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A mathematical characterization of the convergence domain
for Direct Visual Servoing

Meriem Belinda Naamani1,2, Guillaume Caron1,3, Mitsuharu Morisawa1, El Mustapha Mouaddib3

Abstract— Direct Visual Servoing (DVS) is a technique that
controls the robot motion by using the pixel intensities captured
by a camera. DVS demonstrates high accuracy at convergence,
prompting the development of various methods aimed at
expanding its convergence domain.

In this paper, we propose a mathematical characterization of
the DVS convergence domain with closed-form expressions for
the controlled degrees of freedom. From these expressions, we
concluded that the extent of the convergence domain is related
to the presence of isotropic or defocus blur, a phenomenon
that had only been observed previously as a trend in empirical
experiments.

I. INTRODUCTION

A. Motivation

Image-based visual servoing is a fundamental technique
that uses information extracted from the image as visual
features to guide the motion of robotic systems for precise
positioning, tracking and navigation tasks [1].

To date, the most accurate family of visual features is the
direct use of the information captured in the image, which
seminal approach is Photometric Visual Servoing (PVS). It
uses image brightness directly to control the robot motion to
reach a desired image captured at the desired robot pose [2].
Great accuracy at convergence can be obtained from a variety
of initial poses within the local basin of attraction of the
control law to the desired image. But for PVS and its
successors, there is no analytical study of their convergence
domain. The goal of this paper is to address this gap.

B. Related Works

In [3], the visual servoing task is defined as a nonlinear
least squares minimization problem, where the goal is to
move the robot to a reference position starting from an initial
position. In [4], the photometric cost function is studied,
and a number of optimization methods are presented, such
as the Newton optimization technique, which involves the
computation of the Hessian matrix (related to the curvature
of the cost function). The Newton algorithm is used in [5],
where it has been shown that by using the Hessian, the spatial
trajectory of the camera is improved, and it overcomes the so-
called advance/retreat problem of visual servoing. However,
since the Hessian matrix is needed, the computational cost
can become expensive, and the region of convergence can
be small in practice. In [4], another optimization method is
stated, which is the Gauss-Newton optimization law. This
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method is the most commonly used in visual servoing [1].
It approximates the Hessian matrix of the Newton algorithm
using the Jacobian matrix.

One more optimization method mentioned in [4] is the
Levenberg-Marquardt algorithm. This method is a modifica-
tion of the Gauss-Newton algorithm, where a damping factor
is introduced to adjust the contribution of the gradient and the
Hessian matrices to the control law. A Levenberg-Marquardt-
like control law is used in [6] and compared to the Gauss-
Newton one. It resulted in much smoother trajectories with
the former and a better time-to-convergence than the latter.

Despite the latter pros, PVS convergence domain could
be improved such as in [6] by introducing Photometric
Gaussian Mixtures (PGM) as dense features. This method
consists of representing each pixel by a 2D Gaussian, and
then combining them to produce the Gaussian mixture.
Thus, the overlap between the current and desired images
increases as the Gaussian extent increases, and it has been
experimentally observed that there is a significant increase
in the convergence domain. More recent works include
the use of Discrete Orthogonal Moments (DOM) as visual
features for the servoing. In [7], Tchebichef, Krawtchouk,
and Hahn moments are used as examples of DOMs to extract
visual features, allowing an efficient feature representation
by eliminating redundant data between neighboring pixels.
Experiments show that this method effectively enhances the
region of convergence while preserving a high accuracy.

In addition, some learning-based methods have been re-
cently introduced. In [8], a neural network is trained to map
the camera images and the robot poses into a shared latent
space. The points in this space correspond to the similarity
of the images or the distance between robot positions. The
goal is then to minimize the distance between the current
image and desired image in the latent space.

While increasing the convergence domain, these meth-
ods are computationally expensive, and need some param-
eters tuning. The Defocus-Based Direct Visual Servoing
(DDVS) [9] balances the convergence domain and the pro-
cessing time by effectively using the defocus blur to optically
smooth the image. Similarly to PGM, it was experimentally
observed that the defocus blur increases the convergence
domain.

C. Contributions

In order to explain how blurred images can lead to larger
Direct Visual Servoing (DVS) convergence domains than
sharp images, we make three contributions in this paper
leveraging the thin lens camera model:



• We formulate the first mathematical characterization of
the convergence domain in DVS;

• We decline the latter mathematical result to prove both
PVS narrow convergence domain and PGM VS large
one;

• We introduce a variant of DDVS with defocused desired
image highlighting an extended convergence domain
even without any camera motion along its optical axis.

These contributions are validated with simulations and
experiments in a simplified environment.

D. Outline

The remainder of the paper is organized as follows. First,
Section II recalls the theoretical background on the Defo-
cus Blur Model, and defocus-based direct visual servoing
(DDVS). After that, in Section III, we derive the closed
form analytical expression of the DDVS cost function and
we extract its region of convergence. In Section V, the theory
is put into practice with simulation and experimental results.
Finally, the conclusion and future works are presented in
Section VI.

II. DEFOCUS-BASED DIRECT VISUAL SERVOING

A. Model of Defocus

Defocus blur is a loss of sharpness caused by the integra-
tion of light over the camera aperture area when the captured
scene is not on the focal plane [10]. In that case, the scene
is said to be out of focus (see the object plane versus the
focal plane in Fig. 1).

When the scene is in focus, a camera is assumed similar
to a pinhole, represented as the perspective projection model.
The latter maps a 3D point X =

[
X, Y, Z

]T ∈ R3 into a
single 2D point on the image plane at the intersection with
the line joining the 3D point X to the center of projection,
located at the pinhole [11].

Out of the focal plane, the pinhole assumption no longer
holds; instead, the thin lens camera model applies (Fig.1).
This model considers a range of apertures contrary to the
infinitesimal pinhole. Thus, instead of mapping X into an

Fig. 1: Thin lens camera model: Z is the object depth; Zf

is the focus depth; D is the camera aperture; f is the focal
length; d(Z) is the diameter of the Circle of Confusion.

image plane point, the thin lens model maps X to an image
plane area known as the circle of confusion (CoC). The CoC
is the intersection between the cone of rays emanating from
X and the image plane. Its diameter, depicted by d(Z) ∈ R∗

+

in Fig. 1, depends on the focus depth Zf ∈ R∗
+, the focal

length f ∈ R∗
+, and the aperture D ∈ R∗

+ [9]:

d(Z) =
Df

Zf − f

(
1− Zf

Z

)
. (1)

The defocus blur can be approximated by a point spread
function that depends on the CoC diameter. As in [9] the
defocus blur is approximated by a normal Gaussian kernel,
which width (spread) depends on the CoC diameter, the
camera parameters and the 3D point X.

Denoting λ(Z) the spread of the Gaussian in pixel units,
and assuming 99.7% of the normal Gaussian spans the CoC,
we have:

λ(Z) =
d(Z)

6Ku
, (2)

with Ku the physical size of a pixel, used as a scale factor.
In this model of defocus, X is projected at the center

of the CoC following the perspective camera model. This
transformation is denoted by function pr: X ∈ R3 → u ∈ R2

as:

pr(X) =


f
Ku

0 u0

0 f
Ku

v0

0 0 1




X
Z
Y
Z

1

 , (3)

where X is expressed in the camera frame and (u0, v0) ∈ R2

being the coordinates of the principal point.
Hence, the normal Gaussian kernel g̃(u,X) is:

g̃(u,X) =
1

2πλ(Z)2
exp

(
||u − pr(X)||2

2λ(Z)2

)
. (4)

In sharp image regions, Z tends to Zf , the CoC tends to
a point as shown by the green lines in Fig. 1. In that case
the Gaussian tends to a Dirac impulse. As the diameter of
the CoC increases, i.e. |Z − Zf | increases as illustrated by
the blue lines in Fig. 1, the spread of the Gaussian increases,
resulting in a greater defocus blur.

Consider a continuous scene X ⊂ R3 of 3D points,
X ∈ X . Assuming that the scene radiance L(X) ∈ R+

is equally mapped to brightness I(pr(X)) ∈ R+, then the
defocus image Id is expressed as:

Id(u) =
∫
X
I(pr(X))g̃(u,X) dX. (5)

B. Defocus-based direct visual servoing

With (N , M ) the width and height of the im-
age, the goal of DDVS is to minimize the Sum of
Squared Differences (SSD) of the vectorized current image
Id(p) ∈ [0, 255]NM×1 and the vectorized desired image
I∗d ∈ [0, 255]NM×1:

C(p) =
1

2
||Id(p)− I∗d||2, (6)



with p ∈ Rn the camera pose and n is the number of
controlled Degrees-of-Freedom (DoF) (if n = 6, p is the
stacking of the translation vector and the axis-angle rotation
vector of the scene to camera transformation).

The control is based on the Gauss-Newton control law:

v = −µL+
Id
(Id(p)− I∗d)) , (7)

where v ∈ Rn is the camera velocity. µ ∈ R+ is a gain.
L+
Id

∈ RNM×n is the pseudo-inverse of the interaction ma-
trix that links the camera velocity to the change of brightness
of the image Id (see [9] for its detailed expression).

As with most DVS techniques, only local stability can be
ensured, however the region of convergence revealed to be
quite large in practice.

III. CONVERGENCE OF DIRECT VISUAL SERVOING
USING THE THIN LENS CAMERA MODEL

Defining the set U = [0, N − 1] × [0,M − 1] ⊂ N2,
which consists of the integer coordinates of all image pixels,
the DDVS control law can be rewritten as an optimization
problem:

p̂ = argmin
p

1

2

∑
u∈U

(Id(u, p)− I∗d (u))
2
. (8)

For the theoretical convergence analysis of the above
problem (8), the first step consists in expressing explicitly the
cost function in terms of the controlled degrees of freedom.

A. An Analytical Expression of the Desired Image

Since there is no general analytical expression for an
image, we consider an ideal scene X defined by a single
bright 3D point at X∗ =

[
X∗, Y ∗, Z∗]T ∈ R3 in the

camera frame. Without loss of generality in the classical
Lambertian scene assumption often made with DVS, we also
assume an ideal camera that maps equally a sharp pixel
intensity I(pr(X∗)) to the scene luminance I1 at X∗. Thus,
substituting g̃(u,X∗) in (5) with (4), the desired image is
expressed as:

I∗d (u) =
I1

2πλ(Z∗)
exp

(
−||u − pr(X∗)||2

2λ(Z∗)

)
, (9)

with pr(X∗) given by (3), and λ(Z∗) by (2). This is of
course very simplified compared to a truly captured image.
But in the rest of this section, the analytical expression
of the desired image (9) allows to characterize analytically
the convergence domain of (8). The experimental results of
visual servoing using a real robot with a real camera (Sec. V-
B.1) will also demonstrate its relevance.

B. Analytical Expression of the Current Image

Considering a bidimensional translational motion of the
camera in the 3D space, the current 3D point in the camera
frame is given by X =

[
X∗ + tX , Y ∗ + tY , Z∗]T ∈ R3,

where tX and tY are the translations along the X-axis
and Y-axis respectively. Thus, n = 2 (see Sec. II-B) with
p = [tX , tY ]

T , that we substitute with t = p for more

clarity on the DoF considered. Following the same steps as in
Section III-A, the current image is then expressed by:

Id(u, t) =
I1

2πλ(Z∗)
exp

(
−||u − pr(X)||2

2λ(Z∗)

)
, (10)

where λ(Z∗) is given by (2), and pr(X) is given by (3).

C. Analytical Expression of the Direct Cost Function
From the problem (8), the cost function is:

Cd(t) =
1

2

∑
u∈U

(Id(u, t)− I∗d (u))
2 (11)

To ease the start of mathematical developments, let us
assume an infinite camera plane, i.e. u ∈ R2. Back to the
continuous space, the expression of the cost becomes (12):

C(t) =
1

2

∫
u

(Id(u, t)− I∗d (u))
2
du. (12)

Evaluating the above integral (12) and substituting pr(X)
and pr(X∗) with (3), the closed-form expression of the direct
cost function is then:

C(t) =
I21

4πλ(Z∗)2

[
1− exp

(
− f2(t2X + t2Y )

(2KuZ∗λ(Z∗))2

)]
.

(13)
Below, we begin by considering the Newton algorithm as

an initial step to identify the region of convergence, before
moving to the Gauss-Newton optimization algorithm.

D. Expression of the region of convergence for planar trans-
lation control with the Newton optimization algorithm

The Newton algorithm is a second-order optimization
method based on a local approximation of the cost func-
tion by its second-order Taylor expansion [12]. Considering
the minimization problem (8), one iteration of the Newton
algorithm computes:

tk+1 = tk −
(
∇2C(tk)

)−1 ∇C(tk), (14)

where:
• tk: is the current pose;
• ∇C(tk): is the Gradient of the cost;
• ∇2C(tk): is the Hessian matrix of the cost.

For compactness, we omit the k subscript in the remainder
of this section.

Newton’s algorithm converges when two conditions are
satisfied :

• Condition 1: the cost function must be twice differen-
tiable;

• Condition 2: the Hessian matrix needs to be definite
positive, i.e. : det(∇2C(t)) > 0.

In (13), C(t) is only made of operations twice differentiable
so Condition 1 is met. Then, we leverage Condition 2 to find
for which subset t is in the convergence domain of C(t).

The Hessian of (13) expresses as:

∇2C(t) =


∂2C

∂t2X
(t)

∂2C

∂tX∂tY
(t)

∂2C

∂tY ∂tX
(t)

∂2C

∂t2Y
(t)

 , (15)



which details as:

∇2C(t) =

1−
f2t2X

2(Z∗Kuλ(Z∗))2
− f2txty

2(Z∗Kuλ(Z∗))2

− f2txty

2(Z∗Kuλ(Z∗))2
1− f2t2Y

2(Z∗Kuλ(Z∗))2


I21f

2

8π(Z∗K2
uλ(Z

∗)2)
exp

(
− f2(t2X + t2Y )

(2KuZ∗λ(Z∗))2

)
.

(16)
The determinant of (16) is expressed as:

det(∇2C(t)) =
I21f

2

8π(Z∗K2
uλ

2)

(
1− f2(tx2 + ty2)

2(KuZ∗λ)2

)
exp

(
−f2(tx2 + ty2)

(2KuZ∗λ)2

)
.

(17)

Then, we solve det(∇2C(t)) > 0 for t, leading to:

r2 <
D2(Z∗ − Zf )

2

18(Zf − f)2
, (18)

where r2 = t2X + t2Y . In other words, the region of con-
vergence is a disk centered at t = [0, 0]T with a radius
rNe =

√
2
6 D

(
Z∗−Zf

Zf−f

)
. It is directly proportional to the

camera aperture D and the focus depth (Z − Zf ).

E. Expression of the region of convergence for planar trans-
lation control with Gauss-Newton optimization algorithm

The Gauss-Newton method is based on the Newton
method, where the Hessian is approximated as:

∇2C(t) ≈ H =

(
∂I
∂t

(u, t)
)T (

∂I
∂t

(u, t)
)
. (19)

∂I
∂t (u, t) is the image brightness Jacobian. This ensures the
approximated Hessian H is always positive.
One step of the Gauss-Newton optimization algorithm is
given by [3]:

tk+1 = tk −H−1
k ∇C(tk), (20)

where Hk is computed using (19) at iteration k.
Assuming Hk is not singular, the algorithm converges

when ∇C(tk) = 0. When ∇C(t0) = 0, t0 corresponds either
to a local minimum or to a saddle point surrounding a plateau
area. A plateau refers to a region where the cost function
stagnates [13].

If the Gauss-Newton algorithm is initialized near a saddle
point then it will get stuck on said plateau. In order to find the
region of convergence of the optimization using the Gauss-
Newton method, we first express the Gradient of the direct
cost (13):

∇C(t) =
I21f

2 exp

(
− f2(t2X+t2Y )

(2KuZ∗)2λ(Z∗)2

)
8π(KuZ∗)2λ(Z∗)4

[
tX
tY

]
. (21)

Then, we can try solving ∇C(t) = 0 for t, that leads to
several solutions: either t =

[
0, 0

]T
which is the global

minimum; or t → ±∞. Out of the latter solutions, since
∇C(t) > 0, it means the algorithm is globally convergent.

That is not surprising since both current (10) and desired (9)
images are Gaussians defined to the infinity. But of course,
a real camera does not perceive the slight variations of C(t)
around t of large norm due to its irradiance resolution and
image quantification.

1) Thresholded analytical expression of images: To con-
sider the latter physical limitations of the camera sensor,
we introduce l ∈ R∗

+ the lowest observable irradiance value
leading to a non zero pixel integer intensity, hence:

Idl(u) =
{

Id(u) if Id(u) ≥ l
l otherwise

. (22)

Considering the desired image expression (9), and apply-
ing the condition in (22), the desired image can be rewritten
as follows, posing ρ∗u = ||u − pr(X∗)|| for compactness:

I∗dl(u) =
I1 exp

(
− ρ∗2u
2λ(Z∗)2

)
2πλ(Z∗)2

if ρ∗2u ≤ −2λ(Z∗)2 ln
(

2πλ(Z∗)2

I1

)
l otherwise.

(23)
Similarly, posing ρu = ||u − pr(X)|| for compactness, the
current image becomes:

Idl(u, t) =
I1 exp

(
− ρ2u
2λ(Z∗)2

)
2πλ(Z∗)2

if ρ2u ≤ −2λ(Z∗)2 ln
(

2πλ(Z∗)2

I1

)
l otherwise.

(24)
2) Direct Cost Function Expression with Thresholded

Analytical Images: Since the expressions of Idl(u, t) and
I∗dl(u) are piecewise functions, we can consider two cases:

• First case: no overlap between Idl(u, t) and I∗dl(u) (e.g.
in Fig. 2a)

• Second case: overlapping between the two thresholded
Gaussians as shown in Fig. 2b.
a) Cost function without overlapping: The range of

definition of the Gaussian portion of the desired image
is a disk centered at o1 = pr(X∗) with a radius of
rd =

√
−2λ(Z∗)2 ln (2πλ(Z∗)2/I1), and for the current

(a) (b)

Fig. 2: Two cases for defining the piecewise direct cost
function: (a) No overlap between the thresholded Gaussians
of the current and desired images; (b) Overlap between the
thresholded Gaussians of the current and desired images.



image a disk centered at o2(t) = pr(X) with a radius of
rc = rd. The two latter disks do not overlap if the distance
between their centers is larger than the sum of the two radii,
i.e. ||o1−o2(t)|| ≥ rc+rd. Substituting each variable of the
latter expression with their detailed writing and rearranging
leads to the condition for non-overlapping images:

t2X + t2Y ≥ −8λ(Z∗)2
(KuZ

∗)2

f2
ln

(
2πλ(Z∗)2l

I1

)
. (25)

Integrating (12) over the two radii rc and rd and taking
its limit when l → 0, the cost function in the case of no
overlapping simplifies to the constant:

Cno(t) =
I21

4πλ(Z∗)2
. (26)

b) Cost function with overlapping: Following a similar
reasoning than in Section III-E.2.a, the region where the two
Gaussians overlaps is:

t2X + t2Y < −8λ(Z∗)2
(KuZ

∗)2

f2
ln

(
2πλ(Z∗)2l

I1

)
.

The domain of integration Ui ⊂ R2 is given by the region of
intersection between the two disks, that are all u satisfying
both equations (27a) and (27b) for the current and desired
image respectively:

||u − pr(X)||2 < r2c , (27a)

||u − pr(X∗)||2 < r2d. (27b)

Then, the cost function is evaluated by integrating (12)
over Ui and taking its limit when l → 0:

Co(t) =
I21

4πλ(Z∗)2

(
1− exp

(
−

f2
(
t2X + t2Y

)
(2KuZ∗)2λ(Z∗)2

))
.

(28)
c) Closed-form direct cost function with thresh-

olded analytical images: Considering the results in
Sections III-E.2.a and III-E.2.b, the direct cost function with
thresholded analytical images is:

Cl(t) =


I21

4πλ(Z∗)2
if t2X + t2Y ≥ − (KuZ

∗)2

f2
8λ(Z∗)2 ln

(
2πλ(Z∗)2l

I1

)
I21

4πλ(Z∗)2

(
1− exp

(
−

f2
(
t2X + t2Y

)
(2KuZ∗)2λ(Z∗)2

))
otherwise.

(29)
3) Region of convergence for planar translation control

with Gauss-Newton optimization algorithm: Using (29), we
deduce the expression of ∇C(t) as:

∇C(t) =



[
0

0

]
if t2X + t2Y ≥ − (KuZ

∗)2

f2
8λ(Z∗)2 ln

(
2πλ(Z∗)2l

I1

)

I21f
2 exp

(
− f2(t2X+t2Y )

(2KuZ∗)2λ(Z∗)2

)
8π(KuZ∗)2λ(Z∗)4

[
tX

tY

]
otherwise.

(30)

Substituting λ(Z∗) by its expression with the thin lens
model (2), and setting r2 = t2X + t2Y the region of conver-
gence expresses as function of the camera lens parameters:

r2 < −2
D2(Z∗ − Zf )

2

9(Zf − f)2
ln

(
2πλ(Z∗)2l

I1

)
. (31)

The region of convergence is thus a disk
centered at t = (0, 0)T with a radius of

rGN =

√
−2

D2(Z∗ − Zf )
2

9(Zf − f)2
ln

(
2πλ(Z∗)2l

I1

)
.

IV. REGION OF CONVERGENCE FOR PVS, PGM VS AND
DDVS FOR PLAN TRANSLATIONAL MOTION

A. Convergence of PVS

In [2], the photometric visual servoing is considered with
a pinhole camera model. As mentioned in II-A the thin
lens camera model simplifies to the pinhole model when
considering a very small aperture, i.e. D → 0. Thus, the limit
of the general expression of the convergence domain (31)
when D → 0 leads to the PVS convergence domain:

rPV S → 0. (32)

B. Convergence of PGM VS

PGM VS relies on mixing as much Gaussians as pixels
in the image, the Gaussians sharing a common extension
parameter but each having the magnitude of the image
intensity, i.e.:

g(I, ug,u, λg) = I(u) exp
(
− (ug − u)2 + (vg − v)2

2λg

)
,

(33)
with:
• λg ∈ R∗

+ is the extension parameter;
• ug = [ug, vg]

T are the Gaussian function coordinates;
• I(u) is the pixel intensity.
Such isotropic Gaussian expression is very close to the

analytical expression of images (9) under the assumptions
we made, except for the normalizing factor of the Gaussian
related to defocus (4) that is absent in (33). However, our
assumptions make Z = Z∗ always. Hence, λ(Z) = λ(Z∗)
and the PGM VS cost function with fixed λg is a constant
factor times (29), thus not impacting the convergence domain
boundaries.

Consequently, the boundary of PGM VS’ region of con-
vergence with fixed λg is:

r2PGM = − (KuZ
∗)2

f2
8λ2

g ln

(
l

I1

)
, (34)

where it is clear that rPGM > 0 as soon as l < I1, which
is a reasonable assumption. Indeed, the minimum observable
intensity l by the camera should always be a tiny fraction of
I1, otherwise the image content will be at best a single pixel,
meaning we fall back under the PVS case. Furthermore, the
larger λg , the larger rPGM .

As a partial conclusion, comparing (34) to (32) proves
PGM VS’ greater convergence domain than PVS.



C. Convergence of DDVS

In [9], DDVS considers a sharp desired image by setting
the focus depth Zf as close as possible to Z∗. For camera
motions along its optical axis (at least), this setting is
interesting to combine both the large convergence domain
thanks to defocus blur and accuracy thanks to sharp images
at convergence. However, when pure translational motion in
the XY -plane is considered, the image stays sharp as in the
PVS case.

Hence, to enhance the capabilities of DDVS, we leverage
PGM VS’ idea that even the desired image can be blurred
to enable a large convergence domain even in the pure
XY -plane translational motion case. This is done by setting
Zf not close to Z∗, i.e. making (Z∗ − Zf )

2 large in (31),
where it is clear that the larger (Z∗ − Zf )

2, the farther the
region of convergence boundary. But a key impact of the
DDVS with defocused desired image over PGM VS with a
large λg for the desired image is that defocus is the result of
optical characteristics that does not need image processing,
contrary to the computation of PGMs.

V. RESULTS

A. Simulation results

Following the assumptions used in this paper, the simula-
tion process considers a single 3D point at a desired position
X∗ =

[
0, 0, 1 m

]T
, thus Z∗ = 1 m. The radiance

at X∗ is L(X∗) = 255. The virtual thin lens camera
has intrinsic parameters {f = 17 mm,Ku = 5.3 µm,
u0 = 180 pixels, v0 = 180 pixels,D = f/0.95}. The
controlled DoF are t = (tX , tY ). We apply Newton (14) then
Gauss-Newton (20) methods. We start by considering a sharp
desired image, i.e. Zf ≈ Z∗. Then, in order to highlight the
effect of the defocused desired image on DDVS’ region of
convergence, we increase the value of Z∗ − Zf , leading to
the results in Table I. Simulations confirm the theoretical
result that the region of convergence with Gauss-Newton is
larger than with Newton. Moreover, for both techniques, the
region of convergence with the defocus blur is larger than
with sharp images.

TABLE I: DDVS: theoretical and observed boundaries of
regions of convergence (RoC) in simulation. Unit: mm.

RoC for Newton RoC for Gauss-Newton
Focus
depth
(Zf )

Theoretical Simulation Theoretical Simulation

999.997 0.043 0.042 0.801 0.801
500 4.37 4.36 12.6 12.6
300 10.43 10.43 12.7 12.7

B. Experimental results

1) Experimental Setup: In this experiment, a Universal
Robot 10 is used with a Flir Flea3 FL3-U3-13E4C cam-
era and a Yakumo lens (focal length of 17 mm, and a
maximum aperture F-0.95) on its end effector as shown
in Fig. 3. The latter are connected to a laptop (Intel Core
i9 CPU). Using (7), the velocities are computed, with

Fig. 3: Robot arm with a camera on the wrist pointed to a
dark part of the floor where there is a tiny tin ball.

the camera parameters {f = 17 mm,Ku = 5.3 µm,
u0 = 160 pixels, v0 = 120 pixels,D = f/0.95, Zf}. The
used images are of size 320×240 pixels.

The considered scene consists in a tin ball on a texture-
less dark background, to mimic the single bright 3D point
(Sec. III). Then we implemented1 the DDVS with the C++
programming language using the ViSP library to implement
the interaction matrix of [9]. In this experiment, the goal
is to compare the theoretical regions of convergence with
the practical ones, and to explicit their relationship with the
defocus blur.

2) Experimental results with a sharp desired image: In
this section, we control bidimensional translational degrees
of freedom, tX and tY . We report the experiment with
an aperture diameter of D = f/0.95, a focus depth of
Zf = 0.7 m, and Z = Z∗ = Zf . The image is acquired
fronto-parallel to the flat scene. Using the camera parameters
given in Section V-B.1 and the expression (31) the theoretical
region of convergence is |r| < 2.4 mm.

At first a translation of |r| = 2.3 mm is applied to the
camera, which generates an error of δu = 2 pixels and
δv = − 1 pixel in the image. DDVS converges after 466
iterations, with a final error of δr = 0.068 mm (Fig. 4a- 4h).

Then, we increase progressively the initial error and ob-
serve the convergence of the DDVS. Once we reach an
initial error of |r| = 2.8 mm equivalent to a pixel error
of δu = 2 pixels and δv = −2 pixels, we start noticing
that the shape of the residual curve changes (Fig. 4o-4p), in
this case taking 2449 iterations to converge with a final error
of δr = 0.15 mm.

We keep increasing the initial error, until we reach
|r| = 2.9 mm, applying an error of δu = 2 pixels
and δv = −3 pixels, we observe that the DDVS does not
converge anymore (Fig. 4q-4x).

3) Experimental results with a Defocused Desired Image:
As in Section V-B.2, we control two degrees of freedom,
however the desired image is out of focus with Zf = 0.6 m

1https://github.com/jrl-umi3218/DirectVisualServoing

https://github.com/jrl-umi3218/DirectVisualServoing
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Fig. 4: DDVS with sharp images, (a-c): Desired, initial, and final difference images for an initial translation error of
∆r = 2.3 mm. (d-f): cropped version of (a-c) for visualization. (g): Evolution of the cost as function of iterations. (h):
Translational error (tX purple, tY green) as function of iterations. (i-p): Same as (a-h) for an initial translational error of
∆r = 2.8 mm. (q-x): same as (a-h) for an initial translational error of ∆r = 2.9 mm

(a) (b) (c) (i) (j) (k) (q) (r) (s)

(d) (e) (f) (l) (m) (n) (t) (u) (v)

(g) (h) (o) (p) (w) (x)

Fig. 5: DDVS with defocused desired images, (a-c): Desired, initial, and final difference images for an initial translation
error of ∆r = 9.43 mm. (d-f): cropped version of (a-c) for visualization. (g): Evolution of the cost as function of iterations.
(h): Translational error (tX purple, tY green) as function of iterations. (i-p): Same as (a-h) for an initial translational error
of ∆r = 13.6 mm. (q-x): same as (a-h) for an initial translational error of ∆r = 14.0 mm

and Z = Z∗ = 0.7 m. Using the same camera parameters,
and the expression given by (31), the theoretical region of
convergence is |r| < 13.4 mm.

Starting with a translation of |r| = 9.43 mm applied to
the camera, it generates an error of δu = 9 pixels and
δv = 5 pixels in the image. DDVS converges after 466
iterations, with a final error of δr = 0.08 mm (Fig. 5a-5h).

As in Section V-B.2, we increase the initial error pro-
gressively to experimentally find the boundary of DDVS’
convergence domain. Once we reach an initial error of
|r| = 13.6 mm, equivalent to a pixel error of
δu = 11 pixels and δv = −12 pixels, the shape of

the residuals changes (Fig. 5i-5p), in this case taking 1800
iterations to converge with a final error of δr = 0.034 mm.

We keep increasing the initial error until we reach
|r| = 14.0 mm, generating an error of δu = 13 pixels
and δv = 11 pixels in the image. DDVS does not converge
anymore (Fig. 5q-5x).

4) Summary: The results of Sections V-B.2 and V-B.3,
are summarized in Table II. We observe that the theoretical
region of convergence is on par with the practical one (a
difference of around 0.4 mm). The difference is mainly
due to the tin ball diameter not being small enough to be
considered an infinitesimal point. We can also observe that



as we increase the defocus blur at the desired pose, the
region of convergence increases significantly, by 485% in
our experiments.

TABLE II: Theoretical and practical results for DDVS.

Focus depth
(mm)

Theoretical
RoC (mm)

Practical RoC
(mm)

Initial error in
pixels(δu, δv)

Zf = 700 2.4 2.8 (2,-2)
Zf = 600 13.4 13.6 (13,11)

VI. CONCLUSION AND FUTURE WORKS

In this paper we expressed analytically the region of
convergence for direct visual servoing by exploiting the thin
lens camera model to express a closed-form cost function.
This cost function is then used to express the convergence
domain for the Newton and the Gauss-Newton algorithms.
The latter could be achieved by introducing the thresholded
defocused image model, that models physical limitations of
a real camera. This analytical expression is general enough
to allow finding the convergence domain expressions for the
Photometric Visual Servoing and the Photometric Gaussian
Mixtures-based Visual Servoing, in order to compare them
analytically for the first time. As a consequence, the closed-
form expression of the Defocus-based Direct Visual Servoing
(DDVS) could also lead to the idea of considering a defo-
cused desired image, highlighting a significant extension of
DDVS’ convergence domain, even without motion along the
camera optical axis.

Simulation and practical experiments with a robot arm
show that the theoretical convergence domains and the prac-
tical ones are very close, thus confirming the interest of our
methodology.

Future works will tackle the expression of the region of
convergence for more degrees of freedom.
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