N

N

Design and Evaluation of a Web-based Distributed Pair
Programming Tool for Novice Programmers

José Colin, Sébastien Hoarau, Christophe Declercq, Julien Broisin

» To cite this version:

José Colin, Sébastien Hoarau, Christophe Declercq, Julien Broisin. Design and Evaluation of
a Web-based Distributed Pair Programming Tool for Novice Programmers. ITiCSE 2024: In-
novation and Technology in Computer Science Education, Jul 2024, Milan, Italy. pp.527-533,
10.1145/3649217.3653571 . hal-04650483

HAL Id: hal-04650483
https://hal.science/hal-04650483v1
Submitted on 16 Jul 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04650483v1
https://hal.archives-ouvertes.fr

Check for
Updates

Design and Evaluation of a Web-based Distributed Pair
Programming Tool for Novice Programmers

José Colin
jose.colin@irit.fr
IRIT, Université Toulouse 3 Paul
Sabatier
Toulouse, France

Sébastien Hoarau
Christophe Declercq
seb.hoarau@univ-reunion.fr
christophe.declercq@univ-reunion.fr
Laboratoire d’Informatique et de

Julien Broisin
julien.broisin@irit.fr
IRIT, Université Toulouse 3 Paul
Sabatier
Toulouse, France

Mathématiques, Université de la
Réunion
Saint-Denis, France

ABSTRACT

Research on pair programming (PP) in education have shown a
number of positive outcomes for learners, and especially novice
programmers, such as enhanced learning, greater confidence in
work quality, higher problem solving skills or enhanced interaction
skills, and promotes collaborative learning. Due to these diverse
advantages, pair programming in education currently follows a
growing curve. Also, blended learning approaches are becoming
more and more popular in education, including when learners have
to learn programming. As a consequence, distributed pair program-
ming (DPP) can be considered as a good solution to support pair
programming in hybrid learning scenarios. A large number of tools
from both the research community and the major integrated devel-
opment environment (IDE) editors tried to study and implement
DPP in their tools. However, our review of literature shows that
none of them meet the requirements for delivering effective pair
programming activities to novice programmers in blended learn-
ing scenarios. Based on these findings, the paper introduces a new
DPP application especially designed for novice programmers. It
integrates, based on some requirements identified from previous
research, several features dedicated to DPP as well as other capa-
bilities supporting extensive data collection and learning analytics.
The tool has been experimented in authentic learning settings in
higher education with 82 students, both in PP and DPP conditions.
The experiment showed no evidence of a difference between PP
and DPP on the students’ perceived usability of the application, as
well as on the quality of their productions.

CCS CONCEPTS

« Software and its engineering — Pair programming; « Social
and professional topics — CS1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITiCSE 2024, July 8-10, 2024, Milan, Italy

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0600-4/24/07.

https://doi.org/10.1145/3649217.3653571

527

KEYWORDS

Computer Science Education; Distributed Pair Programming; Tool
Design and Evaluation; Novice Programmers

ACM Reference Format:

José Colin, Sébastien Hoarau, Christophe Declercq, and Julien Broisin. 2024.
Design and Evaluation of a Web-based Distributed Pair Programming Tool
for Novice Programmers. In Proceedings of the 2024 Innovation and Technol-
ogy in Computer Science Education V. 1 (ITiCSE 2024), July 8-10, 2024, Milan,
Italy. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3649217.
3653571

1 INTRODUCTION

Pair programming (PP) is known for its many benefits when used
in education. Prior works have shown multiple positive impacts
of PP such as enhanced learning, greater confidence in work qual-
ity, higher problem solving and interaction skills [9], as well as
greater student’s perceived satisfaction and enjoyment [21]. PP is
frequently studied in higher education, but research conducted on
high school students [16] and in introductory computer science
courses at the university level [31] have demonstrated its effective-
ness when employed with novice programmers.

Blended learning approaches are increasingly being employed
by educational institutions and teachers at various levels of edu-
cation. In those learning settings, distributed pair programming
(DPP) enables students to remotely engage in pair programming
activities. The effectiveness of DPP in education compared to PP
and solo programming seems to be very promising concerning
code quality, code comprehension and academic performance, as
research has shown that no difference were observed between those
programming practices [22]. However, due to the multiple chal-
lenges raised by the online component of blended learning [19],
current tools dedicated to distributed pair programming suffer from
several weaknesses such as lack of features to change roles between
students, poor support of activities management by teachers, or low
data collection preventing advanced features offered by learning
analytics.

In this paper we introduce a new tool for DPP and report on
the results of an experiment conducted in higher education with
first-year students. We explore the tool’s capacity to support DPP
over regular PP by comparing student’s perceived usability and the
quality of their productions in these two contexts. After introducing
the related work in the field of DPP, we present the tool that was
designed. Then we describe the experimental settings, the data

https://doi.org/10.1145/3649217.3653571
https://doi.org/10.1145/3649217.3653571
https://doi.org/10.1145/3649217.3653571
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649217.3653571&domain=pdf&date_stamp=2024-07-03

ITiCSE 2024, July 8-10, 2024, Milan, Italy

collected and the analysis aimed at evaluating the tool. The results
are presented and discussed, and the limitations of this work are
highlighted. Finally, we present our conclusions and outline the
main short-term perspectives focused on the design of data-driven
scaffolding tools for students and teachers.

2 RELATED WORK

The objective of this section is to identify the requirements for a
distributed pair programming application dedicated to novice pro-
grammers, according to previous findings of the literature. Existing
tools are then evaluated regarding these requirements in order to
highlight the main issues that still need to be addressed.

2.1 Distributed pair programming requirements

According to the definition by Schenk et al. [24], distributed pair
programming takes place in a virtual environment where a shared
editor is provided to the users so that all modifications of the source
code made by a participant are transferred to the other participant’s
screen. The virtual environment also ensures that only one user
can modify the source code at any time. As in traditional pair pro-
gramming, this user is called the Driver and its partner is called
the Navigator. The role of the Driver is to actively work on the
programming task by editing the source code, while the Navigator
observes and assists the Driver by providing information, suggest-
ing improvements and identifying problematic parts of the code.

Requirements for DPP tools have been discussed in prior works.
Winkler et al. [30] developed a systematic evaluation process for
DPP tools and listed different properties for such tools. In particular,
they identified several requirements with high priority. Workspace
awareness refers to the ability to know who is participating in a
DPP session, to understand the role of everyone, and to be aware
of the interactions within the shared space. Floor control relates
to the restriction on who can edit the source code. It should allow
modifications from the Driver only. Role changes provides users
with a mechanism to change their role during a DPP session. Com-
munication tools offer communication channels like voice channels
or textual chat between the participants of a DPP session. Finally,
Gesturing features help users in visualizing others’ actions on the
shared workspace. For example, the shared pointer feature allows
the cursor of one user to be visible by other participants. The shared
highlighting feature, which makes it possible for all users to see
others’ text selection, is another example of gesturing features.

In addition to these features, Schummer et al. [25] emphasized
another capability that DPP tools should implement. The Spectator
mode feature allows users to view and follow the interactions in an
ongoing collaborative session without influencing the participants
of that session. This feature is very important in a (distant) learning
context, for instance to allow a teacher to follow what is going
on during the different DPP sessions of her students. Besides, the
literature also shows that tools designed for novice programmers
require additional essential educational capabilities.

2.2 Educational requirements specific to novice
programmers

For learning how to program, it is common not to use the same
programming software as in the professional world, but rather

528

José Colin, Sébastien Hoarau, Christophe Declercq, and Julien Broisin

learning environments adapted to the needs of the learners. Our
review of literature on previous research aiming at supporting
novice programmers led us to identify a number of main require-
ments. For a long time, there have been efforts to provide beginners
with Simple interfaces in the form of basic code editors [3, 17], so
that learners can focus on computational concepts [11] instead of
struggling with complex graphic user interfaces. Also, education
tools always provide various mechanisms to manage the Pedagogi-
cal activities they are designed for and to assign students to these
activities [12]. When it comes to programming learning, program-
ming software propose very rich debugging support but they still
require too much efforts for beginners. The research community
has thus widely studied how to enhance Testing and debugging
performance [4] of novice programmers, as well as understanding
of compiler error messages [6]. Another important supporting ca-
pability of computer education tools is Tutoring, whether provided
by a human or artificial intelligence [2, 14]. Finally, more and more
educational tools stand on Data collection to enhance the support
provided to learners. These systems collect data resulting from
the interactions of users in the system to better understand their
behaviors [18, 26], predict their performance [15], or provide them
with the educational resources they need [10].

2.3 Existing systems for distributed pair
programming

A wide range of tools and applications support the distributed

pair programming activity. In this section we review the main

initiatives before exposing a synthesis of these tools regarding the

set of criteria identified in the previous sections.

2.3.1 Integrated Development Environments. Most Integrated De-
velopment Environments (IDEs) can provide DPP natively as a
feature, or by the use of extensions including Live Share for Vi-
sual Studio and Visual Studio Code, Code with me for Intellij, or
Code Together for Eclipse. These tools offer extensive features re-
garding awareness, gesturing and communication. Sometimes, they
also implement floor control. For instance, Live Share integrates
a read-only mode that prevents other users from editing the code.
However, none of these extensions enforces a strict separation of
roles between the Driver and the Navigator, like it is usually done
in traditional pair programming.

Also, IDEs are often considered unsuitable for novice program-
mers due to their complexity [13]. A study by Rigby et al. [20] tends
to show that the use of an IDE creates more frustration and less
satisfaction for novice programmers compared to a tool designed
specifically for them.

2.3.2 Web-based editors. Distributed pair programming is also
implemented in web-based tools specifically designed to support
collaborative work such as Replit, Codeshare or Codefile. These
tools offer a less complex environment than most IDEs and thus
implement a limited number of features, which is an advantage for
novice programmers. However, just like IDEs, they do not enforce
a strict separation of pair programming roles. Also, these tools
do not collect, or do not provide access to the interaction data
between the users and the system. It is thus nearly impossible for
teachers to analyze learners’ behavior and to bring them the support

Design and Evaluation of a Web-based Distributed Pair Programming Tool for Novice Programmers

Table 1: Evaluation of existing tools against educational and
DPP requirements

73 o0 1])
52 % g R
= £
SE|® EllE|lzlal 2|52
S |S| e |2 |88 |E|®| 8|88
g8 |5|2|2|5|5|5|<| 3
S| 8| s s |3l o S | g S| w| g
SlelE|2|°| 8| =5|C|E|E&|E
1) < = 3 5] 9] s 8
| @ = | £ S| 3 2]
S| | = F 21 g1 218
g ¥ | = all = -1 7 a.
A 18 | E = £l 3| &
2] O 7] o o [&]
< O
| & =
Live Share (Visual studio and VSCode) || + - | o+t ++ |+ |+ |
Code With Me(Intelli]) - ++ | - ++ T+ |+ | ++
Code Together (Eclipse) =+ | - ++ o+ |+ | ?
Replit ++ ++ ++ + |+
Codeshare ++ - + n
Codefile ++ ++ 4+
Xpairtise B e | o A I A A
XecliP ++ | - | S S A
SCEPPSys | | A | ([| || | |+

Legend: requirement fully supported (++), partially supported (+), not
supported (-), unknown (?)

they need, and for researchers to understand how programming
learning occurs. Also, none of these tools are specifically designed
for education, so they do not provide pedagogical capabilities.

2.3.3 Research initiatives. Xpairtise [25] and XecliP [28, 33] are
two Eclipse plugins designed by the research community. Both are
very complete regarding the DPP requirements identified in section
2.1, but they lack pedagogical and tutoring capabilities as they have
not been especially designed for education.

SCEPPSys [27] extends XecliP to support pair programming in
classes, and is thus much more complete in terms of educational fea-
tures. In particular, an administration panel allows teachers to man-
age learning activities and pair programming groups. SCEPPSys
also collects a wide range of data to assist the evaluation of students,
like the duration a student spends on the Driver and Navigator roles,
the amount of code produced or the usage of communication tools.
However, the data collection regarding code execution and testing
by students seems limited. Also, like Xpairtise and Xeclip, this tool
extends the Eclipse IDE, which is not suitable for beginners.

2.4 Synthesis

Table 1 summarizes the evaluation of the above-mentioned tools
regarding the set of DPP and educational requirements identified in
Sections 2.1 and 2.2. It highlights the main existing gaps that drove
the design of our application.

3 OUR APPLICATION FOR DISTRIBUTED
PAIR PROGRAMMING

This section introduces the architecture of our tool for learning
Python, and focuses on the features implementing the DPP and
educational requirements.

3.1 Global overview and technologies

The application we developed is based on web technologies to
allow easy access from any web browser, with the objective of
encouraging its use by teachers and students. The main motivating
factor in its design was the pursuit of simplicity.

The overall client-server architecture of our application and the
communications between its various components are illustrated in

529

ITiCSE 2024, July 8-10, 2024, Milan, Italy

Front end

- Editor synchrenization
- Workspace awareness
- Floor control

- Roles management

= Gesturing features

- Management of users
- Management of DPP
activities

- Group formation

BlEp My

}
xAPI | —

Web application server e

Educational AFPI ‘WebSocket Server

Figure 1: Overall architecture of our tool dedicated to dis-
tributed pair programming for learning Python.

Figure 1. The backend side comprises several NodeJS APIs mainly
dedicated to the educational features, as well as a ShareDB-based
WebSocket server providing duplex communications between the
front and the backend to implement the synchronization of the
shared editor between users and many awareness/gesturing fea-
tures. The backend side also integrates a Learning Record Store
(LRS) compliant with the xAPI standard to store data resulting from
the interactions between the users and the application. This compo-
nent has been developed with NodeJS and stands on MongoDB for
the database, but some works are in progress to use the TraxLRS
system instead of this home-made store.

We implemented the frontend using React]S. Also, it is important
to note that the frontend embeds Pyodide as a Python interpreter
running inside the web browser, thus bringing scalability of the
application by minimizing the load of the server.

3.2 Distributed pair programming features

The application user interface implementing the DPP requirements
is illustrated in Figure 2. It comprises 5 main components.

The shared editor (Component 1 in Figure 2) contributes to the
workspace awareness, as it is synchronized between all members
of the same DPP session to allow everyone to see the same source
code. It also implements two important gesturing features: the
shared pointer and the shared text highlighting use colors to iden-
tify the different users. Finally, this component implements floor
control, as only the user with the Driver role can edit the source
code; the other participants of the session have read-only access to
the code. The objective of the code written by the students in the
shared editor is to solve the problem exposed in Component 3.

Component 4 enhances the workspace awareness by showing
the users currently connected to the DPP session, and associates
them with a color. That color is then used by other visual elements
associated with this user; for instance, the color associated to a
user matches with the color of her cursor in the shared editor. Also,
Component 4 shows the user currently in the Driver role through
a specific icon (i.e., a pencil). Finally, when a teacher creates an
activity (see the next section), she is automatically granted permis-
sion to join the DPP session of all pairs of students registered for
that activity. When the teacher connects to a specific DPP session
with students, her name also appears in Component 4. This ensures
the integration of the spectator mode into our application and

ITiCSE 2024, July 8-10, 2024, Milan, Italy

Activity 1

Write a function <= to swap 2 values of a given array.

For example :

should give the following result :

Student 1 e

6 Ask edition rights

Student2 2

Figure 2: The application user interface dedicated to the DPP
requirements.

contributes to the tutoring requirement, as teachers can be aware
of the difficulties students face and provide the appropriate support.

Component 5 is dedicated to role changes, and allows users in
the Navigator role to request a switch towards the Driver role. The
current Driver then receives a notification of the request, and has
the opportunity to accept or reject it. According to the request’s
response, the role switch occurs or not.

Finally, this user interface implements the code testing edu-
cational requirement through the Python console of Component
2. Each user has its own console which is not shared to the other
participants of the DPP session. It allows participants of a session
to execute the whole Python code written in the shared editor and
run any Python commands to test the code. The other educational
requirements are offered through other artifacts and user interfaces
described below.

3.3 Educational features

The educational features are mainly implemented on the backend
side of the application through two APIs.

The first API is dedicated to the management of pedagogical
activities. It ensures the creation, modification and deployment of
pair programming activities consisting of (i) a problem to be solved
specified by the teacher, and (ii) a list of pairs of students. This API is
available to teachers through a user interface illustrated in Figure 3.
It shows the Markdown editor to specify the problem statement,
and a form to set up the pairs of students. It is the responsibility of
the teacher to choose how to form these pairs. Once the activity is
created, the teacher can share a specific link to her students. When
they access this link, the system starts a specific session of the
activity for each pair of students, and assigns the Driver role to the
first of the two students connecting to the activity.

The other API is responsible for data collection. It gathers data
from both the client and the server sides, formats the data according
to the xAPI standard [32], and stores the resulting statements into
a the learning record store (see Figure 1). We adopted the xAPI
format as it is widely used in the Technology Enhanced Learning
community, thus allowing for rich analysis of the students’ behavior

530

José Colin, Sébastien Hoarau, Christophe Declercq, and Julien Broisin

Modify activity X
Instructions

Activity 1

Wirite a function suzp to swap 2 values of a given array.
For example :
34, 12, 23, 57

should give the following result

Modify instructions

Groups

Users

Add a group

Student 1

Student 5

Student 6

Student 2

Student 7

Student 3

Student 4

Figure 3: The teacher user interface dedicated to the creation
of a pair programming activity.

combining both, actions performed within our application, as well
as those performed within other education tools such as learning
management systems. We collect seven types of xAPI statements:
connection and disconnection to a session, role switch requests
and responses, source code writing, code execution (including the
result of the execution), and interactions with the Python console.
All statements comprise, among other data, a timestamp and the
user that performed the action. Therefore, by processing those
statements, it is possible to model the whole sequence of interac-
tions that occurred during a DPP session. The goal behind this data
collection is to design dashboards based on indicators such as the
time spent or the amount of code produced by students, but also
to propose more complex features such as (intelligent) tutoring
capabilities supporting both the teachers and the students in their
respective tasks.

In summary, our application integrates features for each of the
DPP and educational requirements identified in Section 2, excluding
the Communication tools requirement. Indeed, for a first version
of the application, we assumed that audio and video conference
software such as Discord, Zoom or Teams were sufficient.

4 EXPERIMENT AND EVALUATION METHODS

Our DPP application has been experimented in authentic learning
settings, with the objective of assessing the students’ perceived
usability on the one hand, and the quality of their productions in
different conditions on the other hand.

4.1 Experimental setup

The experiment involved 82 first-year students from the Université
de la Réunion, in the context of a beginner Python programming

Design and Evaluation of a Web-based Distributed Pair Programming Tool for Novice Programmers

course (CS1). It was distributed over two weeks, and each week
comprised one hands-on lab session of one hour. In both weeks,
students were asked to solve exercises about the concept of two-
dimensional list; the exercises were different for the two learning
sessions. Let us note that students were not trained on the applica-
tion before the experiment; the teacher just briefly introduced the
application the first week, and required the students to use it. As
student were novices programmers, they had little or no previous
experience with PP.

We proposed two experimental conditions to assess our appli-
cation: the traditional pair programming and the distributed pair
programming conditions. In the former condition, a single com-
puter was used and the students were seated next to each other.
In that experimental condition, a single access code was assigned
to the pair of students so they could connect to the application.
Instead, in the DPP condition, each student of a pair had access to
a computer, and they were both connected to the same activity ses-
sion. They were free to change roles between Driver and Navigator.
In that experimental condition, students of a pair were also seated
next to each other in the classroom so that they could talk. How-
ever, they could not see their partner’s screen, hence reproducing a
setting close to what two remote programmers can experience in
DPP using a communication tool.

The first week involved 26 pairs of students (Group A) in the
DPP condition and 15 pairs of students (Group B) in the PP con-
dition. As we wanted that each pair of students experienced the
two experimental conditions, students of Group A were assigned
to the PP condition in the second week of the experiment, while
students of Group B were assigned to the DPP condition. The pairs
of students remained unchanged between the two weeks. As all
participants were exposed to identical conditions, this experimental
design enabled us to isolate the potential effects of other factors
that characterize students and could potentially influence their
performance. This was particularly important as we lacked prior
information about the participants.

4.2 Data collection

Both the students’ perceived usability of the application and the
quality of their productions were evaluated on the basis of quanti-
tative data.

To assess the students’ perceived usability of the application, all
students were asked to answer the System Usability Scale (SUS)
questionnaire [7] after each hands-on lab session. Students thus
gave their perceived usability of the application in both PP and DPP
conditions. The SUS is recognized as a quick and reliable tool to
assess the user’s perceived usability of a system [8]. Also, previous
studies have shown that it is a valid and reliable instrument to assess
web applications [29]. This questionnaire comprises 10 statements,
and the respondent gives her level of agreement on the basis of a
5-point Likert scale. The SUS score of each respondent is then calcu-
lated according to [7], and the final score corresponds to the average
of all respondents’ scores. It ranges from 0 to 100, where higher
scores indicate better usability. To add to the general questions of
the SUS questionnaire, we delivered to the students in the DPP con-
dition a questionnaire related to the main features of the application.
The questionnaire is available online at recherche.data.gouv.fr. It

531

ITiCSE 2024, July 8-10, 2024, Milan, Italy

Table 2: Mean, SD and median of the SUS score in both groups
of students, for each week of the experiment.

Mean SD Median
Group A Week 1 (DPP) 67.97 14.99 67.5
(N=37) Week2(PP) 69.19 1633 70
GroupB Week 1 (PP) 6347 1315 675
(N=18) Week2(DPP) 65 1096 66.25

comprises four statements associated to a 5-point Likert scale agree-
ment. The four statements respectively tackled the partner’s cursor
visualisation (S1), the Python console (S2), the distribution of the
roles within the pair (S3), and the mechanism for switching roles
(S4). We also delivered an open-ended question asking what other
features students would like to be integrated in the application.

To assess the work achieved by the pairs of students, we collected
the whole set of their productions. More precisely, for each pair of
students and each week of the experiment, we collected the final
version of their source code, that is the source code they left when
disconnecting from the application. These productions were then
evaluated on a scale from 0 to 5 by a single researcher in computer
science, to avoid disparities in student grading.

4.3 Data analysis

The mean, standard deviation and median of the SUS score were
calculated for each group of students, so as to compare their per-
ceived usability in the traditional pair programming condition ver-
sus the distributed pair programming condition. Also, to investigate
whether or not there was an evidence of a statistical difference in
terms of perceived usability between the two experimental condi-
tions, we ran a paired t-test for each experimental group. To get
more insights on the DPP features, we computed the mean, stan-
dard deviation and median of the Likert-scale questions delivered
to students in the DPP condition.

To assess the quality of learners’ productions, we compared
the mean, standard deviation and median of the students’ grades
in the two experimental conditions. However, in contrast to the
assessment of the perceived usability, our analysis were carried
out independently for each week of the experiment because the
activities were different over the two weeks. We considered that
comparing the grades of the two groups on the same programming
task ensures a fair comparison. For that reason, we used an inde-
pendent t-test, to investigate whether or not there was a significant
difference on the quality of students’ productions between the 2
groups on each week.

5 RESULTS AND DISCUSSION
5.1 Perceived usability

The results of the SUS questionnaire are based only on students
who completed the questionnaire each week, i.e., who experienced
the two experimental conditions. We collected 37 responses from
Group A, and 18 from Group B. Results appear in Table 2.
Regarding Group A, the mean scores of the SUS are very similar
in both experimental conditions, indicating a slight increase in the

https://doi.org/10.57745/BZL832

ITiCSE 2024, July 8-10, 2024, Milan, Italy

Table 3: Mean, SD and median of the responses to the ques-
tionnaire delivered only to the students in the DPP condition.

Group A (N = 32) Group B (N = 15) Group A and B
Mean SD Median Mean SD Median Mean SD Median
S1 359 132 4.0 373 1.29 4.0 3.64 131 4.0
S2 3.78 1.11 4.0 347 115 4.0 3.64 113 4.0
S3 3.84 1.12 4.0 373 0.85 3.0 3.81 1.04 4.0
S4 3.63 1.36 4.0 4.07 0.85 4.0 377 1.24 4.0

PP condition (score = 69.19) compared to the DPP condition (score
= 67.97). Regarding Group B, the scores are lower: 63.47 in the
PP condition, and 65 in the DPP condition. According to [5], the
application has been qualified as "OK" by both groups of students.

For the questionnaire administered exclusively to students in
the DPP condition, we obtained 32 responses from Group A and 15
from Group B. The results given in Table 3 are aligned with those
of the SUS questionnaire. Students of both groups homogeneously
assessed the DPP features of the application, the results indicating
that students tend to "agree" that each feature fulfill its objective.
Among the 47 answers to the open-ended question, 6 students asked
for the integration of a chat, which highlights the need for textual
communication even when students can communicate orally.

Those results are encouraging for several reasons. First, the av-
erage SUS score for Group A, which comprises more students than
Group B, is 68.58. It is near the "Good" threshold (i.e., 71 according
to [5]), and just above the average SUS score for web applications
(i.e., 68.05) according to previous research based on an empirical
evaluation of 1180 existing SUS survey results [1]. Second, results
show that in both groups, the mean SUS score increases between
the first and the second week of the experiment. We assume that
if the students had been trained before the experiment, the mean
SUS scores would have reached higher values. This hypothesis is
confirmed by 3 students who answered in the open-ended question
of the second questionnaire that they would have liked some help
to understand the interface and the console. Third, the results of the
paired t-tests show no evidence of a difference in the SUS scores be-
tween both experimental conditions in Group A (¢t = 0.67, p = 0.50),
as well as in Group B (¢ = 0.46, p = 0.64). These results suggest that
using the tool in distributed pair programming condition has no
negative impact regarding students’ perceived usability compared
to using it in traditional pair programming condition.

5.2 Quality of students’ productions

Table 4 gives the results of the analyses of student pairs’ productions.
In both weeks, student pairs in the DPP condition achieved higher
grades compared to those in the PP condition. This tendency is
particularly noteworthy during the second week of the experiment.
This is attributed to the increased difficulty of the programming
task that week, where 10 pairs of students in Group A invested too
much time thinking on the solution without success.

However, these results are tempered by the findings of the inde-
pendent t-tests, which show no evidence of a difference in grades
between the two experimental conditions in both week 1 (¢t = 0.44,
p =0.66) and week 2 (t = 1.81, p = 0.08). Nevertheless, they once
again suggest that working in a DPP condition had no negative

532

José Colin, Sébastien Hoarau, Christophe Declercq, and Julien Broisin

Table 4: Mean, SD and median of the grades of the student
pairs’ productions, per week and for each experimental con-
dition.

Mean SD Median
Week 1 DPP (Group A, 26 pglrs) 257 102 2.25
PP (Group B, 15 pairs) 243 0.89 2.0
DPP (Group B, 15 pairs) 2.23 1.70 2.0
Week2 pp (Group A, 26 pairs) 129 148 05

impact on the students’ programming achievement, compared to
the traditional PP condition.

6 LIMITATIONS

The main limitations of the presented work are related to the exper-
iment. Concerning the DPP experimental condition, we aimed to
replicate the experience of two learners engaged in remote learning.
However, this condition was not genuinely ’distributed” because the
pairs of students were seated next to each other. Other experiments
in real remote settings, using DPP in MOOCs for example, are re-
quired to strengthen the results presented in this paper. Also, we
collected a limited number of answers for the two questionnaires,
making it difficult to strongly emphasize the features requiring
improvements and/or to identify the need for new features. To fa-
cilitate those large scale experiments and collect a greater amount
of data, we will improve the hosting of the application which is cur-
rently deployed on a single virtual machine of our lab, and extend
the use of our tool to other institutions and high schools.

7 CONCLUSION AND FUTURE WORKS

This paper proposes a new distributed pair programming appli-
cation dedicated to novice programmers. It implements all the
required features identified through our review of literature, ex-
cluding a communication tool. The experiment we conducted us-
ing the presented tool in distributed pair programming condi-
tions shows no evidence of a negative impact in terms of students’
perceived usability and quality of their productions, compared
to using it in traditional pair programming conditions. All the
anonymized data collected during the experiment are available on-
line at recherche.data.gouv.fr for replication of this study and/or
further research by the community.

On the basis of the data collected by the application, our future
works will first focus on tutoring. Indicators related to both the
individual and collective engagement will be designed. For students,
being aware of their individual participation rate within a pair could
help them balance their overall participation [23], while the level of
activity of each pair should help teachers to intervene accordingly.
Second, we plan to explore automatic pair formation. Indeed, re-
search suggest that pair compatibility is often not analyzed in pair
programming studies [21, 22]. Finally, we plan to release the appli-
cation as open source to allow teachers to use it in other contexts,
as well as researchers to contribute to its improvement.

https://doi.org/10.57745/BZL832

Design and Evaluation of a Web-based Distributed Pair Programming Tool for Novice Programmers

REFERENCES

[1] Philip T. Kortum Aaron Bangor and James T. Miller. 2008. An Empirical Evalu-

[2

[

ation of the System Usability Scale. International Journal of Human—Computer
Interaction 24, 6 (2008), 574-594. https://doi.org/10.1080/10447310802205776
Umair Z Ahmed, Nisheeth Srivastava, Renuka Sindhgatta, and Amey Karkare.
2020. Characterizing the pedagogical benefits of adaptive feedback for com-
pilation errors by novice programmers. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering Educa-
tion and Training. Association for Computing Machinery, New York, NY, USA,
139-150.

Eric Allen, Robert Cartwright, and Brian Stoler. 2002. DrJava: a lightweight
pedagogic environment for Java. SIGCSE Bull. 34, 1 (feb 2002), 137-141. https:
//doi.org/10.1145/563517.563395

Pasquale Ardimento, Mario Luca Bernardi, Marta Cimitile, and Giuseppe De
Ruvo. 2019. Reusing bugged source code to support novice programmers in
debugging tasks. ACM Transactions on Computing Education (TOCE) 20, 1 (2019),
1-24.

Aaron Bangor, Philip Kortum, and James Miller. 2009. Determining what indi-
vidual SUS scores mean: Adding an adjective rating scale. Journal of usability
studies 4, 3 (2009), 114-123.

Brett A. Becker. 2016. An Effective Approach to Enhancing Compiler Error Mes-
sages. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education (Memphis, Tennessee, USA) (SIGCSE ’16). Association for Comput-
ing Machinery, New York, NY, USA, 126-131. https://doi.org/10.1145/2839509.
2844584

[7] John Brooke. 1996. Sus: a “quick and dirty’usability. Usability evaluation in

8
[9

[10

[11

[12

[14

[15

[16

[17

]

]

]

]

]

industry 189, 3 (1996), 189-194.

John Brooke. 2013. SUS: a retrospective. Journal of usability studies 8, 2 (2013),
29-40.

Silvana Faja. 2011. Pair Programming as a Team Based Learning Activity: A
review of research. Issues in Information Systems XII (01 2011), 207-216.

Xinyu Fu, Atsushi Shimada, Hiroaki Ogata, Yuta Taniguchi, and Daiki Suehiro.
2017. Real-time learning analytics for C programming language courses. In Pro-
ceedings of the Seventh International Learning Analytics & Knowledge Conference
(Vancouver, British Columbia, Canada) (LAK ’17). Association for Computing Ma-
chinery, New York, NY, USA, 280-288. https://doi.org/10.1145/3027385.3027407
Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce: a lightweight
user interface for structured editing. In Proceedings of the 40th International
Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association
for Computing Machinery, New York, NY, USA, 654-664. https://doi.org/10.
1145/3180155.3180165

Amey Karkare and Purushottam Kar. 2022. Prutor: an intelligent learning and
management system for programming courses. Commun. ACM 65, 11 (2022),
62-64.

Toannis Karvelas. 2019. Investigating Novice Programmers’ Interaction with
Programming Environments. In Proceedings of the 2019 ACM Conference on Inno-
vation and Technology in Computer Science Education (Aberdeen, Scotland Uk)
(ITiCSE ’19). Association for Computing Machinery, New York, NY, USA, 336-337.
https://doi.org/10.1145/3304221.3325596

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2021. A tutoring system to
learn code refactoring. In Proceedings of the 52nd ACM technical symposium on
computer science education. Association for Computing Machinery, New York,
NY, USA, 562-568.

Juho Leinonen, Francisco Enrique Vicente Castro, and Arto Hellas. 2022. Time-
on-task metrics for predicting performance. ACM Inroads 13, 2 (2022), 42—-49.
Stamatios Papadakis. 2018. Is Pair Programming More Effective than Solo Pro-
gramming for Secondary Education Novice Programmers? A Case Study. Inter-
national Journal of Web-Based Learning and Teaching Technologies 13 (01 2018).
https://doi.org/10.4018/JWLTT.2018010101

Jarred Payne, Vincent Cavé, Raghavan Raman, Mathias Ricken, Robert
Cartwright, and Vivek Sarkar. 2011. DrHJ: a lightweight pedagogic IDE for
Habanero Java. In Proceedings of the 9th International Conference on Princi-
ples and Practice of Programming in Java (Kongens Lyngby, Denmark) (PPPY

533

[18

[19

IS
=

[21

[22

[23

[25

[26

[27

[28

[29

[30

(33]

ITiCSE 2024, July 8-10, 2024, Milan, Italy

’11). Association for Computing Machinery, New York, NY, USA, 147-150.
https://doi.org/10.1145/2093157.2093180

Filipe D Pereira, Elaine HT Oliveira, David BF Oliveira, Alexandra I Cristea,
Leandro SG Carvalho, Samuel C Fonseca, Armando Toda, and Seiji Isotani. 2020.
Using learning analytics in the Amazonas: understanding students’ behaviour in
introductory programming. British journal of educational technology 51, 4 (2020),
955-972.

Rasheed Abubakar Rasheed, Amirrudin Kamsin, and Nor Aniza Abdullah. 2020.
Challenges in the online component of blended learning: A systematic review.
Computers & Education 144 (2020), 103701. https://doi.org/10.1016/j.compedu.
2019.103701

Peter C. Rigby and Suzanne Thompson. 2005. Study of Novice Programmers Using
Eclipse and Gild. In Proceedings of the 2005 OOPSLA Workshop on Eclipse Technol-
ogy EXchange (San Diego, California) (eclipse '05). Association for Computing Ma-
chinery, New York, NY, USA, 105-109. https://doi.org/10.1145/1117696.1117718
Norsaremah Salleh, Emilia Mendes, and John Grundy. 2011. Empirical Studies
of Pair Programming for CS/SE Teaching in Higher Education: A Systematic
Literature Review. IEEE Transactions on Software Engineering 37,4 (2011), 509-525.
https://doi.org/10.1109/TSE.2010.59

Maya Satratzemi, Xinogalos Stelios, and Despina Tsompanoudi. 2023. Distributed
Pair Programming in Higher Education: A Systematic Literature Review. Journal
of Educational Computing Research 61, 3 (2023), 546-577. https://doi.org/10.1177/
07356331221122884 arXiv:https://doi.org/10.1177/07356331221122884

Maya Satratzemi, Stelios Xinogalos, Despina Tsompanoudi, and Leonidas Karami-
topoulos. 2018. Examining Student Performance and Attitudes on Distributed
Pair Programming. Scientific Programming 2018 (Oct. 2018), €6523538. https:
//doi.org/10.1155/2018/6523538 Publisher: Hindawi.

Julia Schenk, Lutz Prechelt, and Stephan Salinger. 2014. Distributed-Pair Pro-
gramming Can Work Well and is Not Just Distributed Pair-Programming. In
Companion Proceedings of the 36th International Conference on Software Engi-
neering (Hyderabad, India) (ICSE Companion 2014). Association for Computing
Machinery, New York, NY, USA, 74-83. https://doi.org/10.1145/2591062.2591188
Till Schiimmer and Stephan G Lukosch. 2009. Understanding tools and practices
for distributed pair programming. Journal of Universal Computer Science, 15 (16),
2009 15, 16 (2009), 3101-3125.

Donggil Song, Hyeonmi Hong, and Eun Young Oh. 2021. Applying computa-
tional analysis of novice learners’ computer programming patterns to reveal
self-regulated learning, computational thinking, and learning performance. Com-
puters in Human Behavior 120 (2021), 106746.

Despina Tsompanoudi and Maya Satratzemi. 2014. A Web-Based Authoring
Tool for Scripting Distributed Pair Programming. In 2014 IEEE 14th International
Conference on Advanced Learning Technologies. IEEE, Athens, Greece, 259-263.
https://doi.org/10.1109/ICALT.2014.81

Despina Tsompanoudi, Maya Satratzemi, and Stelios Xinogalos. 2013. Exploring
the Effects of Collaboration Scripts Embedded in a Distributed Pair Programming
System. In Proceedings of the 18th ACM Conference on Innovation and Technology in
Computer Science Education (Canterbury, England, UK) (ITiCSE ’13). Association
for Computing Machinery, New York, NY, USA, 225-230. https://doi.org/10.
1145/2462476.2462500

Thomas Tullis and Jacqueline Stetson. 2004. A Comparison of Questionnaires
for Assessing Website Usability. UPA Presentation (2004), 12 p.

Dietmar Winkler, Stefan Biffl, and Andreas Kaltenbach. 2010. Evaluating tools
that support pair programming in a distributed engineering environment. In
Proceedings of the 14th International Conference on Evaluation and Assessment
in Software Engineering (UK) (EASE’10). BCS Learning & Development Ltd.,
Swindon, GBR, 54-63.

Krissi Wood, Dale Parsons, Joy Gasson, and Patricia Haden. 2013. It’s never
too early: pair programming in CS1. In Proceedings of the Fifteenth Australasian
Computing Education Conference - Volume 136 (Adelaide, Australia) (ACE ’13).
Australian Computer Society, Inc., AUS, 13-21.

2] xAPI 2023. xAPI specification. https://github.com/adlnet/xAPI-Spec/tree/master.

XecliP 2023. XecliP. https://xeclip.sourceforge.net/.

https://doi.org/10.1080/10447310802205776
https://doi.org/10.1145/563517.563395
https://doi.org/10.1145/563517.563395
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/3027385.3027407
https://doi.org/10.1145/3180155.3180165
https://doi.org/10.1145/3180155.3180165
https://doi.org/10.1145/3304221.3325596
https://doi.org/10.4018/IJWLTT.2018010101
https://doi.org/10.1145/2093157.2093180
https://doi.org/10.1016/j.compedu.2019.103701
https://doi.org/10.1016/j.compedu.2019.103701
https://doi.org/10.1145/1117696.1117718
https://doi.org/10.1109/TSE.2010.59
https://doi.org/10.1177/07356331221122884
https://doi.org/10.1177/07356331221122884
https://arxiv.org/abs/https://doi.org/10.1177/07356331221122884
https://doi.org/10.1155/2018/6523538
https://doi.org/10.1155/2018/6523538
https://doi.org/10.1145/2591062.2591188
https://doi.org/10.1109/ICALT.2014.81
https://doi.org/10.1145/2462476.2462500
https://doi.org/10.1145/2462476.2462500
https://github.com/adlnet/xAPI-Spec/tree/master
https://xeclip.sourceforge.net/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Distributed pair programming requirements
	2.2 Educational requirements specific to novice programmers
	2.3 Existing systems for distributed pair programming
	2.4 Synthesis

	3 Our Application for Distributed Pair Programming
	3.1 Global overview and technologies
	3.2 Distributed pair programming features
	3.3 Educational features

	4 Experiment and evaluation methods
	4.1 Experimental setup
	4.2 Data collection
	4.3 Data analysis

	5 Results and discussion
	5.1 Perceived usability
	5.2 Quality of students' productions

	6 Limitations
	7 Conclusion and future works
	References

