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From interaction networks to interfaces,
scanning intrinsically disordered regions
using AlphaFold2

Hélène Bret1, Jinmei Gao1, Diego Javier Zea1, Jessica Andreani 1 &
Raphaël Guerois 1

The revolution brought about by AlphaFold2 opens promising perspectives to
unravel the complexity of protein-protein interaction networks. The analysis
of interaction networks obtained from proteomics experiments does not
systematically provide the delimitations of the interaction regions. This is of
particular concern in the case of interactions mediated by intrinsically dis-
ordered regions, inwhich the interaction site is generally small. Using a dataset
of protein-peptide complexes involving intrinsically disordered regions that
are non-redundant with the structures used in AlphaFold2 training, we show
that when using the full sequences of the proteins, AlphaFold2-Multimer only
achieves 40% success rate in identifying the correct site and structure of the
interface. By delineating the interaction region into fragments of decreasing
size and combining different strategies for integrating evolutionary informa-
tion, wemanage to raise this success rate up to 90%.We obtain similar success
rates using a much larger dataset of protein complexes taken from the ELM
database. Beyond the correct identification of the interaction site, our study
also explores specificity issues. We show the advantages and limitations of
using the AlphaFold2 confidence score to discriminate between alternative
binding partners, a task that can be particularly challenging in the case of small
interaction motifs.

Protein interactions are crucial for a vast number of processes in living
organisms. Strong evidence points to the biological importance of
interactions mediated by intrinsically disordered protein regions
(IDRs), such as short linear motifs, in particular for regulation, trans-
port and signaling, and in a number of human pathologies1–3. Estab-
lished resources exist to identify already annotated binding motifs,
such as the Eukaryotic Linear Motif (ELM) repository4, to visualize
evolutionary properties5 and to screen full protein sequences for dis-
ordered stretches that might fold upon binding, as with the IUPred
server6.

Protein interactions are connected within complex networks
called interactomes, which can be derived from large amounts of

experimental data such as proteomics. Much effort has been invested
into mapping and modeling interactions at the scale of these
interactomes7,8. In these networks, most protein-protein interactions
evolve under negative selection to maintain function and many of
them can rewire9, although at different evolutionary rates: stable
protein complexes evolve more slowly than most domain-motif
interactions10. Interactions in evolutionarily old, housekeeping pro-
tein complexes are conserved across different contexts (cell types,
tissues and conditions) while evolutionarily young interactions and
those mediated by disordered regions are more versatile11,12. Evolu-
tionary conservation has long been recognized as relevant to detect
binding motifs in disordered regions, as reviewed in13; however, the
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quality of themultiple sequence alignment (MSA) used for detection is
particularly crucial14.

AlphaFold2 revolutionized structure prediction for single pro-
teins by leveraging deep learning approaches to extract signal from
MSAs and output protein atomic 3D coordinates in an end-to-end
manner15. AlphaFold2 structure predictions for the entire human
proteome16 hinted that low prediction quality could pinpoint regions
likely to be intrinsically disordered. Subsequent studies confirmed that
AlphaFold2, although trained only on single proteins with a folded
structure, can be used as an intrinsic disorder predictor by repurpos-
ing low-confidence residue predictions17–19. AlphaFold2 low-
confidence predictions on protein surfaces might also be indicative
of possible binding regions20,21.

Very soon after its release, AlphaFold2 was also tested for its
capacity to predict protein-protein interactions. Despite not being
designed for this purpose, AlphaFold2 outperformed traditional
methods for the structural prediction of complexes between globular
protein domains, in terms of both success rate and model quality22–28.
AlphaFold-Multimer, specifically retrained on protein complexes, dis-
played improved performance for interfacemodeling over the original
AlphaFold222,23,29. At awider scale, a systematic exploration of the yeast
interactome used prefiltering with a fast version of RoseTTAFold30

followed by AlphaFold2 structure prediction31. This opened exciting
perspectives for the use of AlphaFold2 not only for complex structure
prediction, but also as an in silico screening tool for interactions, as
recently illustrated by the discovery of DONSON’s role in replication
initiation32.

AlphaFold2 predictions are sensitive to the input parameters,
input MSA and protein delimitations. For instance, the quality of
structural models could be significantly improved using the AFsample
strategy, relying on the massive generation of up to 6000 models
using different sampling schemes33. AlphaFold2 can also be made to
predict alternative conformational states for some proteins through
manipulation of the MSA34 either by subsampling35 or by in silico
mutagenesis36. For complexes, the generation of a paired MSA, where
species are matched between homologs of the different protein part-
ners, was not found to be necessary for AlphaFold2 to pick up inter-
action signal22,26, although combining unpaired and paired MSAs gave
the best results22. The AlphaPulldownpackage allows users to select or
screen protein fragments formodeling protein complexes, since some
interactions cannot be predicted if the full-length sequences are pro-
vided to AlphaFold237.

Interactions mediated by short peptides within disordered pro-
tein regions are quite specific and thus require extra care for handling
by AlphaFold2. Indeed, conformational versatility is even higher and
covariation signal is weaker than for globular complexes38. Traditional
tools to predict protein-peptide interactions include mostly docking
approaches, recently reviewed in39,40; some of these also make use of
evolutionary information13. Several recent studies have addressed the
ability of AlphaFold2 to predict protein-peptide complexes. An early
implementation already showed interesting predictive capacity,
including in cases where the peptide induces a large conformational
change of the protein and docking therefore most likely fails, and
without the need for a peptide MSA41. InterPepScore42, a graph neural
network used to score protein-peptide complexes for improving
Rosetta FlexPepDock refinement43, was also found beneficial to refine
AlphaFold-Multimer models. AlphaFold-Multimer performs better
than AlphaFold2 at protein-peptide complex prediction44, and sam-
pling a larger part of the conformational space byenforcing dropout at
inference time in AlphaFold-Multimer further increased the quality of
protein-peptide complex models45. Finally, the importance of choos-
ing the right delimitations to optimize the sensitivity of theAlphaFold2
predictions has recently been highlighted for a number of protein-
protein interactions involving disordered regions46.

In the present study, we investigate howbest to use AlphaFold2 to
make the leap from interaction networks to interfaces when dealing
with binding partners containing intrinsically disordered regions
(Fig. 1a). We carefully develop an unbiased benchmark of 42 protein-
peptide complexes sharing no similarity with any complex from the
AlphaFold-Multimer training dataset and assess the performance of
AlphaFold-Multimer on this dataset using different MSA schemes. We
show that performance is limited when full-length protein sequences
are used as input and considering delimited fragments increases the
success rate. We set the fragment size at 100 amino acids in order to
scan potential interacting regions within full-length sequences such as
those derived from large-scale interactome data. The fragment scan-
ning approachon the42protein ligands reveals that in 89%of the cases
the fragment with highest ipTM score matches the region containing
the correct binding site. Once the correct delimitations are identified,
we show a synergistic effect of combining different MSA schemes and
scores, reaching more than 90.5% success rate on our benchmark
dataset. We also observed this synergy when using a larger dataset of
923 protein-peptide interactions extracted from the ELM database.
Finally, our study also raises the issue of prediction specificity, which
may require the enumeration and ranking of potential anchoring sites,
and assesses the usefulness of AlphaFold confidence scores in dis-
criminating between possible binding regions.

Results
Selecting a test dataset of complexes not redundant with the
training set of AF2-Multimer
To assess the performance of AlphaFold2 (AF2) in predicting themode
of association between a protein (hereafter called the receptor) and a
small binding motif within a structurally disordered partner (the
ligand), it is important to study cases of complexes that do not have
homologs in the database on which AlphaFold2 has been trained. An
exampleof howAF2modelsmaybebiasedby existing structures in the
PDB is illustrated in Supplementary Fig. 1a. AF2-Multimer was trained
on structures released until 30 Apr 2018. An analysis of the structures
released after that date revealed that nearly 2,500 structures of com-
plexes involving small protein motifs had been deposited in the PDB
(Fig. 1b). A large number of these structures have significant simila-
rities in sequence or structure with structures released in the PDB
before May 2018. Following a strict treatment of this sequence and
structure redundancy (Fig. 1c, see Methods), we isolated a set of 42
complexes involving a receptor and a small peptide ligand that could
provide an unbiased estimate of AF2 performance in different condi-
tions (Supplementary Table 1). Among the 42 complexes, we observed
a diversity of subunit lengths (Fig. 1d) and a representative occurrence
of peptides with sizes ranging from 6 to 39 amino acids (Supplemen-
tary Fig. 1b) that are binding their receptors as helices, strands, coils or
combination of those (Supplementary Fig. 1c).

AF2 relies on multiple sequence alignments whose evolutionary
depth on the ligand peptide regionmay be limited due to the difficulty
of identifying homologs from a short IDR sequence. Hence, for each of
the proteins in this dataset, we used the full-length sequences of the
protein partners to construct MSAs and subsequently delineate the
interacting domains (Supplementary Fig. 2). These MSAs were com-
bined to generate mixed co-alignments in which partner sequences
belonging to the same species were paired while those with a single
partner homologpresent in a specieswere addedasunpaired, similarly
to ref. 47 (seeMethods). When the receptor and ligand are considered
in their integrality, the overall length of the concatenated sequences is
in majority between 1000 and 2000 amino acids, significantly larger
thanwhen the size of the inputs is delimited to the boundaries used for
structural determination (Fig. 1d). As a first analysis, we assessed
whether AlphaFold2 was able to identify the correct binding site when
proteins were considered in their full length. This is typical of a
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scenario where knowing that two proteins are interacting, we have no
initial indication of which regions are involved.

Success rates of AF2-Multimer for full-length and delimited
input protein partners
For each run, 25 models were generated with AF2-Multimer para-
meters, following the reference protocol29. The AF2 model confidence

score (noted AF2 confidence score below), consisting of an 80:20
linear combination of ipTMscore and pTMscore, was used to rank the
models and identify the best model. The accuracy of this best model
was used to calculate the overall success rate for the 42 cases using the
stringent criteria defined by the CAPRI community to assess the pre-
cision of protein-peptide complex models (see Methods and Supple-
mentary Data 1 for detailed scores). With full-length protein partners,
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Fig. 1 | General presentation of the benchmark dataset. a Disentangling the
complexity of a protein interaction network (sketched on the left) by analyzing
binary interactions between a central gray protein and its blue binding partners can
be complicated in case they contain intrinsically disordered regions. b General
pipeline to select the PDB entries that can be used as test complexes from those
released after May 2018. They were required to share no sequence or structural
redundancy with any of the complex structures that were used for AlphaFold2-
Multimer training. c Example illustrating filters used to assess the lack of redun-
dancy between the candidate complex and structures published before May 2018.
Two filters were used, one based on sequence identity using a 30% seq. id.

threshold and a second retrieving all complexes involving a receptor homolog
using PPI3D57 and checking for lack of interface structural similarity using MM-
align59. d Boxplots showing the cumulative size distribution of the 42 inputs
(receptor+ligand) that were processed by AlphaFold2, either in protocols where
sequences were delineated following the boundaries of the experimental struc-
tures or in those where full lengths of ligands and/or receptors were used. In the
boxplot representation center line is themedian, min andmax limits of the box are
the lower and upper quartiles, whiskers are the 1.5x interquartile range and points
represent outliers. Source data are provided as a Source Data file.
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weobtained a success rate of 42.9% (Fig. 2a), rather lowwith respect to
that reported in the evaluationof AF2-Multimer forprotein complexes,
whichwasbenchmarkedusingdelimited sequence inputs29. Analysisof
the quality of the best model as a function of the size of the modeled
assembly (Supplementary Figure 3a) shows that the performance
tends to decrease for large sizes above 1600 amino acids although it is
still possible to observe good predictions above this size threshold.
Below 1500 amino acids, the success rates do not appear correlated
with the size of the assembly or the nature of the peptide secondary
structure (Supplementary Figure 3a).

Next, the sequences of each binding partner were delimited
according to their boundaries as observed in the experimental struc-
ture of the complex (Supplementary Fig. 2). When both the receptor
and ligand were delimited, the overall success rate was much higher,
reaching 78.6% of the 42 complexes correctly predicted (Fig. 2a). In
these first tests, the evolutionary information was integrated using the
mixed co-alignment mode described above. We also tested alignment
conditions in which the co-MSA is constructed from the same
sequences but concatenated as an unpaired alignment (without
matching homologous sequences between partners). In this unpaired
mode (Supplementary Fig. 2), the success rate remained similar at
78.6% (Fig. 2a), suggesting that homolog matching in the paired
alignment does not provide a major gain. We assessed a third predic-
tion mode in which no evolutionary information is added in the pep-
tide region, as performed in refs. 41,45 (Supplementary Fig. 2). With
this third approach, the performance obtained without evolutionary
information on the peptide side remains high, with 71.4% of correct
models for the 42 cases (Fig. 2a).

Such a good performance in the absence of any alignment asso-
ciatedwith the peptide confirms that the properties of the binding site
in the receptor are often sufficient to guide the interactionmodeof the
peptide41,45. Consistently, in a situation where the receptor is delimited
but the ligand is considered in its full-length sequence, the perfor-
mance drops back to a lower level of 52.4%, even when using the MSA
information on the ligand side (Fig. 2a, Supplementary Fig. 3b). Hence,
one of the difficulties encountered by AF2 in dealing with large IDR-
containing proteins lies in its ability to identify the correct interaction
region within the partner protein.

The success rates calculated above were obtained by selecting
only the model with highest AF2 confidence score among the 25 sam-
pled models. Considering the entire set of 75 models (25 models for
every complex in the three alignment conditions: mixed, unpaired,
no_ali) highlights a significant Pearson’s correlation of 0.84 between
the AF2 confidence score and the DockQ score, a commonly used
metrics to rate the accuracy of modeled interfaces with respect to the
reference complex48 (Fig. 3a). Grouping the models according to their
CAPRI quality ranks (Acceptable/Medium/High) (Fig. 3b) using the
stringent criteria used for protein-peptide complexes49 (see Methods)
highlights that above an AF2 confidence score of 0.65, the predicted
models are most often correct. There is also a minority of cases with a
score between 0.4 and 0.65 that are found correct (in the Acceptable
category) indicating that this twilight zone may be interesting to
investigate if no alternative solution has beendetected. In any case, the
graphs on Fig. 3a, b confirm that the AF2 confidence score (see
Methods) can be used as a reliable proxy for estimating the reliability
of a protein-peptide interaction prediction.

Success rates of AF2-Multimer considering protein fragments of
increasing size
When searching for an interaction site between two proteins, the
region involved in the interaction is usually not known precisely. In
order to use AF2 to carry out this task, and given the lower perfor-
mance of AF2 with full-length proteins, we explored how AF2 predic-
tions would be impacted by queries in which the bound motif is not
perfectly delineated and is embedded in a larger fragment that may

contain 100 or 200 additional amino acids. Extending the sequence
containing the binding motif of each complex with up to 100 or 200
amino acids, and delimiting the alignments constructed in a mixed
alignmentmode (Supplementary Fig. 2), we obtained a decrease by 2.4
to 11.9 points with success rates of 76.2% and 66.7%, respectively for
fragment size 100 and 200 (Fig. 2b). The success rate of 66.7%,
obtained for cases where the fragment extends the peptide motif by
200 amino acids, is substantially higher than the 42.9% obtained with
full-length proteins. This result underscores the interest of fragment-
based searching to identify potential interaction motifs between two
partners and to predict their recognitionmode. Previously (Fig. 2a), we
showed that the lack of evolution for the peptide was not very detri-
mental for a significant number of correct predictions (71.4%). This

Fig. 2 | AlphaFold2-Multimer success rates on the benchmark dataset using
different prediction modes. Stacked barplots reporting the success rates of
AlphaFold2 prediction depending on the types of co-alignment used. All success
rates are presented as the percentage of test cases in which the best AF2-Multimer
model (best AF2 confidence score) is of Acceptable (light color), Medium (medium
color) or High (dark color) quality according to the CAPRI criteria for protein-
peptide complexes49. a Success rates using (from left to right): full-length partners
with a mixed alignment generation mode (gray grades), delimited receptor with
full-length ligand with a mixed alignment generation mode (deep purple grades),
delimited partners with no evolutionary information for the peptide (cyan grades),
delimited partners with unpaired co-alignment (blue grades), delimited partners
with mixed alignment (blue grades). b Success rates using (from left to right):
delimited partners (blue grades) (same as rightmost bar in panel a), peptides
extended by 100 or 200 amino acids (purple grades), full-length partners (gray
grades) (same as leftmost bar in panel a). Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-023-44288-7

Nature Communications |          (2024) 15:597 4



trend is less pronounced when using fragments extended by 100 or
200 amino acids as shown in Supplementary Fig. 4a. Without ligand
alignment, there is a loss of performance of more than 20 points,
which highlights the importance of associating evolutionary informa-
tion when the binding site identification involves a systematic search
within larger fragments. For fragments of length 200, without evolu-
tionary information for the ligand, the success rate is 45.2%, almost as
low as the success rates obtained for full-length proteins with
evolution.

Success rates of AF2-Multimer when scanning a binding partner
with overlapping fragments of fixed size
The success rates obtained with extended fragments (Fig. 2b)
prompted us to assess whether AF2-Multimer would be suitable for
screening and ranking different overlapping fragments along the
sequenceof a binding partner. Todo this, we considered eachof the 42
pairs of binding partners in the benchmark dataset, delineated the
receptor binding domain and generated models of the complex
between this receptor domain and every fragment of the ligand pro-
tein of size 100 amino acids with overlaps of 30 amino acids between

fragments (Fig. 4a). The models were ranked according to their ipTM
scores (Fig. 4b) and discriminated based on the overlap of the frag-
ment with the binding site motif.

For 35 cases inwhich the ligand proteinwas larger than 100 amino
acids, the fragment with the highest ipTM score overlapped with the
correct region of binding in 31 cases (89 % success rate) (Fig. 4c and
Supplementary Data 2). Four cases were incorrectly predicted, i.e. one
fragment not overlapping the binding site had the highest ipTM score.
In three of these four cases, the correct models had low ipTM scores.
However, the fourth case, 39_7O6N, was incorrectly predicted despite
the correct model having an ipTM score of 0.646. In PDB 7O6N, the
receptor is in the formof a dimer. Since its ligand binds as a helix away
from the dimer interface, the receptor was modeled as a monomer in
the benchmark (Supplementary Fig. 5a). However, the surface of the
receptor involved in homodimer formation tends to create an inter-
action surface that traps the 100 amino acid long fragments and
generates ipTM scores higher than that of the correct interface (Sup-
plementary Fig. 5d, e). When the ligand was delimited as in the PDB,
AF2-multimer managed to predict the correct interface even with the
receptor as a monomer (Supplementary Fig. 5b, c). This example
highlights the importance of modeling the receptors with as many
permanent binding partners as possible (either as homomers or het-
eromers) to prevent large hydrophobic surfaces frommisleading AF2-
multimer predictions with extended fragments containing short linear
binding motifs.

Advantage of combining different alignment modes
The performance obtained using different alignmentmodes and input
lengths suggests that some complexes can be correctly predicted
regardless of the protocol used, while othersmay be sensitive to these
input conditions. Overall, for 35.7% (15 complexes), a correct model
could be ranked first using the AF2 confidence score with any of the
input conditions, even using full-length alignments (Supplementary
Fig. 6). In contrast, other complexes could only be predicted correctly
with a limited set of conditions (Fig. 5a), suggesting a potential interest
for combining different strategies. Instead of considering 25 models
generated with every protocol, we analyzed a pool of 100 models
generated with four different protocols and ranked them according to
the highest AF2 confidence score. The resulting success rate improves
significantly, rising up to 90.5% (Fig. 5b). The AF2 model confidence
score is sufficiently correlated with the accuracy of the models that it
can be used to identify correct assemblies in much larger model sets.
We verified that sampling 100 models rather than 25 did not change
the success rates of single protocols, whereas generating 100 models
through a combination of four protocols increased the success rate by
almost 12 points, highlighting the value of increasing the sampling by
varying the properties of multiple sequence alignments (Supplemen-
tary Fig. 4b).

In an attempt to interpret the failures and successes of the tested
protocols, we performed a detailed analysis of complexes that speci-
fically succeededwith only a subset of the protocols and those that did
not succeed with any. A typical case is when the conformation of the
bound peptide is best predicted in the absence of evolutionary infor-
mation. The absence of evolutionary information was found to be
favorable for complexes such as 6ICV or 6YN0 that were not correctly
predicted when MSA was added to the peptide. In the case of 6ICV
(Fig. 6a), the peptide (blue) is predicted to adopt a helix-and-turn
conformationwith high confidencewhen the evolutionary information
of the MSA is included. This local structure is incompatible with the
extended bound conformation. In contrast, in the absence of evolu-
tionary information, the predicted structure of the peptide (light blue)
is in very good agreement with the experimental structure (red), sug-
gesting that the geometric constraints have been relaxed sufficiently
for the peptide to sample an extended geometry that was well eval-
uated by the AF2 confidence score.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Incorrect
Acceptable
Medium
High

AF2 model confidence score

D
oc

kQ
 S

co
re

a

b

AF2 model confidence score
0 0.2 0.4 0.6 0.8 1

Incorrect

Acceptable

Medium

High

C
AP

R
I P

ep
tid

e 
R

an
k

0.
65

Fig. 3 | Model quality depending on the value of the AF2 model
confidence score. a Distribution of DockQ scores48 for 75 models for every binary
protein-peptide complex (25 models in the three alignment conditions: mixed,
unpaired, no_ali) as a function of the AF2 model confidence score. Data points are
colored according to the model quality as rated by the DockQ score from low
(white) to high (dark gray) values. Pearson’s correlation is 0.84. b Boxplots of the
AF2 confidence score value distributions for the same set ofmodels, split bymodel
quality category according to the CAPRI protein-peptide criteria: High (sample size
n = 128, dark gray), Medium (n = 332, medium gray), Acceptable (n = 106, light
gray), Incorrect (n = 484, white). In the boxplot representation center line is the
median, min and max limits of the box are the lower and upper quartiles, whiskers
are the 1.5x interquartile range and points represent outliers. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-44288-7

Nature Communications |          (2024) 15:597 5



Other differences between the tested protocols could be
observed in case a motif, well predicted in a short fragment, was not
correctly predicted in longer ones. This is observed in 5 cases including
PDB cases 7F2D, 6ZW0 and 6JLH illustrated in Fig. 6b–d, respectively.
For these systems, considering the ligand peptide in the context of a
larger fragment with 200 additional amino-acids (dark blue models)
never led to a correct prediction by AF2, while the delimited peptides
(blue) were always modeled in good agreement with the experimental
reference structure (red). In almost all of these complexes, the origin

of the failure in the larger fragments seems to be due to the presence
of intramolecular contacts involving the peptide and surrounding
regions. In the case of 7F2D and 6ZW0, the peptide is located in the
vicinity of a globular domain with which it forms contacts of relatively
low confidence. However, these appear to be sufficient to interfere
with the generation of the native complex. In the third case, 6JLH, the
binding peptide is embedded in a longer coiled-coil that masks the
surface found to bind the receptor experimentally. This prediction
would be consistent with the experimental study that showed the

Partner A

Full-length
MSA

Full-length
MSA

Scan N delimitations of 100 AA
Partner B

?

X

AF2 ipTM score?

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Best ipTM of Non Overlapping Fragment

B
es

t 
ip

TM
 o

f 
O

ve
rl
ap

pi
ng

 F
ra

gm
en

t

1_5N
C
L

2_5O
JR

3_5V
1U

*
4_6A

30*
5_6D

O
3*

6_6G
04*

7_6IC
V

8_6ID
X

9_6IX
Q

10_6J0W
11_6J0X
12_6JLH
13_6JW

J
14_6K

PB
15_6L0V
16_6LPH
17_6O

C
G

18_6PS
D

19_6PS
E

20_6R
K
O

*
21_6R

K
O

*
22_6SAT
23_6TW

N
24_6X

FK
25_6YN

0
26_7B

1J
27_7C

FC
28_7C

Z
M

29_7F2D
30_7M

K
K

31_7M
U

2
32_7N

W
1

33_7Q
D

W
34_7R

X
Q

35_7S
ID

36_6J08
37_6Z

W
0

38_7N
40

39_7O
6N

40_5O
W

5
41_6JM

T
42_6G

P7

0

0.2

0.4

0.6

0.8

1

ip
TM

 S
co

re
s

ipTM=0.81

14_6KPB

ipTM=0.65
39_7O6N

a

b

d

c

Fig. 4 | Systematic screening of the different fragments of a binding partner.
a Protocol used to screen the complete ligand sequence of a binding partner by
analyzing all 100 amino acid long fragments against the receptor delimited by the
length of its interaction domain. The fragment overlapping the correct binding site
shown in orange is colored red while the other fragments are blue. b The predicted
ipTM score is used to rank the different fragments and evaluate those that overlap
or not with the correct binding site. c Scatter plot showing the highest ipTM score
for themodel containing a fragmentoverlapping the correctbinding site compared

to thehighest ipTMscoreamongmodelswith nooverlap. 35 points are represented
and not 42 since 7 ligands have less than 100amino acids.dDetailed distribution of
ipTM scores for the 42 PDB cases of the benchmark with the fragment overlapping
the correct binding site as a red diamond and the non-overlapping ones as blue
diamonds. If two fragments overlap with the binding site, only the model with
highest ipTM score is represented in panels c and d. Source data are provided as a
Source Data file.
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interaction to be observed only in specific physiological contexts50.
This example together with another case also involving long coiled-
coils (7MU2) highlights the value of exploring different fragment
lengths to reveal the appropriate binding epitopes. Therefore, in the
cases where prediction performance varies between alignment con-
tent and delineation protocols, a common explanation is that the
bindingmotifmay be trappedormasked in a conformational state that
prevents prediction of its correct binding mode.

Four cases out of 42 failed, regardless of the alignment protocol.
In oneof these cases (PDB: 7CZM), the receptor itselfwasnot quitewell
folded, which may have made it difficult to sample a correct binding
mode. For one case (PDB: 6A30) where none of the tested protocols
converged to a correct model, we tested whether reducing the size of
the receptor itself would help. We reran this case with the same
alignments, testing if reduction in the size of the receptor could have
an impact. Splitting the receptor as two inputs of similar size led to the
generation of a correct model with a high AF2 confidence score with
one of those inputs, reaching 0.8 when using the protocol with no
peptide alignment but below 0.5 with all the other protocols.With this
additional complex, the percentage of cases that could be predicted
using AF2 rises above 92%. Hence, there is room for further improve-
ment by sampling simple alterations of the input MSAs and using the
AF2model confidence score as a guide for identification of the correct
protocol.

Specificity for similar binding motifs recognized by receptors
Out of the 42 cases in the test set, AF2 is able to correctly predict the
binding mode of a peptide to its receptor without any evolutionary
information for the peptide in 71.4% of the cases. Such a performance
suggests that the structural and evolutionary properties of the
receptor match well with the peptide sequence irrespective of its
conservation pattern. This calls into question the ability of AF2 to
distinguish cognate binding peptides from non-binding ones. This
issue may be particularly difficult in the challenging cases where two
short fragments embedded in long disordered regions of different
binding partners need to be discriminated while they tend to adopt a
similar local conformation. To address this issue, we distinguished
different classes of complexes based on the secondary structure
adoptedby thepeptide in its boundconformation in order to create 83
challenging cross-partners predictions between 23 receptors and
cognate or non-cognate ligands selected from the 42 cases of our test
set (Supplementary Table 2). We then assessed whether AF2 could
specificallypredict the bindingmodeof receptorswith their respective
peptides and distinguish them from potentially misleading peptides
taken from unrelated structures but sharing similar bound
conformations.

In total, 7 categories of peptide conformations were considered
(Supplementary Fig. 7). We distinguished those binding through a
small, medium, or long helix, those showing no canonical secondary
structure and thosebinding through the formationof a combinationof
helix and strand or a single or two beta-strands (Supplementary
Fig. 7a–g). To run the cross-partners interaction tests, we used the
protocol with noMSA in the peptide region. Over the 23 selected cases
for cross-partners analysis, 16 were successfully predicted by AF2
(70%) in agreement with the performance obtained with this protocol
on the 42 test cases. In Fig. 7a, the distribution of AF2 confidence
scores obtained for the models rated as correct using the CAPRI
protein-peptide criteria (darker blue distribution) differs significantly
from the distribution of the scores obtained with non-native peptide
ligands (light blue distribution). The AF2 confidence score of the
specific peptide was superior to any of the non-specific peptides in 15
out of the 16 correctly predicted complexes. Figure 7b illustrates one
of these 15 cases, using the receptor of 7CFC, highlighting that even if
the non-specific peptides tend to interact in the same region as the
specific one, theAF2 confidence score is higher for the specific peptide
(reaching 0.75) and can be used as a proxy to discriminate between
several likely binders.

Based on the distribution in Fig. 7a, a minority of models
(approximately 10%) would give a misleading assignment for AF2
confidence scores greater than 0.6 and could prevent identification of
a correct binding site. This is illustrated by the case of the 6IDX com-
plex in Fig. 7c in which an incorrect binder (6KPB Ligand) is predicted
to forma complexwith the receptorwith high confidence (as indicated
by an AF2 confidence score of 0.83) while the specific ligand was not
correctly predicted (AF2 confidence score = 0.46 and wrong bind-
ing mode).

Last, there are also alternative situations as illustrated in Fig. 7d in
which the score of the specific binder is mild (below 0.6) but still
among the highest scores obtained in the set of potential binders. This
was observed for 3 of the 16 cases where the specific receptor-ligand
pair was correctly predicted by AF2 (6YN0 in Supplementary Fig. 7c
and 7F2D, 6J0W in Supplementary Fig. 7f). With the 6J0W receptor
(Fig. 7d), the AF2 confidence score of the specific ligand is 0.53,
whereas it reaches0.54with another non-specific ligandof 7CZM. Such
a situation highlights the specificity issue that may arise in the case
where the peptide is not accurately modeled in the receptor binding
site. It can be noted in Supplementary Fig. 7f that themisleading 7CZM
ligand tends to have higher AF2 confidence scores than the other
ligands on average with all the non-specific receptors. Such pro-
miscuity indicates the risk that some sequences may systematically

Fig. 5 | Complementarity of the predictions made in different
prediction modes. a UpSet diagram69 displaying the number of successful cases
(out of 42) found by either a single or several prediction mode(s) among the fol-
lowing: delimited peptide with no peptide multiple sequence alignment (MSA),
peptide extended by 100 residues with a mixed MSA, delimited peptide with a
mixedMSA, delimited peptidewith an unpairedMSA. 5 cases that can be identified
in none of these conditions are highlighted in red. b Success rates for the four
protocols shown in panel a (values are the same as in Fig. 2) and for a combined
protocol taking the best AlphaFold2 (AF2) confidence score value out of 100
models (25 for eachcondition) (greengrades). Sourcedata are provided asa Source
Data file.
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bias the specificity analysis and that normalization or the use of an
alternative scoring scheme might be useful to further disentangle the
complexity of protein-protein interaction networks involving
unstructured regions. For a few specific classes of binding motifs, a
recent comparison with experimental data also indicated a lack of
specificity for AF2 predictions51. However, in the absence of further
biophysical experiments, we cannot completely rule out that, for the
misleading assignments discussed above, non-specific peptides may
indeed exhibit detectable binding to their non-cognate receptors.

Extension to a larger dataset from the Eukaryotic Linear Motif
database
In the previous sections, we assessed the value of the fragment scan-
ning strategy using a dataset of 42 receptor/ligand pairs, ensuring that
this assessment was unbiased with respect to AF2 training process.
One drawback is that this dataset is limited in size, and we wondered
whether the performance of the method would be maintained if we
useddata from the larger Eukaryotic LinearMotif (ELM)database4 with
the risk that the predicted cases would be biased by their similarity to
the cases used in the AF2-Multimer parameter training. The ELM
database contains a very large number of binding motifs identified in
the disordered regions of proteins. These ligands are generally iden-
tified based on a consensus sequence motif established by experi-
mental characterization of the interaction specificities of the protein
domains specialized in recognition of these linear motifs. For many of

the linearmotifs listed in the ELM database, an experimental reference
is provided to validate the existenceof the bindingmotif.We extracted
a list of 1884 receptor/ligand pairs with defined delimitations from the
linear motifs associated with a reference in PubMed on July 3, 2023
(Supplementary Data 3). Among these pairs, the subset possessing (i) a
unique binding site in the ligand and (ii) a PDB reference (either exact
or homologous) contains 923 cases divided into 84 categories of ELM
types, corresponding to different families of domains and their asso-
ciated consensus motifs (Fig. 8a) (see Methods). The different proto-
cols discussed above for using AF2 were applied to assess AF2’s ability
to model the bound motif correctly. To correct for the unbalanced
distribution of ELM motifs within the 84 categories, we evaluated the
predicted success rates by repeated stratified sampling with 1000
repeats of randomly selecting one ELM motif from each of the 84
categories.

We evaluated six protocols using an exact or a homologous PDB
structure to rate model accuracy (see Methods) and the results are
presented as a histogram in Fig. 8b and detailed in (Supplementary
Data 3) (detailed performance with respect to each ELM types are
provided in Supplementary Data 4).

The first protocol evaluates predictive performance in the case
where the ligand is considered to be full-length and the receptor is
delimited around the binding domain (see Methods). For all 84 cate-
gories, the repeated stratified sampling procedure on the 923 ELM
motifs converges to a success rate of 52.7 ± 4%, very similar to the value
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Fig. 6 | Detailed analysis of complexes that succeed with only a subset of the
protocols. The receptor is represented as a gray surface, the native ligand as a red
cartoon, the predicted peptides in shades of blue: bright blue for the predictions in
mixed multiple sequence alignment (MSA) mode, and light blue for the prediction

with no peptide MSA (a) or for the peptide within the prediction of a fragment
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of 52.4% obtained for the dataset of 42 non-redundant cases (Fig. 2a).
Similar to what was observed for the dataset of 42 non-redundant
cases, success rates increase significantly when the size of the frag-
ments used for prediction is restricted around the interaction region.
Similar values to those obtained in Fig. 5b are observed, with the best
performance being obtained when unpaired or mixed alignments are
used (80.7 ± 3.0% and 77.9 ± 3.4%, respectively). Taking the best AF2
confidence score obtained among the four protocols, the success rate
increases up to87.3 ± 2.7% reaching a value close to the90.5%obtained
for the non-redundant dataset. The lower performance of the predic-
tions for the protocol with a fragment size extended to 100 amino
acids is discussed on an analysis of 30 representative cases in Sup-
plementary Data 5: 20% of failures are due to the existence of several
nearby consensus binding sites, and 50% belong to specific domain
categories such as SH2, integrins or NRP domains, for which the

binding motif is very short (3 amino acids). The specific success rates
obtained for ELM cases for which the reference structure is an exact
PDB structure (differentiated in Supplementary Fig. 8) are higher than
those for which only a homologous PDB structure is known.

Discussion
AF2has shown remarkable performance for predicting the structure of
multi-subunitmachineries only known so far through PPImaps27,28,31. In
this study, we explored the potential of AlphaFold2 to further exploit
the wealth of data contained in proteomics experiments and to enable
a more comprehensive characterization of protein-protein interaction
networks. We focused on interactions mediated by unstructured
regions that are a cornerstone of the functional and dynamic organi-
zation of most cellular processes. The capacity of AF2 to perform well
with small disordered regions binding a structured domain was
established on different datasets18,41,45 built from the structures avail-
able in the PDB52. However, in most proteomics experiments, the
boundaries of the interacting regions are not precisely known. In
addition, physical interactions can be indirect and it is crucial to dis-
entangle the regions involved in direct interactions.

To further assess theuseofAF2 for this purpose,webuilt a dataset
of complexes consisting of a folded receptor bound to a short protein
fragment and evaluated several protocols representative of challenges
faced following proteomics analyses. Because AlphaFold2-multimer
was trained on complexes whose structures were published before
May 2018, we carefully removed any homologs of the complex to
ensure that our conclusions could not be biased by similarities in
sequence or 3D geometry with the training dataset. For the 42 test
cases selected in the benchmark, wefirst evaluated the ability of AF2 to
discriminate the binding site when proteins are provided in their full
length as in the output of a proteomic experiment. We achieved a
rather low success rate of 42.9%, in agreement with the observations
made in a recent report dealing with another set of interactions
involving short linearmotifs46. We noted that above 1600 amino acids,
the method gave poorer predictions, with the exception of two
impressive cases above 2500 amino acids. The use of input fragments
delimited as in the experimental structures significantly increased
performance by more than 35 points and the combination of different
MSA construction modes led to an overall success rate of 90.5%. If the
binding region is unknown, scanning multiple small peptides can be
computationally demanding and we found that a reasonable trade-off
in accuracy could be achieved with a fragment length of about 100
amino acids. We show that using a fragment scanning strategy with
fragments of 100 amino acids overlapping by 30 amino acids, the
correct fragment could be identified in 89% of the tested cases. This
result indicates that in most cases, it is unlikely that a wrong compe-
titive binding sitemay be found in a ligand proteinwith ipTM scores as
high as the cognate binding fragment.

The length of the scanning fragmentmight need to be reduced if a
very short binding motif of about 3 amino acids is expected, as we
found in the ELM database analysis that some of these short motifs,
especially when formed by polar residues, were more difficult to pre-
dict in longer fragments (Supplementary Data 5). To increase success
rate of the fragment scanning approach, our study also underlines the
importance of representing the biological context as closely as possi-
ble, taking into account the homomeric and heteromeric assemblies
pre-existing the formation of an interactionwith adisordered region. A
recent in-depth study of the cohesin interaction network using AF2
also led to conclusions along the same lines53.Whenusing fragments of
size larger than 100, evolutionary information was key to reaching the
best results and for larger fragments involving more than 200 amino
acids, a decrease in performance was observed which could originate
from intramolecular contacts that tend to mask the binding region or
hinder the sampling of the bound conformation. Finally, scanning
strategies taking into account the location of globular domains to
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correctly delineate and cut the intrinsically disordered regions have
also proven useful in increasing the success rate of predictions46.

In the case of delimited peptides, it is remarkable that evolu-
tionary information in the peptide region did not prove to be as crucial
as for longer fragments for generating accurate models and scoring
them reliably. We found that in specific cases where the bound con-
formation of the peptide was rather extended, the addition of evolu-
tionary information was even detrimental to the identification of a

correct solution. Such a detrimental effect ofMSAwas also reported in
ref. 51 for the structural prediction of complexes between MHC
receptors and various sets of short peptides by AF2. In these systems,
the local conformation of the bound peptides is also fully extended.
Our analysis suggests that the inclusion of the MSA for the disordered
short peptide may lock the local conformations of the peptides and
prevent them from adopting a different bound conformation. In any
case, sampling thesedifferent possibilities was consideredworthwhile,
as the AF2 confidence score is sufficiently reliable to pick out the
correct solution among those sampled. To further enhance the chance
of generating a correct solution using short delimited peptides as
ligands, we also explored how the AFsample strategy would perform
on some of the difficult cases found among the 42 cases in our non-
redundant dataset (see Methods). Our results highlight a com-
plementarity of the two approaches, where some cases were success-
ful with our combined protocol but not with AFsample, while others
were unsuccessful in our combined protocol and solved by AFsample,
albeit at amuch larger computational cost (Supplementary Data 6a). A
comparative analysis of the two approaches suggests a few guidelines
that could be used to further increase success rates: the use of tem-
plates, of a combination of multimer_v1 and multimer_v2 parameters
and a larger sampling for a given condition (up to 200 models per
condition instead of 25). In contrast, on our dataset, using a larger
number of recycles as in AFsample was never necessary to obtain
successful predictions (using 9 or 21 recycles did not improve success
rates). Additionally, if we had stopped sampling after 200 models for
each condition instead of 1000 as implemented by default in AFsam-
ple, we would have obtained the same best models.

Beyond the remarkable ability of AF2 to generate correct con-
formations of protein-peptide complexes, we confirmed the reliability
of the combined ipTMscore and pTMscore as an estimate of model
accuracy. We also evaluated AF2 as a tool to discriminate a native
ligand from other ligands potentially difficult to discriminate because
adopting the same local conformation among diverse binding part-
ners. The obtained results were satisfactory in a majority of cases
where the AF2 confidence score correctly singled out the native
binding peptide, but also highlighted several misleading situations
that call for vigilance in the exploitation of specificity results. It cer-
tainly should be possible to reinforce the applicability of AF2 for the
exploitation of more complex interactomes in which the interaction
with unstructured regions plays a major role. Recent efforts in that
direction have shown that AF2 parameters which were trained only
with positive examples could be further fine-tuned for specificity
combining positive and negative examples of receptor-peptide
interactions51. So far, this fine-tuning was achieved in a receptor-
specific manner focusing on MHC, PDZ or SH3 domains, but it might
be expanded further to address other specificity issues.

The ability of AF2 to discriminate the native peptide from similar
alternative binders when the native bound conformation is correctly
predicted supports the conclusions that an energetic function of the
protein structure may have been learned by AF2 independently of
evolutionary information54. This ability to discriminate specific native
binders is also consistent with the principle of using AF2 to dis-
criminate peptide binders from competitive simulations55 or for the
design of high-affinity binders for their targets56. Using the strategy
described in55 could be a way to circumvent some specificity issues.
Alternatively, rescoring complex models for different peptides using
the updated AF2Rank program may provide complementary dis-
criminative power54. Some receptors may also show more pro-
miscuous binding properties than others when assessed from AF2
confidence score as shown in the case of 7CZM. Using a set of repre-
sentative peptides such as those used in the present study, it may be
possible to spot out receptors more prone to interacting non-
specifically with various motifs and improve normalization of the
confidence score. On the other hand, the fact that with larger
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fragments (>200), the ability to identify the correct binding site
decreases significantly and requires evolutionary information is also in
agreement with the proposal that AF2 needs coevolution data to
search for global minima in the learned function54. To progress from
interactomes to the identification of all potential binding sites within
disordered regions, a robust strategy will benefit from systematically
scanning fragments of sequences of limited length and sampling dif-
ferent types of evolutionary information, such as the four combined in
this study.

Methods
Building the dataset of protein-peptide complexes non-
redundant with the AF2 training structural dataset
An initial list of protein-peptide complexes was retrieved from the PDB
server52 on April 1, 2022 with the following request: 1) Release date
after May 1st, 2018 to exclude complexes present in the AlphaFold2
v.2.2 training set; 2) The longest protein (called the receptor) must
contain at least 60 amino acids and the smallest chain (called the
peptide) must contain at most 40 amino acids. 3) The ‘Number of
Polymer Instances (Chains) per Assembly’ has to be between 2 and 4
and should contain heteromeric assemblies. 4) The assemblies should
not contain RNA or DNA chains. The initial request led to 2484
potential candidates. Using a sequence identity threshold of 30%, we
discarded all candidates for which a homolog of the receptor protein
was released beforeMay 1st, 2018 and bound to a ligand partner in the
same region. From the list of selected candidates, an additional filter
wasused to check the absenceof redundant assemblymodes. For each
of the selected complexes, the receptor sequence was used as a query
of the PPI3D server57, in single sequence mode, to recover all the PDB
codes of complexes involving homologs of the receptor (date of PPI3D
query August 2022, on the PDB updated July 20, 2022). In PPI3D, dis-
tant receptor homologs were retrieved using PSI-BLAST58 with 2
iterations and anE-value cutoff of 0.002. For every candidate complex,
PPI3Dprovided a detailed list of PDB codeswith the chain ids involving
the receptor or its homolog. We used the full list of interactions pro-
vided by PPI3D, exceptwhen it exceeded 2500 interfaces inwhich case
the clustered list was chosen (95% sequence similarity and 50% simi-
larity for residues in the binding region). Only the interfaces annotated
as ‘hetero’ or ‘hetero-peptide’ released before May 1, 2018 were con-
sidered as potentially redundant. Their structures were compared to
the candidate complex using the MM-align program (Version
20191021)59 (option “-a”) and the maximum of the three TM-scores
calculated was considered. Receptor-peptide candidates with a TM-
score greater than 0.5 with any other potentially redundant interface
extracted from the PPI3D results were considered redundant with a
previously known structure and were discarded. This latter condition
only applied to structures for which MM-align successfully aligned at
least 5 consecutive amino acids on the ligand side (detected by ‘:’ in the
output pair alignment corresponding to residue distance pairs <5.0
Angstrom), otherwise the interface was not considered redundant. In
the end, we retained a set of 42 receptor-peptide cases to form the
reference database.

Generation of the alignments for the 42 database cases
Sequences of all the chains in the dataset of 42 complexes were
retrieved from the UniProt database60 and were submitted to three
iterations of MMseqs261 against the uniref30_2103 database47. The
resulting alignments were filtered using hhfilter62 using parameters
(‘id’=100, ‘qid’=25, ‘cov’=50) and the taxonomy assigned to every
sequence keeping only one sequence per species. Full-length
sequences in the alignments were then retrieved and the sequences
were realigned using MAFFT63 with the default FFT-NS-2 protocol to
generate the multiple sequence alignments (MSA) of every individual
subunit. TheseMSAs, generated with full-length sequences, were then
trimmed to match the delineations of the receptor and ligand parts,

which vary according to the protocols used. The sequence boundaries
defined in the PDB SEQRES parameter were used to delineate the
receptor and peptide binding regions. To generate the extended 100
or 200 amino acid ligands, the peptide sequencewas extended in both
directions, unless a chain end was encountered, in which case exten-
sion was continued in one direction only. From the individual MSAs of
receptors and ligands, different types of co-alignmentsweregenerated
and assessed. First, the so-called mixed co-alignments, standing for
paired+unpaired co-alignments, was built by concatenating the
receptor and ligand MSAs so that homologous receptor and ligand
sequences were paired when they belonged to the same species
(joined as if they were part of the same sequence in the alignment) and
left unpaired if no common species was found (adding gaps in place of
the missing homolog)47. Unpaired co-alignments were obtained by
unpairing the paired part of the mixed co-alignments. Last, co-
alignments with no evolutionary information in the ligand part were
obtained fromthemixed co-alignmentby leaving the ligand region as a
single sequence and adding gaps in the rest of the ligand alignment. In
case the receptor was a heteromer or assembled as a homodimer, the
multimeric assembly complex was modeled by concatenating the
alignments of the receptor subunits in the same way as described
above. The different concatenated co-alignments generated using the
different delimitations and pairing protocols were used as input MSA
to AlphaFold2.

Generation of the input data for the scanning of the 42 ligand
partners with overlapping fragments
The sequences of the 35 ligands in the non-redundant dataset that
were longer than 100 amino acids, were fragmented into 100 amino
acid long segments with an overlap of 30 amino acids to ensure that
the binding regionwas entirely contained in at least one fragment. The
delimitations of the tested fragments are reported in Supplementary
Data 2. A multiple sequence alignment associated with each ligand
fragment was built following the same protocol as above and con-
catenated with the alignment of the delineated binding domain of the
receptor protein.

Generation of input data for cross-partners evaluation
To generate the dataset mixing receptors and their non-cognate
ligands, a subset of complexes that could be clustered according to the
similarity of the type and length of the secondary structure of their
ligand (reported in Supplementary Table 1) was defined (Supplemen-
taryData 1).We selected 23 complexeswith amonomeric receptor and
a ligand that could be clustered into one of the 7 groups distinguished
in Supplementary Data 1. The MSA of each receptor was concatenated
with each ligand in the same cluster without adding MSA information
on the ligand side. These alignments were used as input to generate
structural models by AlphaFold2 following the protocol
described below.

Generation of the input data for the 923 cases of the ELM
database
A list of ELM binding motifs and of their binding domain receptor was
downloaded on July 3, 2023 from http://elm.eu.org/downloads.html.
1884 entries of receptor/ligand pairs from the ELM classes ‘LIG’ and
‘DOC’ were extracted, documented by at least one PubMed ID refer-
ence anddefineddelimitations for receptor and ligandbinding regions
(Supplementary Data 3). Of these, 492 pairs were not associated with a
reference PDB structure and 469 pairs corresponded to a ligand con-
taining multiple ELM binding motifs of the same type. The remaining
923 pairs couldbe used to evaluate the success rate of AlphaFold2with
protocols combining different delimitations and MSA sampling.
Sequences and multiple sequence alignments of all pairs were
obtained using the same procedure as described above for the 42 test
cases. To define the boundaries of the binding domain in the receptor,
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we could not rely on ELM delimitations as they did not always match
the structural boundaries of the globular domain. Instead, we took
advantage of the recently developed Chainsaw method64 (commit tag
1ec2be5 from Jul 20, 2023) to automatically parse and assign domain
boundaries from predicted receptor structures in the AlphaFold Pro-
tein Structure Database65 (see Supplementary Data 3). The delimita-
tions of the ELMmotif in the ligand were taken from the ELM database
except formotifswith less than 5 residueswhichwere extendedup to 5
amino acids (see Supplementary Data 3). Five different concatenated
MSAs were generated for all receptor/ligand pairs, always using a
delimited receptor domain. The ligand sidewas either delimitedwith 3
possible MSA modes (mixed, unpaired or single sequence), extended
by 100aminoacidswith amixedMSAmode, or full-length ligandwith a
mixed MSA mode. Concatenated MSAs were used as input of Alpha-
Fold2 to generate 25 models following the protocol described below.

Generation of the structural models
The concatenatedMSAs were used as input to run 5 independent runs
of the AlphaFold2 algorithm with 3 recycles each15,29 generating
5 structural models (25 models in total) using a local version of
ColabFold v.1.347 with theMultimer v.2.2model parameters29 onNVidia
V100 and A100 GPUs since the training of the v.2.2 parameters
excludes complexes released afterMay 1st, 2018. In the caseof the ELM
dataset, for which the potential bias effect is present anyway, the
structural models were generated using AF2-Multimer version v.2.3
and ColabFold v.1.5 with the benefit of saving time. Four scores were
provided by AlphaFold2 to rate the quality of the models, the pLDDT,
the pTMscore15, the ipTMscore and the model confidence score
(weighted combination of pTM and ipTM scores with a 20:80 ratio)29.
The scores obtained for all the generated models are reported in
Supplementary Data 2. The sampling of 100 models instead of 25 with
a single protocol, whose performance is shown in Supplementary
Fig. 4b, was achieved by increasing the number of independent runs
from 5 to 20. No relaxation step was performed consistently with our
own approach and since relaxation has been found to be computa-
tionally costly with little added value to the quality of results15. To
evaluate the models generated from the sampling of fragments of 100
amino acids along the full ligand sequences, we selected the model
with the highest ipTM score (see Supplementary Data 2), in order to
focus on the interface and be less dependent on the degree of folding
in the fragment itself, reflected in the pTM score. To evaluate the
models from the ELM dataset, we selected the model with the highest
AF2 confidence score among the 25models generatedwith each of the
tested protocols (scores reported in Supplementary Data 3).

Testing of the AFsample protocol
AFsample was cloned from https://github.com/bjornwallner/
alphafoldv2.2.0 (commit tag 9f76c2a from Dec 24, 2022). AFsample
was run on a selection of cases (see below) following the procedure
outlined in the provided pipeline script (run_afsample.sh). (i) Create
theMSAs and search for templates (hence theMSAs used are different
in the AFsample runs and in our approach). (ii) Generate 6000models
(or as many as was possible given the computational cost) sampled
following four schemes (a) 10 ×200 models using multimer_v1 & mul-
timer_v2 parameters, using dropout and templates, (b) 10 ×200
models using multimer_v1 & multimer_v2 parameters, using dropout
and no templates, (c) up to 5 ×200 models using multimer_v1 para-
meters, using dropout, no templates, 21 recycles (denoted r21), and (d)
up to 5 ×200models usingmultimer_v2 parameters, using dropout, no
templates, 9 recycles (denoted r9). (iii) Sort all models according to
their combined score. Since AFsample is very computationally inten-
sive, we targeted two lists of cases for testing, with the goal to answer
two questions about the complementarity between AFsample and our
approach: (i) 17 caseswith combined score lower than0.8 for the rank 1
model in our mixed-delim-delim approach (independently of whether

this approach succeeds or fails). This list addresses the question of the
relative success rates for AFsample and our approach, following the
recommendation of the AFsample publication that their pipeline
should be run only when the best ranked solution has combined score
lower than0.8. (ii) 10 cases failingwith ourmixed-delim-fl pipeline and
with total size (cumulated over the complex partners) smaller than
1000 amino acids (above 1000, the AFsample runtime becomes pro-
hibitive, see Supplementary Data 6). This list addresses the question
whether the exhaustive AFsample approach can succeed where our
approach fails.

Evaluation and visualization of the structural models
The structural models generated with every alignment protocols were
compared to their reference structure defined in Supplementary
Table 1 for the 42 cases of the non-redundant dataset and in Supple-
mentary Data 3 for the ELM dataset. The structural models were first
cut following the delimitations of the reference experimental structure
to ensure proper superposition of receptors and ligands models. For
the evaluation of the ELMmodels dataset, the reference structure was,
if available, the PDB structure exactly matching the sequence of the
receptor/ligand couple. In case such anexperimental structurewasnot
available, we tested all possible reference PDB structures belonging to
the sameELMTYPE category and evaluated the accuracyof themodels
using the reference PDB with the highest DockQ score (listed in Sup-
plementary Data 6). In case there was internal symmetry in the
receptor bound asymmetrically by a ligand (as in the case of coiled
coils), we used different reference structures for each symmetrical
arrangement (which we provide in the Zenodo archive) and selected
the one that provided the best DockQ score.

The accuracy of all models was assessed using two related mea-
sures (i) the DockQ score, which provides a continuous value between
0 and 1, with limits of 0.23, 0.49, and0.8 definingAcceptable,Medium,
and High quality thresholds for protein-protein complexes48 (ii) the
more stringent conditions establishedby theCAPRI community to rate
the specific cases of receptor-peptide complexes using ligand and
interfaceRoot-Mean-SquareDeviation (L- and iRMSD) and the Fraction
of native contacts (fnat). Ranks are assigned depending on the fol-
lowing criteria: High (fnat in [0.8, 1.0] and (L-RMSD ≤ 1.0Å or
iRMSD ≤0.5 Å)), Medium (fnat in [0.5, 0.8] and (L-RMSD ≤ 2.0 Å or
iRMSD ≤ 1.0Å) or fnat in [0.8, 1.0] and (L-RMSD> 1.0 Å and iRMSD>
0.5Å)) and Acceptable (fnat in [0.2, 0.5] and (L-RMSD ≤ 4.0Å or
iRMSD ≤ 2.0Å) or fnat [0.5, 1.0] and (L-RMSD> 2.0 Å AND
iRMSD> 1.0Å))49. Additional analyses were performed following the
standard metrics calculated by CAPRI assessors to rate the similarity
between themodels and their reference structure (such as the fraction
of interface residues FRIR or the fraction of non-native contacts
FRNNAT) and are also available in Supplementary Data 1 and Supple-
mentary Data 3 for the 42 non-redundant and the ELM dataset,
respectively. 3D structures were visualized and represented using
ChimeraX66.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data used to generate all Figures and Supplementary Figures
are provided as a SourceData file. The reference PDB files of the 42 test
cases, the multiple sequence alignments built for all ten protocols and
the corresponding PDB files of the predicted models have been
deposited67 in the ZENODO database under the accession DOI code
https://doi.org/10.5281/zenodo.7838023 [https://zenodo.org/doi/10.
5281/zenodo.7838023]. The reference PDB files used to evaluate the
predictions of the 923 cases from the ELM database, the multiple
sequence alignments built for all five protocols and the PDB files of the
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models predicted with highest scores have been deposited67 in the
ZENODO database under the accession DOI code https://doi.org/10.
5281/zenodo.7838023 [https://zenodo.org/doi/10.5281/zenodo.
7838023]. Source data are provided with this paper.

Code availability
The code for processing, analyzing and visualizing the results is
available at: https://github.com/i2bc/SCAN_IDR and the version used
was also deposited68 in the ZENODOdatabase under the accession DOI
code https://doi.org/10.5281/zenodo.10213747 [https://zenodo.org/
doi/10.5281/zenodo.10213747].
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