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BACKGROUND: Endocrine-disrupting chemicals may play a role in adiposity development during childhood. Until now literature in this scope suffers
from methodologic limitations in exposure assessment using one or few urine samples and missing assessment during the infancy period.

OBJECTIVES: We investigated the associations between early-life exposure to quickly metabolized chemicals and post-natal growth, relying on
repeated within-subject urine collections over pregnancy and infancy.

METHODS: We studied the associations of four phenols, four parabens, seven phthalates, and one nonphthalate plasticizer from weekly pooled urine
samples collected from the mother during second and third trimesters (median 18 and 34 gestational weeks, respectively) and infant at 2 and 12
months of age, and child growth until 36 months. We relied on repeated measures of height, weight and head circumference from study visits and the
child health booklet to predict growth outcomes at 3 and 36 months using the Jenss-Bayley nonlinear mixed model. We assessed associations with
individual chemicals using adjusted linear regression and mixtures of chemicals using a Bayesian kernel machine regression model.

RESULTS: The unipollutant analysis revealed few associations. Bisphenol S (BPS) at second trimester was positively associated with all infant growth
parameters at 3 and 36 months, with similar patterns between exposure at third trimester and all infant growth parameters at 3 months. Mono-n-butyl
phthalate (MnBP) at 12 months was positively associated with body mass index (BMI), weight, and head circumference at 36 months. Mixture analy-
sis revealed positive associations between exposure at 12 months and BMI and weight at 36 months, with MnBP showing the highest effect size
within the mixture.
CONCLUSIONS: This study suggests that exposure in early infancy may be associated with increased weight and BMI in early childhood, which are
risk factors of obesity in later life. Furthermore, this study highlighted the impact of BPS, a compound replacing bisphenol A, which has never been
studied in this context. https://doi.org/10.1289/EHP13644

Introduction
Phenols, parabens and phthalates are endocrine-disrupting chemi-
cals (EDCs) used in plastics, lining of food cans, toys, and perso-
nal care products, among others.1 Given their widespread use,
exposure is ubiquitous.2–4

EDCs can interfere with the endocrine system through path-
ways involving nuclear receptors implicated in the control of adi-
pogenesis and weight gain5,6 and thus may play a role in obesity
development.7 A growing body of literature has investigated the
associations between short half-life EDCs and body mass index
(BMI) in childhood, with inconclusive results. As an example, two
meta-analyses on the associations between phthalate exposure and
BMI during childhood had divergent conclusions, with one sug-
gesting decrease of BMI z-score with prenatal exposure but no
association with postnatal exposure and the other including studies

with pre- and postnatal exposure in the same model reporting an
increased BMI in childhood.8,9 Furthermore, some studies have
suggested a gender-specific effect of EDCs on anthropometric
measures and obesity (reviewed by Ribeiro et al.10).

Methodological limitations in exposure assessment from too
few urine samples collected may partly explain these mixed epide-
miological results. Phenols, parabens, and phthalates are quickly
metabolized and excreted in urine. There half-lives are generally
estimated to be <24 h in humans.11–15 This and the temporal vari-
ability in exposure during and between days (diet, use of personal
care products, for example) lead to high within-subject temporal
variability of urinary metabolite concentrations.4 Most studies
examining their health effects used one or few urine samples to
measure their metabolite concentrations leading to measurement
error and bias in dose–response functions.16 Repeated sample col-
lection, possibly followed by pooling of multiple samples, is a way
to reduce such bias for those compounds with high within-subject
variability.17,18

Furthermore, most studies investigating the associations between
EDCs and adiposity in childhood focused on prenatal or childhood
exposure (children 3 y of age or older) and were missing exposure
during infancy, a critical period when EDCs may alter the program-
ming of the metabolic system, leading to susceptibility for weight
gain and risk of obesity in later life.19 In addition, for some com-
pounds, such as DINCH (1,2-Cyclohexane dicarboxylic acid, diiso-
nonyl ester) used in replacement of high molecular weight
phthalates,20 which has never been studied in relation to childhood
growth, exposure level during infancy has been shown to be equiva-
lent to or even higher than those experienced in adulthood.3 Studies
on other substitutes, such as bisphenol S (BPS), are also scarce.Most
studies have investigated the association of single chemicals,
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whereas the joint effect of the overall mixture of EDCs on child
growth has been poorly investigated.21 The few studies assessing
mixture effects lacked exposure data during infancy.22–24

Our objective was to investigate the associations between
early-life exposure to EDCs and postnatal growth, using repeated
within-subject urine collections during pregnancy and early
infancy, including assessment of new EDCs such as BPS and
DINCH metabolites. We assessed the effect of individual chemi-
cals and mixtures of chemicals. We also examined whether infant
sex was an effect modifier.

Methods

Study Population
This study was based on the SEPAGES [Suivi de l’Exposition à la
Pollution Atmosphérique durant la Grossesse et Effet sur la Santé
(Assessment of Air Pollution Exposure during Pregnancy and
Effect on Health)] cohort in which 484 pregnant women were
recruited in the area of Grenoble, France.25 Women were enrolled
between July 2014 and July 2017 before 18 gestational weeks and
followed up until delivery. At baseline and at each trimester of their
pregnancy, women either filled out questionnaires or underwent
questionnaire administration to gather data on sociodemographic
factors, medical history, treatments employed, tobacco usage, pas-
sive smoking exposure during pregnancy, home attributes, dietary
patterns, and sleep duration.25 To be included women had to be
older than 18 y of age, with a singleton pregnancy, be enrolled in the
French social security system, speak and write French, plan to give
birth in one of the fourmaternity wards of the Grenoble urban areas,
and to not plan to live outside theGrenoble urban areawithin 2 y.

Both parents gave informed consent to participate. The
SEPAGES study was approved by the relevant ethical commit-
tees [CNIL, Commission Nationale de l’Informatique et des
Libertés (National Commission on Informatics and Liberty);
CCTIRS, Comité Consultatif sur le Traitement de l’Information
en matière de Recherche dans le domaine de la Santé (Advisory
Committee on the Treatment of Information on Research in the
Field of Health); CPP, Comité de Protection des Personnes Sud-
Est (South-East Ethics Committee)].

Urine Collection and Exposure Assessment
Women were asked to collect three urine samples per day (morn-
ing, midday, evening) during 7 consecutive days twice during
pregnancy, at approximately the second and third trimesters
[median 18; interquartile range (IQR): 16–19; and 34 (IQR: 32–
35) gestational weeks, respectively]. Then, women were asked to
collect a urine sample from their child once a day during 7 consec-
utive days at 2 months of age [median 7 (IQR: 6.3–8.3) wk] and
12 months [median 52.9 (IQR: 51.7–54.7) wk] using a cotton pad
inserted in the diaper.25

Urine samples were then pooled within subject and within pe-
riod using a previously described and validated protocol.16–18 In
brief, equal volumes of all the samples collected over a given col-
lection week were pooled to obtain one weekly pool per subject.
Number of urine sample per pool are presented in Table 1.

An aliquot of each pool was sent on dry ice with a temperature
sensor to the Norwegian Institute of Public Health, where 8 phe-
nols,2 4 parabens,2 13 phthalate metabolites3 (corresponding to
seven parent compounds), and two DINCH metabolites3 were
measured (Excel Table S1). Phenols and parabens were meas-
ured using ultra-performance liquid chromatography coupled to
mass spectrometry (UPLC-MS/MS),26 and phthalates and
DINCH metabolites were measured using high-performance

liquid chromatography coupled to tandem mass spectrometer
(HPLC-MS/MS).27

At 2 months of age, phthalate and DINCH metabolites were
assessed in only a subset of infants (n=152) due to budget con-
straints3; thus this time point was not considered for this sub-
stance family in the current analysis.

Table 1. Description of the study population from the SEPAGES cohort
(n=364,a 2014–2017, France).

Characteristics
Median (percentile 25, 75) or

n (%)

Maternal age at inclusion (y) 32.3 (30.0, 35.2)
Maternal weight before pregnancy (kg) 59.0 (53.4, 66.0)
Maternal height (cm) 164.6 (160.9, 169.2)
Maternal education (years after high school)

(2 missing)
Up to 3 y 57 (15.7%)
4 y or more 305 (84.3%)

Maternal ethnicity (3 missing)
Caucasian 351 (97.2%)
Other 10 (2.8%)

Parity
Nulliparous 165 (45.3%)
Parous 199 (54.7%)

Father weight (kg) (33 missing) 75.7 (69.3, 83.4)
Father height (cm) (37 missing) 178.5 (174.6, 182.2)
Child sex
Male 194 (53.3%)
Female 170 (46.7%)

Child still breastfeed at 3 months of
life (9 missing)

Yes 292 (82.3%)
No 63 (17.7%)

Child exposure to tobacco smoke from
in utero to 2 months (28 missing)

Yes 48 (14.3%)
No 288 (85.7%)

Child age at the 3 y clinical visit (year) (39
missing)

3.1 (3.0, 3.1)

Child BMI (kg=m2)
Predicted at 3 months 16.1 (15.4, 16.9)
Predicted at 36 months 15.6 (14.9, 16.4)
Measured at 3 y clinical visit (39 missing) 16.1 (15.2, 16.9)

Child weight (kg)
Predicted at 3 months 5.8 (5.5, 6.2)
Predicted at 36 months 14.0 (13.2, 15.2)
Measured at 3 y clinical visit (39 missing) 14.3 (13.5, 15.6)

Child height (cm)
Predicted at 3 months 60.4 (59.0, 61.7)
Predicted at 36 months 95.0 (92.9, 96.9)
Measured at 3 y clinical visit (38 missing) 95.3 (93.0, 97.3)

Child head circumference (cm)
Predicted at 3 months 40.4 (39.8, 41.2)
Predicted at 36 months 49.7 (49.0, 50.6)
Measured at 3 y clinical visit (41 missing) 49.6 (48.7, 50.5)

Number of measurements included in the
prediction models

Child weight 14 (12, 16)
Child height 14 (12, 15)
Child head circumference 13 (11, 15)

Number of urine sample per pool
Second trimester of pregnancy 21 (20, 21)
Third trimester of pregnancy 21 (20, 21)
2 months of age 7 (6, 7)
12 months of age 6 (5, 7)

Age at the begging of each measurement
week (wk)

Gestational age at measurement week T2 17.6 (16.4, 18.7)
Gestational age at measurement week T3 33.9 (32.0, 35.1)
2 months of age (1 missing) 7.0 (6.3, 8.3)
12 months of age (1 missing) 52.9 (51.7, 54.7)

aMother–child pairs with biomarker concentrations measured in four pools of urine sam-
ples and predicted child growth.
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Previous analyses relying on free and conjugated concentra-
tions, showed that no external contamination was observed for pre-
natal samples, nor for neonatal and infant samples, with the
exception of bisphenol A (BPA) at 2 and 12 months, and methyl-
paraben at 12 months.2 Thus, for these specific chemicals/timing,
both total and conjugated concentrations were reported for the uni-
pollutant models; however, only total concentrations were entered
in themixturemodel.

Postnatal Growth
Child weight, height, and head circumference were measured at
birth by the medical maternity staff and during study visits at 2,
12, and 36 months by a trained SEPAGES fieldworker. In addi-
tion, all weight, height, and head circumference measurements
performed by health care practitioners on children between 0 and
36 months of age were copied from the child’s health booklet (a
booklet that, in France, contains all the medical information nec-
essary to monitor the health of the child up to the age of 18 y and
is routinely completed by health care practitioners).

For each child, weight, height, and head circumference were
predicted at 3 and 36 months by fitting the Jenss-Bayley growth
model using all available measurements, with the exception of
weight measurements during the postnatal weight-loss period
(from birth to day 3) because the model assumes a monotonic
shape.28–30 We used a mixed effect approach31 to account for the
heterogeneity in the number of measurements (from the child’s
health booklet, because of missed study visits or loss to follow-up).
Many studies have shown that this model performed well in com-
parison with others in different populations,28,32–34 and especially
in different child cohort studies in France.28,34 It allows researchers
to model growth curve trajectories for children with a number of
measurements lower than the number of parameters in the model
(which is not possible with an individual modeling approach) by
shrinking them toward the mean trajectory. We selected the chil-
dren with at least two measures to reduce the uncertainty about the
individual growth trajectories. Then the curve trajectories were
used to predict weight, height, and head circumference at 3 and 36
months. We chose 3- and 36-month time points because they are
predictive of the risk of obesity in later life,34 and 36 months was
the oldest age with available growthmeasurements when this work
was initiated. Then, BMI was calculated at 3 and 36 months from
predictedweight and height as weight=height2 in kg=m2.

Statistical Analysis
We included all mother–child pairs with chemical urinary con-
centrations for all four time windows (three for phthalate and
DINCH metabolites) and with growth prediction [n=364 (75%);
Supplementary Figure S1]. Mother–child pairs not included in
the analysis lacked data regarding exposure during pregnancy (5
women did not provide urine samples during pregnancy, 2 did
not provide urine samples during the second trimester, and 23 did
not provide urine samples during the third trimester) and infancy
(18 with no urine sample at both 2 and 12 months, 16 did not pro-
vide urine samples at 2 months, and 56 did not provide urine
samples at 12 months of age).

Triclocarban and bisphenols AF, B, and F were quantified in
<5% of urine samples and were therefore excluded from further
analyses. Chemicals with 30% or more values below the limit of
detection (LOD) (BPS and butylparaben) were categorized as
below the LOD, from the LOD to limit of quantification (LOQ),
and above the LOQ; other chemicals were log-transformed. For the
remaining chemicals, concentrations below the LOD and between
the LOD and LOQ were imputed by values randomly drawn
between 0 and the LOD and between the LOD and the LOQ,

respectively, following the underlying distribution of concentra-
tions.35,36 Between-sample variations in urine processing and
assay conditions were addressed through a two-step standardiza-
tion approach30,37: first, identifying factors potentially affecting
biomarker levels (sample transport time, thaw time, and analytical
batches) using multiple linear regressions adjusted for potential
confounders (maternal age, education, prepregnancy BMI, parity,
date, season, and specific gravity), considering Wald’s p-value
<0:20 as significant (Excel Table S2)38; second, for each bio-
marker we subtracted the b values associated with the conditions
from themeasured concentrations.

Molar sums of metabolites (unit: lmoles=L) from the same
parent compounds were computed as follows:

Diisononyl phthalate ½RDiNP�= ohMiNP=308:2 + oxoMiNP=
306:2 + cx–MiNP=322:2, Di(2-ethylhexyl) phthalate ½RDEHP�=
MEOHP=292 + MECPP=308 + MEHP=278 + MEHHP=294 +
MMCHP=308:3, DINCH = ohMINCH=314:42 + oxoMINCH=
312:4 and used in all the analyses instead of individual
concentrations.

Chemicals concentrations were not adjusted for marker of
urine dilution (either specific gravity or creatinine) because it has
been suggested that such markers classically used when relying
on spot samples are not necessary or even counterproductive for
pooled samples.17

The comparison between included and excluded women from
the analysis was performed using Kruskal-Wallis test for continu-
ous variables and chi-squared for categorical variables. Pearson
correlations were calculated between infant growth parameters
and between urinary chemicals concentrations.

First, we investigated the associations between the individual
chemicals at each time point (second and third trimesters, 2 and 12
months of age) and growth prediction at 3 and 36 months, sepa-
rately for BMI, weight, height, and head circumference, using lin-
ear regressions adjusted for potential confounders (listed below).
Betas are given for one unit increase in ln-transformed chemicals;
in otherwords, betas correspond to a 2.72-fold increase in chemical
concentrations. We report all associations with p <0:05 in the
“Results” section. Associations with p-values between 0.05 and
0.10 were also reported as a trend when the chemical was associ-
ated (p <0:05) with another growth parameter.

Then, we investigated the overall effect of the chemical mix-
tures using a Bayesian kernel machine regression (BKMR)
approach with 50 000 iterations with the Markov chain Monte
Carlo (MCMC) algorithm.39 This model allows researchers to
adequately consider the complexity of the implications of chemi-
cal mixtures on postnatal growth parameters, taking into account
correlated chemicals, their potential interaction, and nonlinear
associations. For each postnatal growth time point, we evaluated
the overall association, simultaneously taking into account all the
exposure time points using a hierarchical variable selection
BKMR (hBKMR) for which chemicals were grouped by time of
measurement.40 We then also estimated the effect of the chemical
mixture at each timing of exposure separately (one model for
each timing of exposure). The overall mixture effect was given
by a figure showing the expected change in postnatal growth pa-
rameter with concomitant increase in quantiles of all exposure
biomarkers in comparison with no exposure. When this graph
was suggestive of an effect, we provided the posterior inclusion
probability (PIP) for each chemical representing their relative im-
portance and plotted the estimated effect of an increase from the
25th to 75th percentile in a single chemical concentration when
all other chemical concentrations were fixed at either their 25th,
50th, or 75th percentiles.

For the BKMR analysis all chemicals were entered as contin-
uous and scaled; for BPS and butylparaben (chemicals with more
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than 30% of values below the LOD), we kept machine-measured
values above the LOD and replaced values below the LOD by the
LOD=

p
2, because BKMR does not accommodate for categorical

exposure.
All analyses (linear regression for unipollutant model and

BKMR for mixture analysis) were adjusted for following poten-
tial confounders: maternal age (<35 vs. ≥35 y at inclusion),
maternal prepregnancy weight (continuous), maternal height
(continuous), paternal weight (continuous), paternal height
(continuous), parity (nulliparous vs. parous), breastfeeding sta-
tus [binary for outcomes assessed at 3 months (still breastfeed-
ing at 3 months, Yes vs. No), or continuous (in weeks) for
outcomes assessed at 36 months], maternal education (up to 3 y
vs. 4 or more years after high school), child sex (males vs.
females), infant history of passive smoking [include in-utero
passive smoking (i.e., maternal smoking during pregnancy), Yes
vs. No]. The coding of adjustment factors was based on their
relationship with the outcomes identified using semiparametric
modeling approaches and selected by the lower Akaike Information
Criterion (AIC).41 Imputation of missing values were performed for
covariates using the median for continuous variables [father height
(n=37), father weight (n=33), and breastfeeding duration (n=9)]
and the mode for categorical variables [breastfeeding at 3 months
(n=9), maternal educational level (n=2), and infant history of pas-
sive smoking (n=28)].

We further assessed the potential effect modification by infant
sex, for linear regressions we added an interaction term between
exposure and child sex. Sex-stratified analysis was performed for
p-values of interaction <0:1, except for BPS and butylparaben,
which presented a sample size in some categories that was too
small to be stratified. For BKMR analysis, because testing inter-
action with the mixture was not possible, all models were sex-
stratified. This analysis was motivated by the fact that sex-
specific effect of EDCs on anthropometric measures and obesity
has been previously suggested.10

In sensitivity analyses, linear regression analyses for indi-
vidual chemicals were further a) performed after removing for
exposure and outcome all values below first and above 99th per-
centiles to investigate effects of extreme values; b) performed
on the measured weight, height, head circumference and BMI at
the SEPAGES clinical study visit at 36 months of age; c)
adjusted for specific gravity measured in each pool because
such adjustment has been classically used in studies relying on
spot samples.

Analyses were performed using R (version 4.1.3; RDevelopment
Core Team); most of the computations presented in this paper were
performed using the GRICAD infrastructure (https://gricad.univ-
grenoble-alpes.fr), which is supported by Grenoble research com-
munities. The R codes are available in the Supplementary Material
(“RCODES”) and in the following GitLab repository: https://gricad-
gitlab.univ-grenoble-alpes.fr/iab-env-epi.

Results

Description of the Study Population
Women were in median 32.3 y old [IQR: 30.0–35.2], highly edu-
cated (84.4% had studied 4 or more years after high school), and
45.5%were nulliparous (Table 1). At 2months of age, 13.2% of the
children have been exposed to tobacco smoke (including maternal
smoking during pregnancy; Table 1). Mother–child pairs included
in the study only differed from the remaining ones not included by
maternal ethnicity (96.4% vs. 78.3% were Caucasian, respec-
tively), father weight (75:7 kg vs. 79:1 kg, respectively), and tim-
ing of breastfeeding, with 80.2% were still breastfeeding at 3
months vs. 50.5% for the remaining (Excel Table S3). Correlation

between predicted infant growth at 3 and 36 months ranged from
0.54 for BMI to 0.93 for head circumference (Supplementary
Figure S2). At 36months, predicted and measured growth parame-
ters were highly correlated (all rho >0:90, Supplementary Figure
S3). Distribution of measured chemicals are presented in Excel
Table S4. Overall, chemical detection rates were high for the
metabolites included in the analysis, and all concentrations were
above the LOD for phthalates (Excel Table S4). Among phenols,
BPS and butylparaben were the least detected, from 16.5% values
above the LOD at 2 months to 70.9% at 12 months and from 8.5%
at 2 months to 36.8% at 12 months, for BPS and butylparaben,
respectively (Excel Table S4). Overall, the matrix of correlation
between urinary chemical concentrations highlighted small corre-
lations between time windows of assessment, whereas within the
same time windows of assessment, we observed overall moderate
to high correlation between parabens (rho ranged from 0.16 to
0.83) and between most phthalate metabolites (0.09–0.80). Lower
correlation coefficients were observed between phenols (0.02–
0.24) (Supplementary Figure S4).

Unipollutant Model
Regarding parabens, butylparaben was the only paraben for which
associations were detected (Figure 1; Excel Table S5). Associations
differed by timing of exposure, specifically, women with exposure
between the LOD and the LOQ at the second trimester (n=45) on
average, had children with a lower BMI [b= − 0:42 kg=m2; 95%
confidence interval ðCIÞ: − 0:77, −0:07 kg=m2] and weight
(b= − 582 g; 95% CI: − 1,012; −152 g) at 36 months, whereas
exposure at the third trimester (n=40) was only associated with a
decreased height at 36 months (b= − 1:07 cm; 95% CI: − 1:96,
−0:17 cm). Children having a butylparaben concentration above
the LOQ at 12 months (n=92) tended to have a smaller weight,
height, and head circumference at 36 months (p-values ranged from
0.04 to 0.08).

Three of the four phenols showed associations with growth
parameters (Figure 1; Excel Table S5). Women having a BPS
concentration above the LOQ at the second trimester (n=84)
tended to have children with a higher BMI (b=0:41 kg=m2; 95%
CI: 0:11, 0:70 kg=m2 at 3 months and b=0:29 kg=m2; 95%
CI: 0:01, 0:56 kg=m2 at 36 months), weight and height at both 3
and 36 months (p-values ranged from 0.001 to 0.05; Excel Table
S5). A similar pattern of association was observed with quanti-
fied exposure at the third trimester (n=81) and predicted BMI,
weight, and head circumference at 3 months (p-values ranged
from 0.02 to 0.08; Excel Table S5). Conversely, the only associa-
tions observed with postnatal BPS exposure, were a decreased
height at 36 months (n=22, b= − 1:51 cm, 95% CI: − 2:73,
−0:29 cm), and a decreased head circumference at 3 months of
age (b= − 0:40 cm; 95% CI: − 0:83 to 0:03 cm) among those
with quantified BPS at 2 months. Regarding BPA, exposure
at 2 months of age was negatively associated with BMI
(b= − 0:18 kg=m2; 95% CI: − 0:32, −0:04 kg=m2) and weight
(b= − 89 g; 95% CI: − 160, −18 g) at 3 months. However, the
associations disappeared when studying the conjugated BPA
concentrations instead of the total one. Last, triclosan at the third,
but not the second, trimester, was associated with a decreased
BMI (b= − 0:06 kg=m2; 95% CI: − 0:12, −0:01 kg=m2) and an
increased height (b=0:13 cm; 95% CI: − 0:01, 0:28 cm) at 36
months. No significant association was observed for benzophe-
none-3.

A few phthalate metabolites were associated with postnatal
BMI, weight, or head circumference but not associated with
height (Figure 1; Excel Table S5).

Mono-n-butyl phthalate (MnBP) urinary concentrations at 12
months, but not at the other time points, was associated with a
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higher BMI (b=0:17 kg=m2; 95% CI: 0:02, 0:32 kg=m2), weight
and head circumference at 36 months (p-values ranged from 0.01
to 0.02). RDEHP at the third trimester was associated with both a
higher BMI of 0:26 kg=m2 (95% CI: 0:03, 0:48 kg=m2) and a
weight of 122 g (95% CI: 10, 234 g) at 3 months of age but not
at 36 months.

Unipollutant Sex-Specific Model

p-Value testing the interaction with child sex revealed effect
modifications for eight of the studied chemicals [methylpara-
ben, propylparaben, BPA, benzophenone-3, monobenzyl
phthalate (MBzP), 6-hydroxy monopropylheptyl phthalate

Figure 1. Adjusted associations between individual biomarker concentrations measured in pools of urine samples collected during trimesters 2 and 3 (maternal
urine) and 2 months and 12 months of age (infant urine) and child predicted (A) BMI (in kg=m2), (B) weight (in g), (C) height (in cm) and (D) head circumfer-
ence (in cm) at 3 and 36 months (n=364 from the SEPAGES cohort, 2014–2017, France) (corresponding to Excel Table S5). Adjusted for: maternal age (<35
vs. ≥35), maternal prepregnancy weight (continuous), maternal height (continuous), paternal weight (continuous), paternal height (continuous), parity (nullipar-
ous vs. parous), breastfeeding status (binary at 3 months or continuous until 48 wk for later outcomes), maternal education (up to 3 y vs. 4 or more years), child
sex (males vs. females), infant history of passive smoking (including in utero passive smoking, Yes vs. No). Note: Due to budgetary restriction, phthalates and
DINCH metabolites concentrations in children’s urine at 2 months of age were not measured. Conjugated phenols were only studied when potential contam-
ination had been previously highlighted. BMI, body mass index; BP-3, benzophenone-3; BPA, bisphenol A; BPA conjugated, bisphenol A conjugated form;
BPS, bisphenol S; BUPA, butylparaben; DEHP, di(2-ethylhexyl) phthalate; DINCH, 1,2-Cyclohexane dicarboxylic acid, diisononyl ester; DiNP, diisononyl
phthalate; ETPA, ethylparaben; LOD, limit of detection; LOQ, limit of quantification; MBzP, monobenzyl phthalate; MEP, monoethyl phthalate; MEPA,
methylparaben; MEPA conjugated, methylparaben conjugated form; MiBP, mono-iso-butyl phthalate; MnBP, mono-n-butyl phthalate; ohMPHP, 6-hydroxy
monopropylheptyl phthalate; PRPA, propylparaben; TRCS, triclosan.
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(oh-MPHP), RDiNP, RDEHP; p-value of interaction <0:10;
Excel Table S6].

After stratification, isolated sex-specific associations were
observed. Methylparaben at the third trimester tended to be nega-
tively associated with BMI at 36 months among males, whereas
propylparaben at the second trimester tended to be negatively
associated with BMI at 3 months among females. BPA at the
third trimester and 2 months tended to be associated with a
decreased weight among females at 3 and 36 months, respec-
tively (Figure 2; Excel Table S6). Among phthalates, MBzP, oh-
MPHP, and RDiNP at the third trimester tended to be negatively
associated with BMI at 3 and 36 months among males and posi-
tively among females. A positive association among males and
negative among females was observed for RDiNP at the second
trimester and head circumference at both time points.

BKMR
Hierarchical BKMR (hBKMR) analysis combining all exposure
windows in the same model did not show association with

postnatal growth (Supplementary Figure S5; Excel Table S7;
Excel Table S8). In the BKMR analysis evaluating each win-
dow separately, prenatal mixtures were not associated with
postnatal growth, whereas mixtures of chemicals at 2 (only
included phenols and parabens) and 12 months tended to be
associated with increased BMI at 36 months (Figure 3; Excel
Table S9). The highest PIP for mixtures at 2 months was BPA,
whereas ethylparaben showed the highest effect (Figure 4A;
Excel Table S10), two compounds that were not associated with
BMI at 36 months in the unipollutant model (p-values of 0.26
and 0.13, respectively). The highest PIP for mixtures measured
at 12 months was observed with RDiNP, which was not associ-
ated with BMI in the unipollutant model, whereas MnBP
showed the highest effect, which was consistent with the uni-
pollutant results (Figure 4B; Excel Table S10).

The mixture measured at 12 months was also associated with
an increased weight at 36 months (Supplementary Figure S6;
Excel Table S9), where MnBP had the highest PIP and showed a
significant positive effect (Figure 5; Excel Table S10), consistent
with the unipollutant results.

Figure 2. Sex-stratified adjusted associations between individual biomarker concentrations measured in pools of urine samples collected during trimesters 2
and 3 (maternal urine) and 2 months and 12 months of age (infant urine) and child predicted anthropometric measurements at 3 and 36 months (n=364 from
the SEPAGES cohort, 2014–1017, France). Geometrical forms indicate the estimates; horizontal lines, the 95% CIs; vertical lines, the null (corresponding to
Excel Table S6). Adjusted for maternal age (<35 vs. ≥35), maternal prepregnancy weight (continuous), maternal height (continuous), paternal weight (continu-
ous), paternal height (continuous), parity (nulliparous vs. parous), breastfeeding status (binary at 3 months or continuous until 48 wk for later outcomes), mater-
nal education (up to 3 y vs. 4 or more years), infant history of passive smoking (include in utero passive smoking, Yes vs. No). Sex-stratified analysis were
performed only when linear regressions p-values of interaction was below 0.1. Beta are given for one unit increase in ln-transformed chemicals; in other words
betas correspond to 2.7-fold increase in chemicals concentration. Analyses on BUPA and BPS were not tested because of small sample size. Due to budgetary
restriction, phthalates and DINCH metabolites concentrations in children’s urine at 2 months of age were not measured. Adjusted for maternal age, maternal
prepregnancy weight, maternal height, paternal weight, paternal height, parity, breastfeeding status, maternal education, infant history of passive smoking.
Note: BMI, body mass index; BP-3, benzophenone-3; BPA, bisphenol A; CI, confidence interval; DEHP, di(2-ethylhexyl) phthalate; DiNP, diisononyl phthal-
ate; M2, 2 months of age; MBzP, monobenzyl phthalate; MEPA, methylparaben; oh-MPHP, 6-hydroxy monopropylheptyl phthalate; PRPA, propylparaben;
T2, second trimester; T3, third trimester; Y1, 12 months of age.
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Figure 3. Change in body mass index (BMI, in kg=m2)—Independent BKMR—Change in BMI for each 5% increase in exposure to chemicals mixture
(n=364 from the SEPAGES cohort, 2014–2017, France). Dots indicate the estimates; vertical lines, the 95% CIs; horizontal lines, the null (corresponding to
Excel Table S9). Adjusted for: maternal age (<35 vs. ≥35), maternal prepregnancy weight (continuous), maternal height (continuous), paternal weight (contin-
uous), paternal height (continuous), parity (nulliparous vs. parous), breastfeeding status (binary at 3 months or continuous until 48 wk for later outcomes),
maternal education (up to 3 y vs. 4 or more years), child sex (males vs. females), infant history of passive smoking (include in-utero passive smoking, Yes vs.
No). Note: *Due to budgetary restriction, phthalates and DINCH metabolites concentrations in children’s urine at 2 months of age were not measured. BKMR,
Bayesian kernel machine regression; BMI, body mass index; CI, confidence interval.
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No association was detected with postnatal height and head
circumference in the mixture models (Supplementary Figures S7
and S8; Excel Table S9).

BKMR Sex-Specific Model
In the sex-specific analysis, hBKMR analysis combining all
exposure windows in the same model showed significant

associations with BMI at 36 months among males. Males
exposed to the 75th percentile of mixture concentrations had
a higher BMI at 36 months of 1:3 kg=m2 (95% CI: − 0:1,
2:7 kg=m2), in comparison with no exposure (Supplementary
Figure S9; Excel Table S11). Exposure at 2 months had the
highest group PIP, with triclosan having the highest relative im-
portance (Excel Table S12).

Figure 4. Change in body mass index (BMI, in kg=m2) at 36 months associated with chemicals exposure at (A) 2 months and (B) 12 months of age (n=364
from the SEPAGES cohort, 2014–2017, France). Panel 1: change for each 5% increase in exposure to the mixture; Panel 2: PIPs; and Panel 3: estimated effect
and 95% CI of an increase from the 25th to 75th percentile in a single chemical concentration when all other exposure biomarkers are fixed at the 50th percen-
tile. Dots indicate the estimates; vertical lines, the 95% CIs; horizontal lines, the null (corresponding to Excel Table S9 and Table S10). Adjusted for: maternal
age (<35 vs. ≥35), maternal prepregnancy weight (continuous), maternal height (continuous), paternal weight (continuous), paternal height (continuous), parity
(nulliparous vs. parous), breastfeeding status (continuous until 48 wk), maternal education (up to 3 y vs. 4 or more years), child sex (males vs. females), infant
history of passive smoking (include in utero passive smoking, Yes vs. No). Note: Due to budgetary restriction, phthalates and DINCH metabolites concentra-
tions in children’s urine at 2 months of age were not measured. BMI, body mass index; BP-3, benzophenone-3; BPA, bisphenol A; BPS, bisphenol S; BUPA,
butylparaben; CI, confidence interval; DEHP, di(2-ethylhexyl) phthalate; DINCH, 1,2-Cyclohexane dicarboxylic acid, diisononyl ester; DiNP, diisononyl
phthalate; ETPA, ethylparaben; MBzP, monobenzyl phthalate; MEP, monoethyl phthalate; MEPA, methylparaben; MiBP, mono-iso-butyl phthalate; MnBP,
mono-n-butyl phthalate; ohMPHP, 6-hydroxy monopropylheptyl phthalate; PIP, posterior inclusion probability; PRPA, propylparaben; TRCS, triclosan.
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Similarly, in sex-stratified mixture analysis by windows of ex-
posure, males exposed to the 75th percentile of themixture concen-
trations had a higher BMI at 36 months of 1:2 kg=m2 (95%CI: 0:3,
2:1 kg=m2) for mixture concentrations at 2 months and 1:0 kg=m2

(95% CI: 0:1, 1:9 kg=m2) for mixture concentrations at 12 months,
in comparison with no exposure (Figure 6; Excel Table S13).
Similar to hBKMR analysis, the highest PIP among males was
seen for triclosan (Supplementary Figure S10A; Excel Table S14),
a compound that was not associated with BMI in the unipollutant
model. In the 12months mixture, MnBP showed the highest effect,
consistent with the unipollutant results (Supplementary Figure
S10B; Excel Table S14).

Similar patterns of association were observed with weight at
36 months (positive association among males with the 12 months
mixture; Supplementary Figure S11; Excel Table S13), with
MnBP showing the highest PIP (Supplementary Figure S12;
Excel Table S14).

No associations were detected in girls, neither with postnatal
height, nor head circumference (Supplementary Figure S13 and
S14; Excel Table S13).

Sensitivity Analysis
Analysis further adjusted for specific gravity gave similar
results, whereas associations generally became stronger (Excel
Table S15). For example, this analysis revealed associations
between exposure to benzophenone-3 at 12 months and weight
and height at 36 months (p-values of 0.04 and 0.02, respec-
tively) that were not significant in our main analysis (p-values
of 0.06 and 0.09).

Analysis performed after removing first and last percentile of
exposure and outcome gave similar results and strengthened
some associations (Excel Table S16). Among parabens, the asso-
ciation between ethylparaben at 2 months and BMI and weight at
36 months became significant (p-values of 0.02 and 0.03, respec-
tively, in comparison with 0.13 and 0.25, respectively) and con-
sistent with our BKMR results on BMI (Figure 2A); as the
negative association between propylparaben at the second trimes-
ter and weight and height at 3 months of age (p-values 0.05 and
0.03, respectively, in comparison with 0.48 and 0.21, respec-
tively). Among phthalates, MiBP at the second trimester was
negatively associated with weight, with head circumference at 3
and 36 months, and with height at 36 months; RDEHP at second
trimester was negatively associated with head circumference at 3
and 36 months (p-values of 0.01 and 0.04, respectively, in com-
parison with 0.07 and 0.12, respectively) (Excel Table S16).

Relying on measurements at 36 months instead of predicted
values showed similar patterns, with one additional isolated asso-
ciation that became significant between MEP at 12 months and
increased BMI (b=0:15 kg=m2; 95% CI: 0:01, 0:29 kg=m2) at 36
months (Excel Table S17) in comparison with the main analysis
(b=0:10 kg=m2; 95% CI: − 0:04, 0:23 kg=m2).

Discussion
Based on repeated within-subject urine collections over preg-
nancy and infancy, we found an association between postnatal
exposure to a mixture of EDCs and increased BMI and weight at
36 months of age, which appeared to be stronger among boys. In
the unipollutant models, only few compounds were consistently

Figure 5. Change in weight (in g) at 36 months associated with chemicals exposure at 12 months of age (n=364 from the SEPAGES cohort, 2014–2017,
France). Panel 1: change for each 5% increase in exposure to the mixture; Panel 2: PIPs; and Panel 3: estimated effect and 95% CI of an increase from the 25th
to 75th percentile in a single chemical concentration when all other exposure biomarkers are fixed at the 50th percentile. Dots indicate the estimates; vertical
lines, the 95% CIs; horizontal lines, the null (corresponding to Excel Table S9 and Excel Table S10). Adjusted for: maternal age (<35 vs. ≥35), maternal pre-
pregnancy weight (continuous), maternal height (continuous), paternal weight (continuous), paternal height (continuous), parity (nulliparous vs. parous), breast-
feeding status (continuous until 48 wk), maternal education (up to 3 y vs. 4 or more years), child sex (males vs. females), infant history of passive smoking
(include in utero passive smoking, Yes vs. No). Note: Due to budgetary restriction, phthalates and DINCH metabolites concentrations in children’s urine at 2
months of age were not measured. BP-3, benzophenone-3; BPA, bisphenol A; BPS, bisphenol S; BUPA, butylparaben; CI, confidence interval; DEHP, di(2-
ethylhexyl) phthalate; DINCH, 1,2-Cyclohexane dicarboxylic acid, diisononyl ester; DiNP, diisononyl phthalate; ETPA, ethylparaben; MBzP, monobenzyl
phthalate; MEP, monoethyl phthalate; MEPA, methylparaben; MiBP, mono-iso-butyl phthalate; MnBP, mono-n-butyl phthalate; ohMPHP, 6-hydroxy monop-
ropylheptyl phthalate; PIP, posterior inclusion probability; PRPA, propylparaben; TRCS, triclosan.
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Figure 6. Sex-stratified BKMR (males, n=194; females, n=170) —change in BMI (in kg=m2) for each 5% increase in exposure to chemicals mixture sepa-
rately for females and males (n=364 from the SEPAGES cohort, 2014–2017, France). Dots indicate the estimates; vertical lines, the 95% CIs; horizontal lines,
the null (corresponding to Excel Table S13). Adjusted for: maternal age (<35 vs. ≥35), maternal prepregnancy weight (continuous), maternal height (continu-
ous), paternal weight (continuous), paternal height (continuous), parity (nulliparous vs. parous), breastfeeding status (binary at 3 months or continuous until 48
wk for later outcomes), maternal education (up to 3 y vs. 4 or more years), infant history of passive smoking (include in utero passive smoking, Yes vs. No).
Note: *Due to budgetary restriction, phthalates and DINCH metabolites concentrations in children’s urine at 2 months of age were not measured. BKMR,
Bayesian kernel machine regression; BMI, body mass index; CI confidence interval.
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associated with growth outcomes. These included BPS at the sec-
ond trimester positively associated with all infant growth parame-
ters and MnBP at 12 months associated with increased BMI,
weight, and head circumference at 36 months. No modification
by child sex was suggested for this association.

Regarding the unipollutant results, among phenols, prenatal ex-
posure to BPS at the second trimester was associated with an
increase in all infant growth parameters. To our knowledge this is
the first study investigating the associations between BPS exposure
during pregnancy and early infancy and postnatal growth. Three
cross-sectional studies among children of 6 y of age or older have
been conducted in the United States. Among them, two did not find
associations,42,43 whereas one study on 1,831 children and adoles-
cents (6 to 19 y of age) reported positive associations between BPS
exposure and obesity risk.44 We also observed an isolated associa-
tion between total BPA at 2 months and decreased BMI and weight
at 3 months, which disappeared when the concentration of the con-
jugated form alone was used, suggesting that this association may
result from external contamination. Our findings on BPA were not
consistent with most previous published studies that reported posi-
tive45 or no association,46,47 with the exception of one US study
conducted on 297 children from Cincinnati, Ohio, that reported an
inverse association between early childhood (1–2 y of age) urinary
concentration of BPA and BMI at 2–5 y of age, mostly among
girls.48 We also reported an isolated negative association between
triclosan at the third trimester and BMI at 36 months, which is not
consistent with previously published papers.24,49,50

Among parabens, only butylparaben showed associations
with child growth. These associations were all negative, whereas
among the low number of studies investigating the associations
between parabens and child growth, one reported a positive asso-
ciation between n-butylparaben and child fat percentage among
boys.51

Among phthalates, we found positive associations between
RDEHP at third trimester and BMI and weight at 3 but not at 36
months, which is inconsistent with the conclusion from a recent
meta-analysis that reported negative associations between prena-
tal RDEHP and childhood BMI.9 However, two individual stud-
ies that focused on early childhood (<2 y of age) also reported
positive associations,52,53 including one among 990 Chinese girls
that reported a positive association between prenatal RDEHP and
BMI z-score at 3 months but not later during infancy, supporting
our results.52 Regarding MnBP, a metabolite of dibutyl-phthalate
(DBP), most previous studies focused on prenatal exposure and
reported positive associations with adiposity54,55 and BMI,52,56,57

whereas we did not find association with prenatal exposure. Few
studies, mainly cross-sectional, looked at postnatal exposure
and all assessed exposure in children after 4 y of age. One found
no association between MnBP measured in urine at 4, 5, and 8 y
and adiposity at 8 y,58 whereas other studies reported positive
associations,55,59,60 supporting our finding on the positive asso-
ciation between MnBP and children growth, despite the differ-
ence in the age ranges (from 4 to 15 y of age). Among the three
studies reporting positive associations, one conducted among
500 children between ages 4 and 6 y, found stronger associa-
tions among girls.55

Our mixture analysis results showed associations between
infant exposure to the mixture and higher BMI and weight at 3 y
that were stronger in males. Although effect modification by child
sex may result from interaction of EDCs with nuclear hormone
receptors, including estrogen and androgen receptors,61 our
results should be interpreted cautiously because our sample size
was limited (194 males and 170 females), and most studies rely-
ing on child urinary chemical concentrations have reported stron-
ger associations among girls for individual chemicals.48,62

Comparison of our mixture analysis with previous publications is
not straightforward because most studies performing mixture
analysis only investigated the impact of prenatal exposure, a time
point that was not associated with postnatal growth in our study,
in line with previous reports.52,63,64 Only one cross-sectional
study conducted on 2,372 children 6–19 y of age used BKMR to
assess the mixture of phenols and phthalates on obesity risk and
BMI and found positive trends,65 supporting our findings.

Obesogenic effects of EDCs may result from their interfer-
ences with hormone receptors of the nuclear receptor family,61

such as the estrogen receptors, with either agonist or antagonist
effects depending on the EDCs.66 EDCs can also impact the thy-
roid hormone pathway.67 Phthalates may have proinflammatory
effects through up-regulation of the peroxisome proliferator–acti-
vated receptors (PPARs) and/or the induction of cyclooxygenase-
2 expression. Finally, EDCs can also affect the aryl hydrocarbon
receptor (AhR) known to be involved in the regulation of lipo-
genesis and glucose homeostasis.68,69

The sample size of our study was modest and may not allow
the detection of small effects. However, the unique urine collec-
tion of our study (up to 42 urine samples during pregnancy and
14 during first year of life) should better represent early-life ex-
posure, decrease bias in the effect estimates,16 and thus increase
the potential to detect effects that previous studies of similar sam-
ple size but using one urine sample may not have revealed.
Residual confounding may have occurred; BPA and BPS concen-
trations may be a surrogate for factors predictive of child over-
weight, such as maternal and child eating behaviors, that we were
not able to account for. Although BKMR model allows to address
multicollinearity in exposure, nonlinearity, and coexposure
bias,39,70 an overall risk association may not be observed when
both positive and negative associations with the outcome exist
for the chemicals considered in the mixture.

This study is the first to consider exposure during prenatal and
early postnatal life, two crucial periods for child development.
Thanks to the longitudinal design we had a large number of growth
measurements for most individuals. The Jenss-Bayley prediction
model, describing the child growth trajectory,28 allowed us to pre-
dict growth parameters at exactly the same age for all children, tak-
ing into account repeated measurements and potential missing
data. When this work was initiated, data were only available for
children until the age of 3 y; however, effects of chemicals may
potentially become apparent during later stages of childhood,
underscoring the need of longer follow-up. Moreover, decrease in
growth in early life (prior to 3 y of age) may lead to catch-up
growth or obesity later in childhood.

In conclusion, this study suggested that exposure to a mixture
of short half-life EDCs in early infancy may be associated with
increased weight and BMI in childhood, a risk factor for obesity
in later life. Both unipollutant and mixture models highlighted an
effect of MnBP exposure at 12 months on the adiposity growth.
The unipollutant model also showed associations between prena-
tal BPS exposure and an increase in all growth parameters.
Further investigations are needed for this compound because it
has never been studied in a similar context. This study added to
the scarce literature on the impact of exposure to short half-life
EDCs in early infancy. Further epidemiological studies should
assess exposure during this critical period for child development.
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