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We present an efficient data-assimilation framework based on deep learning and
integrating robust uncertainty quantification to address pore-scale reactive inverse problems,
targeting both imaging data and physics-based constraints. This approach lies in a Bayesian
Physics-Informed Neural Networks (BPINNs) formulation of multi-objective inverse problems
involving the PDE constraints as tasks, for which we introduce a new method of automatic
task balancing. This strategy establishes an adaptive weighting of the target distribution in a
Bayesian context and ensures unbiased uncertainty quantification through an automatic
weighting of the tasks in multi-objective problems.

Task balancing is directly achieved by leveraging gradient information of the various
objectives within the BPINNs framework, maintaining efficient computational costs. Our
approach benefits from improved convergence and stability in contrast to conventional
formulations, and eliminates the need for manual adjustment of critical weighting
parameters. The adjusted weights also bring information on the task un-certainties and thus
improve the reliability of the noise-related and model adequacy estimates.

After demonstrating the effectiveness of this framework on data assimilation
problems of various complexities, we apply it to pore-scale imaging of reactive inverse
problems in porous media, to capture morphological uncertainties on the micro-porosity field
and reliability ranges on the kinetic parameters.
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