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A B S T R A C T   

Background: Most previous studies investigating the associations between prenatal exposure to phthalates and 
fetal growth relied on measurements of phthalate metabolites at a single time point. They also focused on weight 
at birth without assessing growth over pregnancy, preventing the identification of potential periods of fetal 
vulnerability. We examined the associations between pregnancy urinary phthalate metabolites and fetal growth 
outcomes measured twice during pregnancy and at birth. 
Methods: For 484 pregnant women, we assessed 13 phthalate and two 1,2-cyclohexane dicarboxylic acid, dii-
sononyl ester (DINCH) metabolite concentrations from two within-subject weekly pools of up to 21 urine samples 
(median of 18 and 34 gestational weeks, respectively). Fetal biparietal diameter, femur length, head and 
abdominal circumferences were measured during two routine pregnancy follow-up ultrasonographies (median 
22 and 32 gestational weeks, respectively) and estimated fetal weight (EFW) was calculated. Newborn weight, 
length, and head circumference were measured at birth. Associations between phthalate/DINCH metabolite and 
growth parameters were investigated using adjusted linear regression and Bayesian kernel machine regression 
models. 
Results: Detection rates were above 99 % for all phthalate/DINCH metabolites. While no association was 
observed with birth measurements, mono-iso-butyl phthalate (MiBP) and mono-n-butyl phthalate (MnBP) were 
positively associated with most fetal growth parameters measured at the second trimester. Specifically, MiBP was 
positively associated with biparietal diameter, head and abdominal circumferences, while MnBP was positively 
associated with EFW, head and abdominal circumferences, with stronger associations among males. Pregnancy 
MnBP was positively associated with biparietal diameter and femur length at third trimester. Mixture of 
phthalate/DINCH metabolites was positively associated with EFW at second trimester. 

Abbreviations: BMI, body mass index; BKMR, Bayesian kernel machine regression; CI, confidence interval; cx-MiNP, mono-4-methyl-7-carboxyoctyl phthalate; 
DEHP, di(2-ethylhexyl) phthalate; DiBP, di-iso-butyl phthalate; DINCH, 1,2-cyclohexane dicarboxylic acid, diisononyl ester; DiNP, diisononyl phthalate; DnBP, di-n- 
butyl phthalate; HPLC-MS-MS, high-performance liquid chromatography coupled to mass spectrometry; LMP, last menstrual period; LOD, limit of detection; MBzP, 
monobenzyl phthalate; MECPP, mono(2-ethyl-5-carboxypentyl) phthalate; MEHHP, mono(2-ethyl-5-hydroxyhexyl) phthalate; MEHP, mono(2-ethylhexyl) phthalate; 
MEOHP, mono(2-ethyl-5-oxohexyl) phthalate; MEP, monoethyl phthalate; MiBP, mono-iso-butyl phthalate; MnBP, mono-n-butyl phthalate; MMCHP, mono-2-car-
boxymethyl hexyl phthalate; oh-MINCH, 2-(((hydroxy-4-methyloctyl)oxy)carbonyl)cyclohexanecarboxylic acid; oh-MiNP, mono-4-methyl-7-hydroxyoctyl phthalate; 
oh-MPHP, 6-hydroxy monopropylheptyl phthalate; oxo-MINCH, 2-(((4-methyl-7-oxyooctyl)oxy)carbonyl)cyclohexanecarboxylic acid; oxo-MiNP, mono-4-methyl-7- 
oxooctyl phthalate; ΣDEHP, molar sum of DEHP metabolites (MECPP, MEHHP, MEHP, MEOHP, MMCHP); ΣDINCH, molar sum of DINCH metabolites (oh-MINCH, 
oxo-MINCH); ΣDiNP, molar sum of DiNP metabolites (cx-MiNP, oh-MiNP, oxo-MiNP). 
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Conclusions: In this pregnancy cohort using repeated urine samples to assess exposure, MiBP and MnBP were 
associated with increased fetal growth parameters. Further investigation on the effects of phthalates on child 
health would be relevant for expanding current knowledge on their long-term effects.   

1. Introduction 

Phthalates are ubiquitous environmental contaminants used in 
various consumer products such as food packaging, toys, medical de-
vices, and personal care products. Some are endocrine disrupting 
chemicals that can enter the body through ingestion, inhalation, and 
skin contact, and are quickly metabolized and excreted in urine. This 
widespread use in consumer products leads to ubiquitous exposure in 
the general population including pregnant women (Woodruff et al., 
2011), that has been linked to adverse maternal health outcomes 
including pregnancy loss (Zhang et al., 2020), gestational diabetes (Yan 
et al., 2022), and preterm delivery (Wang et al., 2022; Welch et al., 
2022). Regarding fetus health, a growing body of literature has inves-
tigated the associations between prenatal phthalate exposure and fetal 
growth, mostly measured at birth (19 studies reviewed by (Kamai et al., 
2019) and followed up by others (Bloom et al., 2021; Cathey et al., 2022; 
Guo et al., 2022; Hu et al., 2021; Kalloo et al., 2020; Nidens et al., 2021; 
Qian et al., 2023)). However, results of these studies were overall 
inconsistent, reporting null, positive or negative associations depending 
of the phthalate-outcome pairs considered. For example, while Wolff an 
colleagues reported a positive association between monoethyl phthalate 
(MEP) and head circumference at birth, Bloom and colleagues reported a 
negative association (Bloom et al., 2021; Wolff et al., 2008). Studies also 
relied on ultrasound measurements to monitor fetal growth but again 
reporting inconsistent results, however with more null or negative than 
positive associations (Botton et al., 2016; Casas et al., 2016; Cowell 
et al., 2023; Ferguson et al., 2022, 2016; Goodrich et al., 2019; Ish et al., 
2022; Li et al., 2021; Santos et al., 2021; Stevens et al., 2023, 2022; van 
den Dries et al., 2021). Furthermore, several studies have reported dif-
ferences in associations related to infant’s sex (Kamai et al., 2019). 

Most studies investigating phthalate’s and 1,2-cyclohexane dicar-
boxylic acid, diisononyl ester (DINCH)’s health effects used one or a few 
urine samples to measure their metabolite concentrations, leading to 
classical exposure measurement error and bias in dose–response func-
tions (Perrier et al., 2016). Collection of repeated samples is key to 
reduce such bias (Perrier et al., 2016; Vernet et al., 2019) for chemicals 
with high within-subject temporal variability in urinary metabolite 
concentrations, as phthalates and DINCH (Casas et al., 2018; Silva et al., 
2004). 

Finally, data is scarce for new chemicals, such as DINCH, that has 
been introduced into the market in 2002 and used as replacement of 
high molecular weight phthalates (Schütze et al., 2014). Only one study, 
so far, has investigated the association between DINCH and fetal growth 
and reported no associations (N = 254 (Stevens et al., 2023)). 

Our aim was to investigate the associations between prenatal expo-
sure to phthalates and replacement compounds such as DINCH and fetal 
growth, as well as whether infant’s sex serves as an effect modifier of 
these associations. To limit exposure measurement error, we relied on 
pools of repeated urine samples (up to 42 urine samples per pregnancy) 
and further applied measurement error models to correct the dos-
e–response function for potential measurement error in the exposure. 

2. Population and methods 

2.1. Study design and population 

This study included mother–child pairs enrolled in the SEPAGES 
prospective parent–child cohort between 2014 and 2017 in Grenoble 
area (France) (Lyon-Caen et al., 2019). Inclusion criteria were 1) being 
pregnant (singleton pregnancy) by less than 19 gestational weeks at 

inclusion, 2) at least 18 years of age, 3) to read and speak French 
fluently, 4) to be affiliated to the French national social security system, 
and 5) to plan to deliver in one of the four maternity clinics of the area. 
The exclusion criteria were being under guardianship or deprived of 
liberty. Out of the 484 study participants, 477 and 456 subjects had 
urine samples collected in the second and third pregnancy trimesters, 
respectively (Supplementary Figure 1). The final sample size depended 
on the availability of fetal growth measurements and ranged from 433 to 
475. The mothers signed an informed consent form and both parents 
signed the infant’s consent form prior to inclusion. The study was 
approved by the relevant ethical committees: Comité de Protection des 
Personnes Sud-Est V and Commission Nationale Informatique et des 
Libertés. 

2.2. Urine samples collection 

Pregnant women were instructed to collect three spot urine samples 
per day (morning, midday, evening) for seven consecutive days at me-
dian 18 (second trimester) and 34 (third trimester) weeks of pregnancy. 
After collection, individual urine samples were stored at − 20 ◦C in the 
participant’s personal freezer until SEPAGES fieldworkers picked them 
up at the end of the collection week and transported them to the bio-
bank. The samples were then thawed at 4 ◦C overnight and within- 
subject weekly pools were made by pooling equal volume of all the 
spot urine samples collected over the collection week (Perrier et al., 
2016; Philippat and Calafat, 2021). 

2.3. Assessment of prenatal exposure to phthalates 

An aliquot of each weekly pool of urine was shipped on dry ice to the 
Norwegian Institute of Public Health (Oslo, Norway) for exposure 
biomarker assessment. Briefly, metabolite concentrations were 
measured in 300 μL of urine, after deconjugating the glucuronides using 
enzyme beta-glucuronidase (E. coli) and incubating for 1.5 h at 37 ◦C, 
using the high-performance liquid chromatography coupled to tandem 
mass spectrometer as described elsewhere (Philippat et al., 2021; 
Sabaredzovic et al., 2015). We assessed urinary concentrations of 13 
phthalate metabolites and two DINCH metabolites (Supplementary 
Table 1). Procedural blanks, in-house quality controls, and standard 
reference material (SRM 3673) from National Institute of Standards and 
Technology (NIST) were analyzed along with the samples. The accuracy 
of the method ranged from 70 % to 125 % and the precision given as 
relative standard deviation was below 25 % (Sabaredzovic et al., 2015). 

2.4. Standardization and transformation of phthalate metabolite 
concentrations 

To account for between-samples variation related to urine processing 
and assay, we standardized concentrations of all metabolites but mono- 
4-methyl-7-hydroxyoctyl phthalate (oh-MiNP) that was not affected by 
urine processing and assay conditions, using a two-step approach 
(Guilbert et al., 2021; Mortamais et al., 2012; Philippat et al., 2014). The 
considered conditions were sample transport time from participant’s 
home to the biobank, individual samples thawing time at 4 ◦C during the 
pooling procedure, and analytical batches. First, we estimated the as-
sociations between each biomarker concentration (ln-transformed) 
assessed in pools and the conditions mentioned above using linear 
regression adjusted for maternal age, education, pre-pregnancy body 
mass index, parity, specific gravity, date, and season of sample collec-
tion. We then used the estimated effects of processing/assay conditions 
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associated with the biomarker urine concentrations (Wald test p-value 
< 0.2) to predict standardized concentrations (i.e., concentrations that 
would have been observed if all samples had been processed under the 
same conditions and assayed in the same batch) by subtracting the effect 
estimates associated with the conditions from the measured biomarker 
concentrations (Supplementary Table 2). Biomarker concentrations 
were not adjusted for specific gravity, since it has been observed that 
such correction, classically applied to account for urine dilution when 
relying on spot samples, was not necessary or even counter-productive 
for equal-volume pooled samples (Philippat and Calafat, 2021). Before 
further analyses, standardized phthalate concentrations were ln- 
transformed to approach normality. 

2.5. Assessment of fetal growth 

We extracted abdominal circumference, biparietal diameter, femoral 
length, and head circumference from two ultrasound examinations. 
Fetal weight was estimated at each ultrasound using the Hadlock for-
mula (Hadlock et al., 1985). French pregnant women usually undergo 
three ultrasound examinations as a part of the routine pregnancy follow- 
up. In order to match with the timing of exposure assessments, we used 
those corresponding to the second and third ultrasound examinations 
(median 22 and 32 gestational weeks, respectively). For women with 
multiple ultrasound measurements per trimester of pregnancy, we 
selected the examination that was performed at the gestational age 
closest to the median gestational age of women with only one ultrasound 
per trimester available. At birth, newborns’ weight, length, and head 
circumference were extracted from the child health booklet. 

2.6. Statistical analyses 

2.6.1. Adjustment factors 
The potential confounders were selected a priori and included: 

maternal height (continuous) and pre-pregnancy weight (continuous), 
maternal age (continuous), maternal active smoking during 2nd 
trimester of pregnancy (above one cigarette a day; no, yes), maternal 
education level (less than three years after high school, three to four 
years after high school, more than four years after high school), gesta-
tional age at measurement (continuous and quadratic term), parity 
(nulliparous, one, two or more children) and child’s sex (female, male; 
except for models stratified by sex). Data on covariates were collected by 
self-administered questionnaires using an online platform and ques-
tionnaires administered by a fieldworker during a study visit. 

2.6.2. Imputation of the missing data 
Phthalate/DINCH metabolites concentration values below limit of 

detection (LOD) were singly imputed using the NADA (Lee, 2020) and 
msm (Jackson, 2011) R packages allowing to randomly draw values 
below the LOD from the estimated distribution of the compound (Helsel, 
1990; Lubin et al., 2004). Missing values for continuous covariates were 
replaced by the median calculated for the studied population and for 
categorical variables they were replaced by mode. 

2.6.3. Associations between individual phthalate/DINCH metabolite 
concentrations and growth outcomes 

Molar sums of metabolites of the same parent compounds (Diiso-
nonyl phthalate [DiNP], Di(2-ethylhexyl) phthalate [DEHP], DINCH) 
were computed and expressed in µmol/L and used in all the analyses 
instead of concentrations of individual metabolites. 

We used adjusted linear regression models to study the associations 
between individual biomarkers (individual metabolites or molar sum) 
and each growth measurement. Specifically, we studied the associations 
between growth outcomes assessed at the second trimester and second 
trimester phthalate/DINCH metabolite urinary concentrations while 
later growth measurements (third trimester and at birth) were associ-
ated to the mean of phthalate/DINCH concentrations measured in 

second and third trimester urine pools (Supplementary Figure 1). To 
allow results comparisons across outcomes and across timing of mea-
surements, results using standardized growth measurements were pre-
sented in figures. The standardization was done by dividing time- 
specific growth measurements by their standard deviation. Distribu-
tions of the non-standardized growth outcomes are available in the 
Supplementary Table 3. P-values < 0.05 were considered as statistically 
significant. To explore sex-specific effects, we assessed interaction be-
tween each phthalate/DINCH metabolite and child’s sex, then for in-
teractions with p-value below 0.2 we further performed additional sex- 
stratified analyses. 

2.6.4. Associations between phthalate/DINCH metabolites mixture and 
growth outcomes 

We investigated the overall effect of the biomarkers mixture on each 
growth measurement using a Bayesian kernel machine regression 
(BKMR) model (Bobb et al., 2015). Similarly to individual biomarker 
analysis, we studied the associations between second trimester- 
measured growth outcomes and phthalate/DINCH metabolites mixture 
while later growth measurements (third trimester and at birth) were 
associated to the mixture of mean phthalate/DINCH concentrations at 
second and third trimesters. We performed 50,000 iteration and 
generate plots that illustrated the expected change in growth parameters 
for each 5 % increase in exposure, relative to no exposure. 

2.6.5. Sensitivity analyses 
To account for exposure measurement error, we applied a random- 

intercept model with 100 replications to calculate the variance of the 
estimated effects (Bartlett et al., 2009) using the mecor R package (Nab 
et al., 2021). This maximum likelihood-based method allows for 
correction of the dose–response function for measurement error occur-
ring in the exposure (Carroll, 2006). It estimates the unobserved expo-
sure Xi (real exposure measured without error) using ki error-prone 
measurements (Wi1,⋯,Wiki ) of Xi and other covariates. Then we used the 
predicted values of Xi in the regression model. 

Finally, to account for the effect of the exposure standardization on 
processing and assay conditions, we ran additional analysis using non- 
standardized biomarker concentrations. 

3. Results 

On average, women were 32.1 years old and delivered at 40.0 
gestational weeks (Table 1). Detection rates were above 99 % for all 
phthalate and DINCH metabolites (Table 2). We observed moderate 
correlations between urinary phthalate/DINCH metabolite concentra-
tions within the same time point (Spearman’s correlation estimate rho 
ranged between 0.12 and 0.64), and low to moderate correlation be-
tween trimesters (rho ranged between 0.03 and 0.62) (Supplementary 
Figure 2). 

3.1. Individual phthalate/DINCH metabolite concentrations and growth 
outcomes 

Mono-iso-butyl phthalate (MiBP) concentrations were positively 
associated with all ultrasound measures at second trimester except for 
femur length (Fig. 1). Specifically, MiBP exposure at second trimester 
was associated with increased head circumference (β = 1.44 mm, 95 % 
CI = 0.16 to 2.72 mm), abdominal circumference (β = 1.49 mm, 95 % CI 
= 0.03 to 2.94 mm), and biparietal diameter (β = 0.46 mm, 95 % CI =
0.03 to 0.89 mm) (Supplementary Table 4). While effect estimates were 
also positive for third trimester fetal growth measurements, confidence 
intervals were larger (Fig. 1). 

Mono-n-butyl phthalate (MnBP) concentrations were positively 
associated with all growth outcomes measured at the second trimester 
(p-values ranged between 0.01 and 0.07, Supplementary Table 4). 
Positive associations were also observed at third trimester between 
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pregnancy MnBP concentrations and biparietal diameter (β = 0.66 mm, 
95 % CI = 0.07 to 1.25 mm) and femur length (β = 0.38, 95 % CI = 0.00 
to 0.76 mm). 

Other phthalates were not associated with any fetal growth outcome. 
Overall, there was no association with birth outcomes. 

3.2. Sex-specific associations 

We detected interactions with child’s sex (p-value < 0.2) for several 
phthalates–growth outcome pairs, however, after stratification for 
child’s sex, only the associations with MnBP were significant (Fig. 2). 
Specifically, the positive associations observed in our main analysis 
between MnBP, estimated fetal weight, and head and abdominal cir-
cumferences were observed in males (β = 0.32 g, 95 % CI = 0.12 to 0.51 
g, β = 2.99 mm, 95 % CI = 0.94 to 5.04 mm and β = 3.19 mm, 95 % CI =
0.95 to 5.43 mm, respectively) but not in females (β = 0.05 g, 95 % CI =
-0.12 to 0.23 g, β = 0.65 mm, 95 % CI = -1.05 to 2.36 mm and β = 0.51 
mm, 95 % CI = -1.50 to 2.51 mm, respectively; Supplementary Table 5). 

3.3. Phthalate/DINCH metabolites mixture and growth outcomes 

Mixture of phthalate/DINCH metabolites was not associated with 
ultrasound parameters at second trimester, while it was positively 
associated with estimated fetal weight at the third trimester and showed 
a positive trend of association with abdominal circumference (Fig. 3). 
Specifically, fetuses exposed to the 75th percentile of the mixture 
showed, on average, a higher estimated fetal weight of 184.89 g (95 % 
CI, 52.28 to 317.50 g) and a longer abdominal circumference of 5.65 
mm (95 % CI, − 0.41 to 11.71 mm), compared to no exposure. Similarly 
to the individual biomarker analysis, there was no association with birth 
outcomes. 

3.4. Sensitivity analyses 

Results of the sensitivity analyses using an algorithm to account for 
measurement error in the exposure were overall similar to those of our 
main analysis. For the phthalate exposures identified as associated with 
growth outcomes in the main analysis (MiBP and MnBP), the corrected 
effect estimates were generally further away from zero compared to 
those of the main analysis, but the CIs were notably wider (Supple-
mentary Table 6). However, this analysis accounting for exposure 
measurement error revealed one new isolated association at second 
trimester between ΣDINCH concentrations and increased abdominal 
circumference (β = 2.49 mm, 95 % CI = 0.34 to 7.11 mm compared to β 
= 0.25 mm, 95 % CI = -0.70 to 1.21 mm in main analysis). 

Associations using non-standardized pregnancy phthalate metabolite 
concentrations gave overall similar results to those of our main analysis, 
with most of the associations observed between MiBP, MnBP and growth 
parameter at the second trimester (Supplementary Table 7). The analysis 
using the non-standardized exposure concentrations revealed one new 
isolated association at second trimester between ΣDINCH concentra-
tions and increased biparietal diameter (p-value of 0.05 [β = 0.25 mm, 
95 % CI = 0.00 to 0.51 mm] compared to a p-value of 0.1 [β = 0.24 mm, 
95 % CI = -0.04 to 0.51 mm] in main analysis). 

4. Discussion 

Relying on collection of repeated within-subject urine samples over 
pregnancy, we identified positive associations between the mixture and 
estimated fetal weight at third trimester, as well as between two indi-
vidual metabolites, MiBP and MnBP and most of the growth parameters 
measured during pregnancy, but not at birth. When interaction with 
child’s sex was detected (MnBP and estimated fetal weight, head and 
abdominal circumferences), stronger associations were observed among 
males than females. MiBP and MnBP are metabolites of two dibutyl 
phthalates (di-iso-butyl phthalate [DiBP] and di-n-butyl phthalate 
[DnBP], respectively) that differ by their structural isomerism (Centers 
for Disease Control and Prevention, 2017; Koch et al., 2012). Both are 
used as industrial solvents or additives in personal care products and 
food (Kavlock et al., 2002) and in our study, their concentrations were 
highly correlated within trimesters (rho of 0.60 and 0.64 at second and 
third trimester, respectively), suggesting similar sources of exposure as 
also discussed by Koch and colleagues (Koch et al., 2013). Other 
phthalate metabolites were not associated with any growth outcome. 
Finally, sensitivity analysis accounting for exposure measurement error 
gave similar results overall, but revealed that in the second trimester 
DINCH was positively associated with abdominal circumference. 

Most studies assessing maternal urinary concentration of MnBP and 
MiBP did not report associations with ultrasound measurements (Botton 
et al., 2016; Ferguson et al., 2016; Goodrich et al., 2019; Zhao et al., 
2014), with few exceptions (Casas et al., 2016; Santos et al., 2021; 
Stevens et al., 2023). The lack of association reported in most studies for 
MnBP and MiBP, may result from low number of urine samples collected 
per woman (N ranged between 1 and 4) (Perrier et al., 2016). The re-
ported intraclass correlation coefficients (ICC) ranged from 0.32 to 0.57 

Table 1 
Characteristics of the mother–child pairs included in SEPAGES couple-child 
cohort study (France, 2014–2017, n = 478).  

Characteristic Distribution 

n (%) Median [25th, 75th 
centiles] 

Maternal weight before pregnancy 
(kg)  

59.0 [54.0; 66.0] 

Missing 0 (0.0)  
Maternal height (cm)  165 [161; 169] 
Missing 4 (0.8)  
Maternal age at conception (years)  32.1 [29.9; 35.2] 
Missing 0 (0.0)  
Maternal education after high school (years) 
< 3 82 (17.2)  
3–4 125 

(26.2)  
> 4 268 

(56.1)  
Missing 3 (0.6)  
Maternal active smoking during trimester 2 
≤ 1 cigarette/day 427 

(89.3)  
> 1 cigarette/day 11 (2.3)  
Missing 40 (8.4)  
Parity before the index pregnancy 
Nulliparous 219 

(45.8)  
1 child 211 

(44.1)  
≥ 2 children 48 (10.0)  
Missing 0 (0.0)  
Duration of gestation (weeks)a  40.0 [39.0; 40.7] 
< 37 weeks 21 (4.4)  
≥ 37 weeks 455 

(95.2)  
Missing 2 (0.4)b  

Child’s sex 
Female 220 

(46.0)  
Male 256 

(53.6)  
Missing 2 (0.4)b  

Weight at birth (g)  3280 [3040; 3560] 
< 2500 g 17 (3.6)  
≥ 2500 g and < 4000 g 422 

(88.3)  
≥ 4000 g 36 (7.5)  
Missing 3 (0.6)  

Abbreviations: LMP: last menstrual period. 
a Based on the date of the LMP or gestational duration assessed by the 

obstetrician if it differed from the LMP-based estimate by more than 2 weeks. 
b Two recruited women had ultrasound data but dropped out of the study 

before delivery. 
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Table 2 
Average maternal urinary phthalate metabolite concentrations assessed in weekly pools collected in the second and third trimesters of pregnancy, without or with standardization on sampling and assay conditions (n =
478 pregnant women).  

Phthalate/DINCH metabolite LOD (µg/L) Raw concentrations  Standardizeda concentrations 

Trimester 2 urine pool  Trimester 3 urine pool  Trimester 2 urine pool  Trimester 3 urine pool 

>LOD (%) Percentiles  >LOD (%) Percentiles  >LOD (%) Percentiles  >LOD (%) Percentiles 

5th 50th 95th  5th 50th 95th  5th 50th 95th  5th 50th 95th 

MBzP 0.07 100  1.5  4.8  17.3  100  1.6  4.4 18.1  100 1.7 4.8 17.3  100 1.5 4.6 18.4 
MEP 0.2 100  6.4  24.8  146.4  100  5.0  21.6 139.7  100 6.4 24 136.9  100 4.9 20.8 131.3 
MiBP 0.2 100  6.6  18.1  53.8  100  5.9  18.2 67.3  100 6.6 15.8 46.5  100 5.5 15.8 53.3 
MnBP 0.2 100  5.4  12.6  40.5  100  4.7  13.1 38.9  100 4.8 11.2 33.6  100 4.1 11.8 33.6 
oh-MPHP 0.07 100  0.4  0.9  2.7  100  0.3  0.8 2.2  100 0.5 0.9 2.6  100 0.5 0.8 2.4 
MECPP 0.7 100  5.4  10.5  29.0  100  4.9  10.3 31.3  100 5.1 9.8 26.3  100 5.1 10.1 26.6 
MEHHP 0.2 100  3.2  7.0  23.5  100  2.6  7.0 20.9  100 3.2 6.9 24.1  100 2.8 7.2 21.3 
MEHP 0.2 100  0.7  2.3  8.0  99.8  0.5  1.9 7.0  100 0.8 2.4 8.3  100 0.5 1.9 6.8 
MEOHP 0.2 100  2.2  5.2  17.2  100  2.1  5.4 16.5  100 2.3 5.0 16.6  100 2.0 5.3 15.1 
MMCHP 0.7 99.4  5.0  9.4  25.2  99.6  4.5  9.3 24.4  99.4 4.2 7.6 19.8  99.6 4.1 7.6 19.7 
ΣDEHP* / /  0.1  0.1  0.3  /  0.1  0.1 0.3  / / / /  / / / / 
cx-MiNP 0.4 100  2.5  4.6  27.1  100  2.3  4.4 18.2  100 2.6 4.6 26.0  100 2.4 4.4 15.5 
oh-MiNP 0.1 100  1.7  4.9  28.7  100  1.5  4.5 29.3  / / / /  / / / / 
oxo-MiNP 0.1 100  0.8  2.2  17.2  100  0.8  2.2 14.4  100 0.8 2.1 14.5  100 0.7 2.0 11.9 
ΣDiNP* / /  0.0  0.0  0.2  /  0.0  0.0 0.2  / / / /  / / / / 
oh-MINCH 0.07 100  0.5  1.5  13.6  100  0.4  1.3 9.2  100 0.7 1.7 15.1  100 0.6 1.6 11.0 
oxo-MINCH 0.07 99.8  0.4  1.1  8.9  99.8  0.4  1.1 7  99.8 0.6 1.4 10.1  100 0.5 1.4 9.2 
ΣDINCH* / /  0.0  0.0  0.1  /  0.0  0.0 0.1  / / / /  / / / / 

Note: Units are in µg/L except for molar sums (ΣDEHP, ΣDiNP and ΣDINCH) that are displayed in µmol/L. 
Abbreviations: cx-MiNP: mono-4-methyl-7-carboxyoctyl phthalate, DEHP: di(2-ethylhexyl) phthalate, DINCH: 1,2-cyclohexane dicarboxylic acid, diisononyl ester, DiNP: diisononyl phthalate, LOD: limit of detection, 
MBzP: monobenzyl phthalate, MECPP: mono(2-ethyl-5-carboxypentyl) phthalate, MEHHP: mono(2-ethyl-5-hydroxyhexyl) phthalate, MEHP: mono(2-ethylhexyl) phthalate, MEOHP: mono(2-ethyl-5-oxohexyl) phthalate, 
MEP: monoethyl phthalate, MiBP: mono-iso-butyl phthalate, MnBP: mono-n-butyl phthalate, MMCHP: mono-2-carboxymethyl hexyl phthalate, oh-MINCH: 2-(((hydroxy-4-methyloctyl)oxy)carbonyl)cyclo-
hexanecarboxylic acid, oh-MiNP: mono-4-methyl-7-hydroxyoctyl phthalate, oh-MPHP: 6-hydroxy monopropylheptyl phthalate, oxo-MINCH: 2-(((4-methyl-7-oxyooctyl)oxy)carbonyl)cyclohexanecarboxylic acid, oxo- 
MiNP: mono-4-methyl-7-oxooctyl phthalate, *ΣDEHP: molar sum (µmol/L) of DEHP metabolites (MECPP, MEHHP, MEHP, MEOHP, MMCHP), *ΣDINCH: molar sum (µmol/L) of DINCH metabolites (oh-MINCH, oxo- 
MINCH), *ΣDiNP: molar sum (µmol/L) of DiNP metabolites (cx-MiNP, oh-MiNP, oxoMiNP). 

a Raw concentrations were standardized on sampling and assay conditions (Guilbert et al., 2021; Mortamais et al., 2012; Philippat et al., 2014). oh-MiNP concentrations were not standardized either as none of the 
considered conditions was associated with this phthalate. 
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for MnBP and from 0.34 to 0.58 for MiBP (reviewed by (Casas et al., 
2018)), suggesting moderate temporal variability for these compounds. 
In our study relying on pooled biospecimens, the ICC of MnBP and MiBP 
in pregnant women were 0.58 and 0.60, respectively (Philippat et al., 
2021). Among the few studies suggesting association for these two 
compounds, MnBP has been negatively associated with fetal length at 
third trimester (Santos et al., 2021) and head circumference during the 
second trimester (Casas et al., 2016), which is not consistent with our 
results suggesting positive associations with these outcomes. Results for 
abdominal circumference and estimated fetal weight were mixed. One 
study, in line with our results, reported positive association with MnBP 
at third trimester in males but not in girls (Casas et al., 2016), while 
another reported negative association with abdominal circumference for 
metabolites of both DnBP and DiBP (Stevens et al., 2023). Overall, our 

results on a positive association between MnBP and MiBP are inconsis-
tent with most of the previously published studies investigating prenatal 
exposure to MnBP and MiBP. 

We did not find any association with birth measurements. This 
highlighted the distinctions between evaluations of growth during 
pregnancy (ultrasound measurements) and measurements at birth, and 
suggested that birth measurements may be an inadequate proxy for fetal 
growth, as they do not distinguish constitutionally small fetuses from 
growth-restricted ones. In line with our results, others investigating 
either individual metabolites (Botton et al., 2016; Chiu et al., 2018; 
Philippat et al., 2019; Shoaff et al., 2016; Woods et al., 2017) or mixture 
(Hu et al., 2021; Kalloo et al., 2020) did not report associations with 
birth outcomes. However, several others studies have reported associ-
ations with anthropometric measurements at birth, with the sign of the 

Fig. 1. Adjusted associations between pregnancy phthalate/DINCH metabolite concentrations and standard deviation of growth outcomes in utero (trimesters 2 and 
3) and at birth. β regression estimates correspond to the change in standard deviation of the considered growth outcome associated with a 1-unit increase in 
standardized ln-transformed urinary phthalate/DINCH metabolite concentration.Trimester 2 outcomes were related to trimester 2 exposures while trimester 3 and 
birth outcomes were related to trimesters 2 and 3 averaged exposures. Regression models were adjusted for maternal height, maternal pre-pregnancy weight, 
maternal age, maternal active smoking during trimester 2, maternal education level, gestational age at measurement, child’s sex, and parity. β regression estimates 
correspond to the change in standard deviation of the considered growth outcome associated with a 1-unit increase in standardized ln-transformed urinary phthalate/ 
DINCH metabolite concentration. For the original units of growth measurements refer to the Supplementary Table 3. β regression estimates corresponding to the 
change in millimeter or gram of the considered growth outcome are provided in Supplementary Table 4. Abbreviations: cx-MiNP: mono-4-methyl-7-carboxyoctyl 
phthalate, MBzP: monobenzyl phthalate, MECPP: mono(2-ethyl-5-carboxypentyl) phthalate, MEHHP: mono(2-ethyl-5-hydroxyhexyl) phthalate, MEHP: mono(2- 
ethylhexyl) phthalate, MEOHP: mono(2-ethyl-5-oxohexyl) phthalate, MEP: monoethyl phthalate, MiBP: mono-iso-butyl phthalate, MnBP: mono-n-butyl phthalate, 
MMCHP: mono-2-carboxymethyl hexyl phthalate, oh-MINCH: 2-(((hydroxy-4-methyloctyl)oxy)carbonyl)cyclohexanecarboxylic acid, oh-MiNP: mono-4-methyl-7- 
hydroxyoctyl phthalate, oh-MPHP: 6-hydroxy monopropylheptyl phthalate, oxo-MINCH: 2-(((4-methyl-7-oxyooctyl)oxy)carbonyl)cyclohexanecarboxylic acid, oxo- 
MiNP: mono-4-methyl-7-oxooctyl phthalate, ΣDEHP: molar sum of DEHP metabolites (MECPP, MEHHP, MEHP, MEOHP, MMCHP), ΣDINCH: molar sum of DINCH 
metabolites (oh-MINCH, oxo-MINCH), ΣDiNP: molar sum of DiNP metabolites (cx-MiNP, oh-MiNP, oxo-MiNP). 
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effect depending on the phthalate-outcome pair studied (Ferguson et al., 
2022; Kamai et al., 2019; Nidens et al., 2021; Qian et al., 2023; Santos 
et al., 2021). When specifically considering exposure to MiBP and MnBP 
(or their parent compounds DiBP and DnBP, respectively), while some 
studies have reported no associations (Bloom et al., 2021; Chiu et al., 
2018; Gao et al., 2017; Goodrich et al., 2019; Shoaff et al., 2016; Stevens 
et al., 2022; van den Dries et al., 2021; Woods et al., 2017), both positive 
(Guo et al., 2020, 2022; Messerlian et al., 2017; Watkins et al., 2016; 
Zhang et al., 2018) and negative associations have been observed with 
birth measurements (Ferguson et al., 2022; Qian et al., 2023; Santos 
et al., 2021; Stevens et al., 2023). 

In the sensitivity analyses, the regression coefficient estimates 

obtained after accounting for exposure measurement error may reflect 
the real effect estimates more accurately than the uncorrected ones, 
however their CIs usually show larger variances than CIs of classical 
linear regression (Perrier et al., 2016), and thus should be interpreted 
with caution. Interestingly, both sensitivity analyses (after accounting 
for exposure measurement error and using non-standardized pregnancy 
phthalate metabolite concentrations), identified positive associations 
between DINCH concentrations and abdominal circumference and 
biparietal diameter at the second trimester. DINCH is a new compound 
replacing the high molecular weight phthalates, such as DEHP. The 
literature on prenatal exposure to this compound is scarce. To our 
knowledge, only one study investigated the association between this 

Fig. 2. Adjusted associations between pregnancy phthalate/DINCH metabolite concentrations and standard deviation of growth outcomes in utero (at trimester 2 and 
3) and at birth in a sex-stratified analysis. Only phthalate/DINCH metabolites showing p-values for interaction with child’s sex < 0.2 are displayed. For MBzP and 
MiBP no interactions with child’s sex were detected. Trimester 2 outcomes were related to trimester 2 exposures while trimester 3 and birth outcomes were related to 
trimesters 2 and 3 averaged exposures. Regression models were adjusted for maternal height, maternal pre-pregnancy weight, maternal age, maternal active smoking 
during trimester 2, maternal education level, gestational age at measurement, and parity. β regression estimates correspond to the change in standard deviation of the 
considered growth outcome associated with a 1-unit increase in standardized ln-transformed urinary phthalate/DINCH metabolite concentration. For the original 
units of growth measurements refer to the Supplementary Table 3. Results for sex-stratified analysis with β regression estimates corresponding to the change in 
millimeter or gram of the considered growth outcome are provided in Supplementary Table 5. Abbreviations: cx-MiNP: mono-4-methyl-7-carboxyoctyl phthalate, 
DEHP: di(2-ethylhexyl) phthalate, DINCH: 1,2-cyclohexane dicarboxylic acid, diisononyl ester, DiNP: diisononyl phthalate, MBzP: monobenzyl phthalate, MECPP: 
mono(2-ethyl-5-carboxypentyl) phthalate, MEHHP: mono(2-ethyl-5-hydroxyhexyl) phthalate, MEHP: mono(2-ethylhexyl) phthalate, MEOHP: mono(2-ethyl-5- 
oxohexyl) phthalate, MEP: monoethyl phthalate, MiBP: mono-iso-butyl phthalate, MnBP: mono-n-butyl phthalate, MMCHP: mono-2-carboxymethyl hexyl phtha-
late, oh-MINCH: 2-(((hydroxy-4-methyloctyl)oxy)carbonyl)cyclohexanecarboxylic acid, oh-MiNP: mono-4-methyl-7-hydroxyoctyl phthalate, oh-MPHP: 6-hydroxy 
monopropylheptyl phthalate, oxo-MINCH: 2-(((4-methyl-7-oxyooctyl)oxy)carbonyl)cyclohexanecarboxylic acid, oxo-MiNP: mono-4-methyl-7-oxooctyl phthalate, 
ΣDEHP: molar sum of DEHP metabolites (MECPP, MEHHP, MEHP, MEOHP, MMCHP), ΣDINCH: molar sum of DINCH metabolites (oh-MINCH, oxo-MINCH), ΣDiNP: 
molar sum of DiNP metabolites (cx-MiNP, oh-MiNP, oxo-MiNP). 
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Fig. 3. Change for each 5% increase in exposure to the mixture of phthalate/DINCH metabolite concentrations and growth outcomes in utero (at trimester 2 and 3) 
and at birth. Trimester 2 outcomes were related to trimester 2 exposures while trimester 3 and birth outcomes were related to trimesters 2 and 3 averaged exposures. 
BKMR models were adjusted for maternal height, maternal pre-pregnancy weight, maternal age, maternal active smoking during trimester 2, maternal education 
level, gestational age at measurement, child sex and parity. Abbreviations: BKMR: Bayesian kernel machine regression 
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compound and fetal growth assessed in 254 pregnant women recruited 
between 2017 and 2020, and reported no associations (Stevens et al., 
2023). Additionally, one study has measured prenatal DINCH concen-
tration, but investigated post-natal weight trajectory among 1118 
mother–child pairs in Sweden (Svensson et al., 2021). Studies on rodent 
models and in vitro on human cells reported that DINCH was associated 
with an activation of the peroxisome proliferator-activated receptors 
(PPARs) (Campioli et al., 2019; Engel et al., 2018). 

Most associations reported in this study were positive, suggesting 
increased fetal growth to be associated with increased phthalate expo-
sure. Similarly to undergrowth, fetal overgrowth can also lead to peri-
natal complication for the fetus or the mother, such as preterm birth 
(Elenis et al., 2020; Pedersen et al., 2008). Fetal overgrowth has also 
been associated with higher risk to develop obesity, diabetes, and car-
diovascular disease in childhood and later in life (Lai et al., 2019; Skilton 
et al., 2014). 

Regarding mechanisms by which phthalates can affect growth and 
metabolism, these may also be pro-inflammatory effects through upre-
gulation of the PPARs, and specifically PPAR-gamma which contributes 
to adipocyte differentiation and insulin sensitization, as shown for non- 
phthalate plasticizers (i.e., DINCH) (Campioli et al., 2019; Engel et al., 
2018). In addition to the well-known effect on androgen receptors (anti- 
androgenic effect) some phthalates can also target the thyroid hormone 
pathway; of interest, MnBP has been positively associated with 3′- 
triiodothyronine during pregnancy among women with normal iodine 
concentration from the SEPAGES cohort (Nakiwala et al., 2022). While 
DiBP has been less studied, the transplacental passage of DnBP metab-
olites has been demonstrated in rats, with its predominant metabolite, 
MnBP, largely responsible for the observed embryotoxic effects (Sail-
lenfait, 1998). Oral exposure to DnBP in mice has been associated with 
delayed ossification and decreased fetal weight of the litter (Ema et al., 
1993; Shiota et al., 1980; Shiota and Nishimura, 1982). 

Furthermore, phthalates can affect the aryl hydrocarbon receptor 
(Mankidy et al., 2013) known to be involved in the regulation of lipo-
genesis and glucose homeostasis (Sato et al., 2008; Thackaberry et al., 
2003). Finally, in our study, for associations modified by child’s sex, 
they were overall stronger among males. Sex-specific associations may 
result from the disruption of the androgen-signaling pathway in males 
through interaction between phthalates and nuclear androgen receptors 
(Swedenborg et al., 2009), or may be explained by sexually dimorphic 
placental response (Sood et al., 2017). For example, DnBP shows an anti- 
androgenic activity, with a decrease in testosterone production being 
the most commonly described effect (Czubacka et al., 2021), comforting 
the plausibility of the stronger effect that we observed among males. 
However, our sex-specific results should be interpreted cautiously since 
our sample size was limited (256 males and 220 females). 

Our study is not without limitations. First, the sample size of our 
study was modest and might not allow for the detection of small effects. 
However, the unique urine collection scheme applied in our study (up to 
42 urine samples per participant during pregnancy) should better 
represent prenatal exposure during the second and third trimester, 
decrease bias in the effect estimates (Perrier et al., 2016), and thus in-
crease power compared to studies of similar sample size but relying on a 
single urine sample. Second, we were not able to assess exposure at first 
trimester. Finally, we cannot rule out residual confounding by addi-
tional unmeasured factors, such as maternal diet, which could be asso-
ciated with phthalate exposure (Serrano et al., 2014) and fetal growth 
(Lu et al., 2016). Nevertheless, one study reported no relationship be-
tween diet and DiBP and DnBP metabolite concentrations (Koch et al., 
2013), suggesting that, for those metabolites, our results are unlikely to 
be confounded by maternal diet. 

In conclusion, results reported for this prospective pregnancy cohort 
revealed that prenatal concentrations of MiBP and MnBP were associ-
ated with increased fetal growth parameters, with stronger associations 
observed among males. The mixture of phthalates/DINCH metabolites 
was also associated with increased estimated fetal weight at third 

trimester. The sensitivity analyses revealed additional positive associa-
tions between ΣDINCH at second trimester and abdominal circumfer-
ence and biparietal diameter, highlighting the need for investigation of 
this overlooked compound. Further investigation on the effects of 
phthalates on child health would be relevant to expand current knowl-
edge on their long-term effects. 
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Robinson, O., Urquiza, J., Vafeiadi, M., Vernet, C., Waiblinger, D., Wright, J., 
Thomsen, C., Slama, R., Vrijheid, M., 2018. Variability of urinary concentrations of 
non-persistent chemicals in pregnant women and school-aged children. Environ. Int. 
121, 561–573. https://doi.org/10.1016/j.envint.2018.09.046. 

Cathey, A.L., Watkins, D.J., Rosario, Z.Y., Vélez, C., Mukherjee, B., Alshawabkeh, A.N., 
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