dedicated network taking as inputs the MLP output z(z),
and a dedicated embedding e;; for the slices.

This multi-contrast approach takes advantage of data from all available ac-
quisitions to estimate the motion of each slice. This generative framework can
be seen as a unified model of a multi-contrast registration of stacks based on a
common representation of the fetal brain to be reconstructed. This ensures that
both reconstructed volumes occupy the exact same physical space.

3 Experiments and Results

Implementation details

All the hyper parameters were set as in the implementation of NeSVoR avail-
able at https://github.com/daviddmc/NeSVoR. All models were implemented
using PyTorch version 1.13.1 with CUDA 11.7 and tested on a system equipped
with a single NVIDIA RTX A2000 12GB GPU and a 12th Gen Intel(R) Core(TM)
i7-12700 CPU.

3.1 Simulated Data

As mentioned in Section 1, obtaining ground truth 3D volumes for fetal MRI
reconstruction is challenging. To address this, we designed multi-contrast simu-
lations based on the fetal dHCP atlas [16].
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Fig. 1. Overview of the joint multi-contrast reconstruction INR from a coordinate of
a slice during the training. The corresponding input = 3D coordinate can be found on
the 3DHR volumes V1 and V2.

We downsampled the Tlw and T2w 3DHR volumes from the dHCP atlas
to simulate sets of S stacks of 2D slices with a resolution of 0.5mm x 0.5mm
x F mm, where F' can be used to control for the thickness of the simulated
stack, and S the number of stacks. Each stack was sampled following a principal
orientation (axial, coronal or sagittal) and we simulated the inter-slice rigid
motion as a combination of translation in [-3mm;3mm| and rotation in [-3°; 3°].
Figure 2 shows a set of simulated stacks used in our experiments. The number
and orientation of stacks as input varies. 1 axial stack or 3 (ax, cor, sag) stacks
are inputs for the Tlw, and HR, 1 coronal stack or 3 (ax, cor, sag) stacks are
input for the T2w contrast. The simulated data can then be reconstructed using
either the mono-contrast version of NesVOR, i.e. aiming at reconstructing each
contrast 3SDHR volume independently, or considering jointly the two acquisitions
using our proposed method. Each estimated 3DHR volume is then quantitatively
compared to the original 3D volume from the atlas using the PSNR score.

Results from simulations The quantitative comparison between the mono-
contrast and the multi-contrast reconstructions is reported in Table 1, which
summarises six different experimental setups depending on stack resolution, slice
motion and number of input stacks. In the experiments reported in the first 8
lines of the table, the joint reconstruction of the T1lw is guided by the 3DHR
T2w volume without downsampling. This set of experiments is a proof of concept
of the improvement resulting from the injection of additional information from
T2w volume into the reconstruction of the T1w 3DHR, volume. The last 4 lines of
Table 1 show experiments where both T1w and T2w input data are downsampled
and contaminated by motion, to be consistent with real clinical data.

Using joint multi-contrast reconstruction leads to higher PSNR in almost
all experiments. The gain in PSNR varies from 1 to 5 dB, and is higher in
presence of motion. Figure 3 illustrates the qualitative improvement obtained in
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Fig. 2. Example of simulated data. Top: stack of axial 2D T1w slices. Middle: stack of
sagittal 2D T1w slices. Bottom: stack of coronal 2D T2w slices.

the experiment with 1 axial T1w stack with a resolution of 0.5 x 0.5 x 1.5mm
with a motion range between [-3mm;3mm| and a 3DHR T2w volume.

3.2 Real Clinical Data

We also evaluated our method on real data acquired in clinical routine. The imag-
ing protocol consisted of two different T2w sequences (contrasts): a half-Fourier
single-shot turbo spin-echo (HASTE) sequence providing good signal-to-noise
ratio with an excellent T2-weighted contrast and a TRUFISP sequence that is
highly efficient at demonstrating cortical malformation and mid-line abnormal-
ities [5]. It has to be noticed that, in this experiment, the input data consisted
only of stacks of slices with motion, as no complete 3DHR volume was available
for the method (see Figure 4 for an illustration, 3 stacks for TRUFISP and 3
stacks for HASTE). To compensate for large motions before applying NeSVoR
and our proposed method, all stacks were roughly registered using SVoRT [17].

Figure 5 shows the reconstructed 3DHR volumes for one subject (33 weeks
post-conceptional age) with 3 stacks of TRUFISP contrast with a resolution
per stack of 0.81lmmx0.81lmmx3.5mm and 3 stacks of HASTE contrast with
a resolution per stack of 0.68mmx0.68mmx3mm. The proposed multi-contrast
approach provides a real visual gain for the reconstruction of the HASTE volume
compared with the mono-contrast approach (NeSVoR) (top row), in particular
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Table 1. Quantitative comparison between the mono-contrast NesVOR and our multi-
contrast method on simulated data.

Method|T1w Res.| T1lw Num. Tiw | Tlw |T2w Res.|] T2w Num. T2w | T2w
- F(mm) of stacks Motion|PSNR| F(mm) | of input stacks |Motion|PSNR
Mono 6 1 (ax.) 0 21.8 0.5 HR 0 -
Joint 6 1 (ax.) 0 25 0.5 HR 0 -
Mono 6 3 (ax., cor., sag.)| O 27.2 0.5 HR 0 -
Joint 6 3 (ax., cor., sag.)| O 29.6 0.5 HR 0 -
Mono 1.5 1 (ax.) 3 18.6 0.5 HR 0 -
Joint | 1.5 1 (ax.) 3 | 234] 05 OR 0 -
Mono 1.5 |3 (ax., cor., sag.)| 3 34.4 0.5 HR 0 -
Joint 1.5 |3 (ax., cor., sag.)| 3 34.8 0.5 HR 0 -
Mono 6 3 (ax., cor., sag.)| 3 26.2 6 3 (ax., cor., sag.)| 3 22.6
Joint 6 3 (ax., cor., sag.)| 3 26 6 3 (ax., cor., sag.)| 3 25.3
Mono 6 1 (ax.) 3 18.8 6 1 (cor.) 3 22.5
Joint 6 1 (ax.) 3 19.3 6 1 (cor.) 3 24.6

Fig. 3. Left: T1w 3DHR volume reconstructed using mono-contrast NesVOR [17]. Mid-
dle: T1w 3DHR volume reconstructed using our multi-contrast method. Right: T2w

3DHR volume given as input to our multi-contrast method in this experiment.
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Fig. 4. Illustration of the stacks from two different contrasts from the same fetus used
in our experiment on real data. Left TRUFISP contrast. Right: HASTE contrast. Note
that since the stacks were acquired sequentially, the movements across slices can sub-
stantially vary between the two contrasts.

a reduction in artefacts and a better reconstructed cortical plate. The arrows
indicate regions where the difference is noticeable. It’s worth mentioning that this
joint approach benefits both reconstructions. The contrast in the cortex (outer
layer of the brain) in the TRUFISP reconstruction becomes clearer. Additionally,
the joint approach avoids artifacts (indicated by the red circle) that might appear
in mono-contrast reconstructions.

4 Discussion

The improvements observed in both simulated and clinical data demonstrate the
effectiveness of combining information across several contrast data acquired on
the same individual. The proposed generative modelling is based on the defini-
tion of a common multi-scale latent representation, enabling information from
the stacks of different contrasts to be merged. This approach enables more ac-
curate reconstruction of fine structures such as the cortical plate, and reduces
reconstruction artefacts. The shared multiscale latent representation is imple-
mented using a hashgrid-based INR as proposed in NeSVoR [17]|. The compari-
son with other approaches such as SIREN [15] used in [11] will be investigated
in future work.

5 Conclusion

In this work, we proposed a joint multi-contrast reconstruction method for fetal
brain MRI. A shared latent representation is used for slice motion correction and
3DHR volume reconstruction of both contrasts. Our results on both simulations
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Fig. 5. Experiment on real data acquired in clinical routine. Top: HASTE contrast.
Bottom: TRUFISP contrast. Left: mono-contrast, independent reconstruction using
NeSVoR [17]. Right: our multi-contrast method. Red arrows point to regions where the
improvements are particularly visible. Note that the joint reconstruction also improves
the TRUFISP (red circle).
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and real data acquired in clinical routine demonstrate the relevance and efficiency
of the proposed method for fetal MRI reconstruction.
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